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An exact trajectory of a dynamical system lying close to a numerical trajectory is called a

shadow. We present a general-purpose method for proving the existence of finite-time shadows

of numerical ODE integrations of arbitrary dimension in which some measure of hyperbolicity

is present and there is either 0 or 1 expanding modes, or 0 or 1 contracting modes. Much

of the rigor is provided automatically by interval arithmetic and validated ODE integration

software that is freely available. The method is a generalization of a previously published

containment process that was applicable only to two-dimensional maps. We extend it to handle

maps of arbitrary dimension with the above restrictions, and finally to ODEs. The method

involves building n-cubes around each point of the discrete numerical trajectory through which

the shadow is guaranteed to pass at appropriate times. The proof consists of two steps: first,

the rigorous computational verification of an inductive containment property; and second, a

simple geometric argument showing that this property implies the existence of a shadow. The

computational step is almost entirely automated and easily adaptable to any ODE problem.

The method allows for the rescaling of time, which is a necessary ingredient for successfully

shadowing ODEs. Finally, the method is local, in the sense that it builds the shadow inductively,

requiring information only from the most recent integration step, rather than more global

information typical of several other methods. The method produces shadows of comparable

length and distance to all currently published results.
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Chapter 1

Introduction, motivation and
background

1.1 Ordinary differential equations

The subject of ordinary differential equations (ODEs) concerns the study of solutions to equa-
tions of the form

y′(t) = f(t,y(t)), (1.1)

where y(t) = (y1(t), . . . , yn(t))T is an n-dimensional vector, y′(t) = dy(t)
dt , and f : R ×Rn →

Rn = (f1(t,y(t)), . . . , fn(t,y(t))T is a vector-valued function. Good introductory texts on the
subject abound; see for example Braun (1983, 1993) for a pleasant and readable undergraduate-
level introduction. If f depends on t as above, the ODE is called nonautonomous; otherwise it
is called autonomous. The nonautonomous ODE (1.1) can be converted into an autonomous
one by adding one more variable, say yn+1(t), and letting y′n+1(t) = 1, yn+1(t0) = t0, then
substituting yn+1 wherever t appears on the right hand side. We will concern ourselves in this
thesis mostly with autonomous ODEs, keeping in mind that we can solve the nonautonomous
case either by using the above substitution, or by straightforward extensions to our algorithms.

The subject of initial value problems (IVPs) for autonomous ODEs concerns the solution of

y′(t) = f(y(t)), (1.2)
y(t0) = y0, (1.3)

where (1.3) is called the initial condition. If f is bounded and Lipschitz continuous in a domain
D1, then the solution to (1.2,1.3) exists and is unique while it remains in D (Ascher, Mattheij,
and Russell 1988, §3.1). Let y(t; t0,y0) be the solution of (1.2,1.3). Define the time-h solution
operator ϕh to be

ϕh(x) ≡ y(h; 0,x), (1.4)

keeping in mind that y(t; t0,x) ≡ y(t− t0; 0,x) for autonomous systems.

1A function f(y) is Lipschitz continuous in a domian D if ∀x,y ∈ D, ‖f(x) − f(y)‖ < C‖x − y‖ for some
constant C.

1



2 Chapter 1. Introduction, motivation and background

1.1.1 Error analysis of numerical solutions to ODEs

It is not possible, in general, to solve (1.2,1.3) in closed form (Braun 1983, §1.9). In fact, most
initial value problems cannot be solved in closed form. Thus, approximate methods for the
solution of (1.2,1.3) must be used. We restrict our discussion to one-step methods. A one-step
method consists of building an approximation ϕ̃h to ϕh for small h, and then computing a
sequence of discrete points yi+1 = ϕ̃hi(yi) representing approximations to y(ti+1; t0,y0) where
ti+1 = ti + hi. See, for example, Dahlquist and Björck (1974) or Kahaner, Moler, and Nash
(1989) for an undergraduate-level introduction, or Hairer, Nørsett, and Wanner (1993) for a
more advanced exposition. We will term such a discrete sequence of points a pseudo-trajectory.
If the pseudo-trajectory satisfies a local error tolerance of δ such that ‖yi+1 − ϕhi(yi)‖ ≤ δ,
then we will call it a δ-pseudo-trajectory.

The natural first question to ask about pseudo-trajectories is how accurately they approx-
imate the exact solution. Several approaches have been developed to aid in answering this
question. Forward error analysis is the most straightfoward, and refers to the evolution of
‖yi−y(ti; t0,y0)‖. In general the best bound one can put on this forward error is an exponen-
tial one,

‖yi − y(ti; t0,y0)‖ ≤ δ

hL
(eL|ti−t0| − 1), (1.5)

where δ is the local error and L is a bound on the logarithmic norm of the Jacobian of f
(Dahlquist and Björck 1974, §§8.1.2, 8.3.6). If L is negative, then the error is uniformly bounded;
otherwise, the error may be unbounded, and more sophisticated methods of error analysis must
be used to gain insight into the value of the numerical solution. If a numerical method of order
p has a stepsize bounded by h, then δ is O(hp+1), and the right side of equation (1.5) becomes
O(eLthp/L) for time t.

Backward error analysis is a general term applied to methods of error analysis that relate the
pseudo-trajectory to the exact solution of a nearby problem (Corless 1994a). Defect based back-
ward error analysis requires a piecewise differentiable interpolant x(t) of the pseudo-trajectory,
and then defines the defect as

δ(t) = x′(t)− f(x(t)). (1.6)

If for some input tolerance ε we can show that ‖δ(t)‖ ≤ ε wherever x′(t) is defined over the
whole of the interpolated solution, then the interpolated solution is the exact solution to an
ε-close problem (Corless and Corliss 1992; Corless 1994a). The method of modified equations is
a special case of defect analysis in which, given a particular numerical method and a particular
problem, we can write down an algorithm to compute δ(t) using a series expansion, although it
is extremely tedious. Ahmed and Corless (1997) have implemented a prototype with the aid of
the Maple symbolic manipulation package (Char 1993).

Defect-based and other backward error analysis methods modify (1.2) but leave (1.3) un-
touched. In contrast, shadowing is a method of backward error analysis in which (1.2) remains
fixed while (1.3) is allowed to change. In other words, a shadow is an exact solution to (1.2) that
remains close to the pseudo-trajectory, but that has slightly different initial conditions than the
pseudo-trajectory. Shadowing is thus best applied to systems in which the governing equations
are extremely well-known, and virtually all error is introduced by imprecise knowledge of initial
conditions and/or by numerical error in the computation of the solution. It is less applicable
to systems in which the mathematics only approximately model the truth.
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1.2 Motivation

This thesis was inspired by a study of the reliability of the numerical simulation of physical
systems, particularly simulations of the gravitational n-body problem. Many physical systems
under active study today can be modelled using ODEs; however, many of them display sensitive
dependence on initial conditions, which means that two solutions that are initially close to each
other tend to diverge exponentially with time. Since numerical methods introduce small errors
that produce a pseudo-trajectory rather than an exact solution, it is virtually guaranteed that a
pseudo-trajectory of such an ODE will diverge exponentially away from the exact solution with
the same initial conditions. Although this is widely recognized, its impact on the qualitative
properties of a pseudo-trajectory of an ODE is not well understood.

Corless (1994a) argues that backward error analyses that modify (1.2) are often adequate
because mathematical modelling always requires approximation and neglect of small effects:

One neglects, for example, the effect of the gravitational attraction of Jupiter on
one’s earthbound experiment . . . . Similarly, one ignores ‘small’ stochastic terms
in ordinary differential equation models of many phenomena, or ‘small’ nonautono-
mous perturbations of physics experiments (such as the effect of passing trucks). So
a numerical analysis of methods of solving ODEs which puts [numerical] errors on
the same basis as modelling, measurement, and data errors would be a completely
successful analysis . . . . We [have to] study the effects of perturbations, of course,
but we have to do this even if we know the exact solution of the specified problem.
[Corless (1994a)]

Although these are good points, this author is not convinced for the following reasons. Nu-
merical errors may be biased in qualitatively different ways than natural perturbations, and
may introduce biases into the numerical solution that cause it to behave in a nonphysical man-
ner. Corless (1992b) has himself noted this. For example, the perturbations mentioned above
would not appreciably change the energy of the system under study, whereas spurious energy
dissipation can be a major problem in long numerical integrations of systems which should
be conservative (Channell and Scovel 1990; Sanz-Serna 1992). Although symplectic integra-
tors (Channell and Scovel 1990; Sanz-Serna 1992) and other types of conservative integrators
(Shadwick, Bowman, and Morrison 1999) may conserve certain quantities, it is not clear that
they do not introduce new biases, such as nonphysical energy transport. Physical systems often
satisfy properties such as symplecticness, conservation of energy, conservation of phase-space
volume and conservation of various types of momentum. Many of these are well-conserved
in real systems that experience perturbations, but are not well-conserved by many otherwise
well-behaved numerical methods.2 This has been confirmed with several symplectic maps using
a fixed-timestep 4th-order Runge-Kutta integrator (Channell and Scovel 1990), and by this
author using the n-body problem and comparing a 7/8 order Runge-Kutta pair (Enright 1993),
two Adams’s methods (Hindmarsh 1980; Kahaner, Moler, and Nash 1989), and a Bulirsch-Stoer
method (Press, Teukolsky, Vetterling, and Flannery 1992) to the leapfrog method, which is a
2nd-order symplectic method. In general, we want to ensure that changing the field represented
by (1.2) does not affect any quantities of interest (Skeel 1996; Skeel 1999).

2The effect on simulations of numerical error can be much greater than actual perturbations, even if those
perturbations are larger. For example, nearby stars and the Galaxy at large exert forces on the Solar System
that are at least 10−12 as large as the forces from our Sun. It is not difficult to create integrations with numerical
errors several orders of magnitude smaller than this, and yet unless these integrations somehow account for
symplectic structure or energy conservation, they produce an integration of the Solar System which quickly and
clearly diverges from the behaviour of the real Solar System.



4 Chapter 1. Introduction, motivation and background

As a subtly different example, a close encounter between particles in a gravitational n-body
integration involves forces between the participating particles which are so great that physical
perturbations from other parts of the system are negligible. The numerical errors introduced
during the encounter can have a far greater effect than any physical perturbations. Close
encounters are very hard to integrate numerically with precision, and are well-known to be the
bane of gravitational n-body integration (Aarseth 1999).

Despite all of this, numerical solutions often appear to mimic with astounding accuracy the
phenomena they purport to simulate. Simulations of galaxies often closely resemble real galaxies
(see almost any paper on galaxy simulation in Clarke and West (1997) or Merritt, Sellwood, and
Valluri (1999)). Even galaxy collisions can be modelled in a convincing manner (Struck 1997).
More generally, exponential divergence of nearby trajectories implies that an initially dense
ensemble of points will disperse into a uniform distribution in a relatively short time (Skeel
1996; Skeel 1999). This effect is also seen in numerical simulations of chaotic systems (Merritt
and Valluri 1996; Merritt 1999). The natural question to ask is whether these simulations are
behaving in a fashion similar to real systems, or if they only superficially mimic real systems
but are in fact behaving incorrectly at a more fundamental level. If this were the case, then we
could be lulled into a false sense of security whilst our understanding of these systems becomes
compromised.

Since shadowing disallows changes in the model (1.2), some of these kinds of insidious errors
can be ruled out. Furthermore, if the problem (1.2) arises from a purely mathematical context
and not a physical one, we may be earnestly interested in the properties of exact solutions
of (1.2), in which case a recourse to shadowing may be the only option. The only remaining
question would then be whether shadows are typical of exact solutions chosen at random.

On the other hand, rigorous shadowing as presented in this thesis and elsewhere is extremely
expensive. Whereas defect controlled methods are of roughly equal expense compared to more
traditional integration methods, rigorous shadowing requires validated ODE integration, which
at present tends to be several orders of magnitude more expensive in both time and memory
than non-validated methods, even for low-dimensional problems.

1.3 Background

This section covers material that is required to understand later chapters. It may be omitted by
those already familiar with the concepts of interval arithmetic and validated ODE integration.

1.3.1 Interval arithmetic

The proofs that will be elucidated in Chapter 3 are computer aided proofs. In particular, they
rely on the rigorous computational verification of some properties that are computed using
floating-point arithmetic. Floating-point arithmetic is inexact; it is impractical in general to
store the exact result of the addition of even two machine-representable numbers, much less
compute complicated functions of them. Error analysis is the study of how these floating-point
errors, and other numerical errors, affect the results of numerical computations (Dahlquist and
Björck 1974; Hager 1989; Kahaner, Moler, and Nash 1989). Computational interval arithmetic
is the study of how to automatically maintain rigorous yet tight bounds on the errors incurred
in computations involving floating-point numbers, and software packages exist to implement
computational interval arithmetic algorithms. In this thesis, we use the packages described in
Nedialkov (1999). More background on interval arithmetic may be found in Moore (1966) and
Alefeld and Herzberger (1983). An up-to-date, practical implementation is discussed at a very
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abstract level in Tupper (1996).
Interval arithmetic packages maintain upper and lower bounds on floating-point computa-

tions that are guaranteed to enclose the exact value of a computation. Let the symbol +↑

represent floating-point addition in which the machine rounds up the answer (towards +∞) to
the closest machine-representable number. Similarly, let +↓ represent floating-point addition
in which the machine rounds down (towards −∞). To compute an interval that is guaranteed
to enclose the exact sum of two floating-point numbers a and b, we compute

c = a +↓ b,

c = a +↑ b.

Then the interval [c, c] is guaranteed to enclose the exact sum, a+ b. Similarly, we can add two
intervals c = [c, c] and d = [d, d] by performing

[e, e] := [c, c]⊕ [d, d] ≡ [c +↓ d, c +↑ d].

Similar operations can be provided for subtraction, multiplication, and division, although the
latter two are slightly more complicated. Interval arithmetic subroutines can also be provided
for computing sin, cos, tan, log, exp, and all the standard elementary functions. These can
be implemented, for example, by summing a Taylor series expansion in interval arithmetic and
then bounding the remainder term in interval arithmetic as well, giving a rigorous bound on
the total error. To obtain a tight bound, however, often requires more sophistication.

An interval whose upper and lower bounds are equal is called a point interval, sometimes
refered to as a thin interval by other authors. Interval vectors and matrices are represented
by vectors and matrices of intervals. An interval vector may be thought of as an axis-aligned
“box” that represents all the real numbers inside the box.

The width of an interval is
w([a]) = a− a.

An important goal of interval arithmetic packages is to keep the width of the intervals as small
as possible while still enclosing the exact solution. If the width of an interval becomes too large,
virtually no information remains about the value of the exact solution, even though the interval
encloses the exact solution. The midpoint of an interval [a] is

m([a]) = (a + a)/2.

The width and midpoint of interval vectors and matrices are defined component-wise.
In general, let g : Rn → Rm and let ḡ be an interval arithmetic algorithm that attempts to

compute g. Then given any n-dimensional input interval vector [x], ḡ must either fail explicitly
or produce as output an m-dimensional interval vector [y] satisfying

∀x ∈ [x], g(x) ∈ [y].

Although interval techniques are very powerful, they cannot be used in a blind or näıve
manner, and some caveats must be noted. For example, although interval addition and multi-
plication are associative, the distributive law does not hold in general. That is, we can easily
find three intervals [a], [b], and [c] for which

[a]([b] + [c]) 6= [a][b] + [a][c].
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Some special cases of the distributive law hold, for example if [b][c] ≥ 0, if [a] is a point interval,
or if both [b] and [c] are symmetric about 0 (Nedialkov 1999, §2.1). Moreover, the subdistributive
law

[a]([b] + [c]) ⊆ [a][b] + [a][c]

always holds. In general, interval methods can be tricky, and consequently their use requires
some degree of sophistication from the user.

1.3.2 Validated ODE integration

A validated ODE integrator is an algorithm that uses, among other things, interval arithmetic
to produce an interval vector that, in the forward error sense, is guaranteed to enclose the
exact solution of the initial value problem (1.2,1.3). There are exactly two sources of error in
numerical integrations: roundoff error, which can be accounted for by interval arithmetic, and
truncation error, for which we need some theoretical bound on the error in the method. Most
validated ODE integrators use a Taylor series to approximate ϕh, in which the remainder term
computed in interval arithmetic bounds the truncation error (Nedialkov, Jackson, and Corliss
1999). An impressive accomplishment in this direction has been the development of software
that can automatically differentiate code lists and compute Taylor series at run time (Bendtsen
and Stauling 1996; Bendtsen and Stauling 1997), making it almost trivial to automatically
generate Taylor series.

If the interval vector representing an enclosure of a validated integration is an axis-aligned
box at time t0, its image under the evolution of the ODE is unlikely to remain axis-aligned
for time t 6= t0. Many methods have been devised to account for this so-called wrapping
effect. We use the software developed by Nedialkov (1999). The following description derives
from Nedialkov (1999) and Nedialkov, Jackson, and Corliss (1999), which may be consulted for
further details. The enclosure of a solution is represented by

ŷi + Ai[ri] ≡ {yi} ⊇ ϕh({yi−1}), (1.7)

where ŷi is a point vector representing the approximate solution, [ri] is an interval vector
enclosing the zero vector, Ai is a point matrix providing a linear transformation (rotation,
scaling, skewing, etc.) to [ri], {yi} is a shorthand for ŷi + Ai[ri], ϕh is the solution operator
(1.4), and ϕh({yi−1}) is the pointwise application of ϕh to {yi−1}. Thus, {yi} can be thought
of as a point vector numerical solution ŷi with a linearly transformed bounded error box Ai[ri]
around it. In our implementation, [ri] is evolved using

[ri] = A−1
i ([Si−1]Ai−1)[ri−1] + A−1

i ([zi]− zi), (1.8)

where [Si−1] is an interval approximation to the solution of a variational equation from ti−1 to
ti. Note that although [Si−1] as used in (1.8) rigorously evolves [ri] to maintain enclosure of
the solution, in general [Si] does not provide a rigorous bound on the solution of the variational
equation. The first term of (1.8) is responsible for propagating the error from the previous step,
while the second term is the new error introduced at the current step, with [zi] being derived
from the remainder term of the Taylor expansion for step i and zi being the midpoint of [zi].
The matrix Ai is meant to provide a linear transformation to [ri] that reduces wrapping, and
is currently computed by performing a QR factorization

QiRi = m([Si−1])Ai−1,



1.3. Background 7

(where Qi is an orthogonal matrix and Ri is an upper triangular matrix) and setting Ai ≡ Qi.
As a side remark, note that if we were to take Ai = m(Si−1)Ai−1, then A−1

i ([Si−1]Ai−1)
would approximate the identity, to within the width of [Si−1] times a constant depending on
A−1

i and Ai−1. In fact, Ai can be any nonsingular matrix, although some choices are better
than others for providing tight enclosures. That is, any nonsingular choice of Ai will produce
an [ri] which is a proper enclosure of the solution as long as [ri] is computed with equation
(1.8). The orthogonalization is performed only because empirical evidence has demonstrated
that the condition number of Ai has a large effect on the evolution of the width of [ri], and
orthogonalizing Ai appears to reduce this width. Future analyses may provide better choices
for Ai or even entirely different ways of computing [ri] (Nedialkov 1999; Nedialkov, Jackson,
and Corliss 1999; Nedialkov and Jackson 2000).

The enclosures constructed by any interval arithmetic package are unlikely to be optimal.
The amount by which they over-estimate the error is called the excess. It is worth noting
that the excess for the methods used in this thesis is probably quite large. For example, this
author has computed pseudo-trajectories for the initial value problems discussed in Chapter
4 using many diverse numerical methods including the three Runge-Kutta methods (i) the
classic 4th order one (Press, Teukolsky, Vetterling, and Flannery 1992), (ii) one order 5/6 pair
(Hull, Enright, and Jackson 1976), and (iii) one order 7/8 pair (Enright 1993); two Adams
methods (Hindmarsh 1980; Kahaner, Moler, and Nash 1989); and a Bulirsch-Stoer method
(Press, Teukolsky, Vetterling, and Flannery 1992). In most cases, these integrators all agreed
with each other, and with the approximate solution ŷ provided by Nedialkov (1999), to a
precision several orders of magnitude higher than the width of [ri]. Although all of these
methods are ultimately based on local Taylor series approximations, they are algorithmically
very diverse and we believe they are unlikely all to be biased in a similar fashion. Thus, we
consider this to be strong evidence that the width of [ri] is a gross upper bound on the error,
and that much further work is needed in the area of providing tight enclosures of solutions to
IVPs.

Although packages exist that can handle the wrapping effect more effectively, they are con-
siderably more expensive. For example, if n is the number of equations in the system and k is
the order of the Taylor series used to approximate one integration step, then the computational
complexity of COSY INFINITY (Berz 1997; Berz and Makino 1998) is (n+k

n ) per step. This is
a high-degree polynomial if either n or k is fixed and either is of nontrivial size, and is expo-
nential if both n and k are allowed to grow, whereas the compuational complexity of our code
is approximately O(Nnk2) (Nedialkov 1999), where N is the number of operations needed to
compute the Jacobian of (1.2).

Finally, it is interesting to note that shadowing can be thought of as a generalization to
validated ODE integration. Traditional validated ODE integration involves finding a bound
enclosing the exact solution that starts at t = 0 at the exact point initial condition given. Since
numerical solutions are not exact any time after time zero, it seems rather artificial to insist
that they be exact at time zero. Considering that shadows can last many orders of magnitude
longer than validated ODE integrations3, perhaps it is better to say that numerical trajectories
are valid approximations of exact trajectories as long as we do not require that they exactly
satisfy the initial conditions, and instead treat time zero on an equal footing with all other
times (Murdock 1995).

3For example, Nedialkov (1999) typically finds a validated solution of the Lorenz equations lasting about 25
time units, whereas shadows of the Lorenz system can last for anywhere from hundreds to millions of time units.



8 Chapter 1. Introduction, motivation and background

1.4 Thesis outline

In Chapter 2, we present a tutorial introduction, a survey of previous work, and some discussion
of shadowing. Chapter 3 contains the bulk of the original work of the thesis, detailing our
algorithms and theorems for proving the existence of shadows. Chapter 4 contains results
of our shadowing experiments and comparison of our results to previously published work.
Chapter 5 contains a brief discussion of future directions for this research. Finally, the Glossary
contains definitions of terms with which the reader may not be familiar.



Chapter 2

A brief survey of shadowing results

Dynamical systems often display sensitive dependence on initial conditions: a small change
at any point in an orbit produces a new orbit that tends to exponentially diverge from the
original one, leading to a vastly different solution a short time later. Since a numerical method
introduces small perturbations arising from roundoff and truncation error, we must naturally
ask what effect these errors have on the validity of numerical solutions.

2.1 Introduction

2.1.1 Definitions

In this thesis, an orbit is a discrete sequence of points, a solution is a continuous curve, and a
trajectory more generally refers to either an orbit or a solution depending upon context. The
prefix pseudo- will be used to denote an approximate orbit, solution, or trajectory, although
sometimes it will be omitted if the meaning is clear from the context. We assume a well-
scaled problem where all macroscopic quantities of interest are of order unity; | · | denotes the
magnitude of a scalar, while ‖ · ‖ denotes a norm of a vector or matrix. We use the max norm
unless otherwise noted.

Let ϕ : Rn → Rn be a function.
In this thesis, ϕ(x) will usually be a diffeomorphism representing the one-timestep flow

through x of the solution to an ODE. If the timestep is fixed, then ϕ is the same function on
each step, but if the timestep is allowed to vary, ϕ may change from step to step and we will
introduce a subscript, using ϕi for step i. For now, we leave ϕ unsubscripted. For a discrete
map, ϕ may be a simple equation, such as the logistic equation ϕ(x) = 1 − 2x2, which maps
the interval [−1, 1] onto itself.

Definition. The iterated map ϕi(x) is the result of repeatedly composing ϕ with itself i
times, i.e., ϕi(x) = ϕ(ϕ(. . . ϕ︸ ︷︷ ︸

i times

(x) . . . )).

Definition. An exact orbit {xi}k
i=j of ϕ satisfies xi+1 = ϕ(xi), i.e., xi = ϕi−j(xj), for

j ≤ i < k. We allow j = −∞ and k = ∞.
Definition. {yi}k

i=j is a δ-pseudo-orbit or noisy orbit for ϕ if ‖yi+1−ϕ(yi)‖ ≤ δ for j ≤ i < k,
where δ is called the noise amplitude.

For a discrete map, δ can be as small as the machine epsilon; for both discrete maps and
ODE systems, it is a bound on the one-step error.

Definition. For j ≤ i < k, the one-step error made between step i and step i + 1 of the

9
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pseudo-orbit {yi}k
i=j is ei+1 = yi+1 − ϕ(yi).

Thus, an exact trajectory is one whose one-step errors are identically zero, and a δ-pseudo-
orbit is one whose one-step errors satisfy ‖ei‖ ≤ δ for j < i ≤ k.

Definition of shadowing. An exact trajectory {xi}k
i=j ε-shadows a pseudo-trajectory {yi}k

i=j

if ‖yi − xi‖ ≤ ε for j ≤ i ≤ k.
Definition. The δ′-pseudo-trajectory Z = {zi}k

i=j is a numerical shadow of the δ-pseudo-
trajectory Y = {yi}k

i=j if their one-step errors are tightly bounded by δ′ and δ, respectively,
and δ′ < δ.

In practice, a numerical shadow usually only has smaller error bounds than the original
noisy orbit, because in most cases neither orbit has rigorously computed error bounds. To have
confidence in the value of a numerical shadow, we like its noise to be as small as possible. For a
map, the noise should ideally be the machine precision. For an ODE solution, the noise is “as
small as possible” using some accurate integrator with its error tolerance set very stringently.

A pleasant introduction to shadowing is provided by Sanz-Serna and Larsson (1993).
Definition. The pseudo-orbit {yi}k

i=j has a glitch at point i = G0 < k if for some relevant
ε there exists an exact trajectory that ε-shadows {yi}G0

i=j , but no exact trajectory exists that
ε-shadows {yi}G

i=j for G > G0 (Grebogi, Hammel, Yorke, and Sauer 1990).
Although rigorously disproving the existence of shadows of particular numerical trajectories

is a virtually untouched area of research, the failure of a particular method to find a shadow is
often cited as evidence that an actual glitch occurs somewhere in the vicinity of the computed
end-of-shadow (Grebogi, Hammel, Yorke, and Sauer 1990; Sauer and Yorke 1991; Dawson,
Grebogi, Sauer, and Yorke 1994; Sauer, Grebogi, and Yorke 1997; Quinlan and Tremaine 1992;
Hayes 1995). This conclusion is not always valid, however (see the discussion following Theorem
2.4, p. 17, in this thesis), and so this author proposes two different terms. The term glitch,
or hard glitch, should be reserved for the case in which the above definition can be verified,
i.e., non-existence of shadows can be proved. For example, a function ϕ : X → X which maps
an interval onto itself may produce a numerically generated orbit of the iterated map which lies
outside this interval. If a numerically generated point, say xi, moves more than ε away from
the interval X then a glitch is guaranteed. However, the failure of a particular method to find
a shadow is a different matter, and for this case the author proposes the term soft glitch. For
systems such as the n-body problem, the notion of a hard glitch cannot be used without proof
because there is no point in phase space that is unphysical; that is, in a Newtonian, Euclidian
space, particles can have any position and any velocity. Furthermore, small numerical errors
are constantly occuring, and if the system is integrated carefully and local errors remain small,
there is no obvious point at which one can say, “this behaviour is nonphysical”. One can
arbitrarily decide, for example, that when the total computed energy of the numerical solution
has diverged from the known energy of the system by some chosen amount, the solution is no
longer valid. But this is not the spirit of the term “glitch”. The spirit of the term seems to be
“a point at which all exact trajectories diverge from a numerical one”, and currently this can
only be proved for simple systems such as the system discussed above.

2.1.2 Tutorial

A simple example of a shadow is provided by Quinlan and Tremaine (1992), hereafter referred to
as QT. Let y′′ = y, which can be re-written as a pair of first order equations as y′ = v, v′ = y,
where v is velocity. If y(t0) = v(t0) = 0 for any t0, then the exact solution is y = v = 0 ∀t.
Now, assume that y = v = 0 for t < 0, and assume that the system is solved exactly for all
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t 6= 0. Introducing a perturbation of size ∆v = ε at t = 0 gives the following “noisy” solution:

y(t) =
{

0, t < 0,

ε et−e−t

2 , t > 0.

A shadow of this noisy solution is
x(t) = εet/2,

which remains within ε/
√

2 (in phase space) from y(t) for all t.
Next we offer a proof of an almost “trivial” theorem: if a map is contracting, then noisy

orbits are shadowed.

Theorem 2.1 (Contracting map shadowing theorem). Let X be a metric space and let
ϕ : X → X be a continuous, uniformly contracting map, i.e., ∃ρ < 1 s.t. ∀x, y ∈ X, ‖ϕ(x)−
ϕ(y)‖ ≤ ρ‖x − y‖. Then for every ε > 0 there exists δ > 0 such that every δ-pseudo orbit
remaining in X is ε-shadowed.

Proof. Assume we are given ε > 0. Let δ = ε(1− ρ). Suppose {yi}∞i=j is a δ-pseudo-orbit that
remains in X. Let xj = yj and let xi+1 = ϕ(xi) for i ≥ j, i.e., {xi}∞i=j is an exact orbit. We
will show by induction on i that ‖xi − yi‖ ≤ ε for i ≥ j.

Base case: ‖xj − yj‖ = 0 < ε, by our choice of xj .
Induction step: Assume ‖xi − yi‖ ≤ ε for i ≥ j. Then

‖xi+1 − yi+1‖ = ‖ϕ(xi)− ϕ(yi) + δ1‖, ‖δ1‖ ≤ δ

≤ ‖ϕ(xi)− ϕ(yi)‖+ δ

≤ ρε + δ

= ε

Remark: Notice that the closer ρ is to zero, the more contractive ϕ is, so that it can
accomodate a larger noise amplitude δ.

Remark: If ϕ were uniformly expanding, then we would expect pseudo-orbits to exponentially
diverge from each other, and from the exact solution. In this case, it is ϕ−1 that is contracting,
and we can apply the above theorem in reverse time, as long as yi ⊂ X ∀i ≥ a.

Another instructive way to look at shadowing is in terms of its relation to finding the zero
of a function. To wit, let Y = {yi}N

i=0 be a δ-pseudo-trajectory in Rn, and let E = {ei}N
i=1

be the set of one-step errors ei+1 = yi+1 − ϕ(yi). Let g : R(N+1)n → RNn be a function that
takes as input the entire orbit Y and produces an output which is the set of one-step errors
E, i.e., g(Y) = E. Since the one-step errors are assumed to be small, ‖E‖ is small. That is,
Y may be close to a zero of g, if one exists. A zero of g would represent an orbit with zero
one-step error, i.e., an exact orbit. This is an ideal situation in which to apply a zero-finding
method such as Newton’s method. If the method converges to an orbit X which is ε-close to
Y, then X ε-shadows Y. This is the idea behind refinement (Grebogi, Hammel, Yorke, and
Sauer 1990; Quinlan and Tremaine 1992) which will be discussed in more detail below.

A simple example of a system which is not shadowable (by the definitions seen thus far—cf.
§2.2.5) is y′′ = 0, the solution of which is straight-line motion at constant velocity v0. Assume
v0 = y′(−∞) 6= 0. If noise of size δ > 0 in y′ is added at t = 0, then the noisy solution has
velocity y′ = v0 for t < 0, and a different velocity y′ = v0 + δ for t ≥ 0. It is easy to see
that any exact solution y(t) with y′(t) = v̂0 for all t will diverge linearly away from the noisy
solution inside at least one of the intervals (−∞, 0) or (0,∞). Thus, no exact solution exists
that remains close to the noisy solution for both t < 0 and t ≥ 0.
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2.1.3 Hyperbolicity

One of the most important concepts in shadowing is that of hyperbolicity, which is related to
exponential dichotomy. The following definitions are commonly used in the shadowing literature.
See for example Palmer (1988), on which the following description is based. In this section, we
will concentrate on maps, keeping in mind that we can translate between maps and solutions
of ODEs by looking at the time-h solution operator ϕh(x) defined in equation (1.4).

Let ϕ : Rn → Rn be a diffeomorphism. Let Dϕ(x) be the Jacobian of ϕ(x), which exists, is
unique, and is invertible since ϕ is a diffeomorphism. Every orbit of ϕ has associated with it a
linear difference equation called the linear variational equation,

zi+1 = Dϕ(xi)zi. (2.1)

A sequence of Jacobians along an orbit can be multiplied together to produce a Jacobian of the
corresponding sequence of applications of the map,

Φ(i, j) =





Dϕ(xi−1) · · ·Dϕ(xj), if i > j.
I, if i = j.
Dϕ(xi)−1 · · ·Dϕ(xj−1)−1, if i < j.

(2.2)

The linear variational equation (2.1) is said to have an exponential dichotomy if there are
positive constants K, α and a family of projections Pi such that

Pi+1Dϕ(xi) = Dϕ(xi)Pi for all i, (2.3)
‖Φ(i, j)Pj‖ ≤ Ke−α(i−j) for i ≥ j, (2.4)

‖Φ(i, j)(I − Pj)‖ ≤ Ke−α(j−i) for j ≥ i. (2.5)

By repeated application of (2.3) we obtain the identity

PiΦ(i, j) = Φ(i, j)Pj .

This means that the projections Pi are invariant with respect to equation (2.1). That is, if
{zi}k

i=j′ is a solution to (2.1) such that zj is in the range (resp. nullspace) of Pj for some j then
zi is in the range (resp. nullspace) of Pi for all i. Inequalities (2.4–2.5) say firstly, that the Pi

are bounded (proof: set i = j in (2.4)) and secondly, that the solutions zi of equation (2.1)
which lie in the range of Pi decay exponentially in forward time, while those in the nullspace
of Pi decay exponentially in backward time (Palmer 1988).

Definition. A trajectory X = {xi = ϕi(x)}k
i=j′ for some x is said to be hyperbolic under ϕ if

the linear variational equation

zi+1 = Dϕ(xi)zi (2.6)

along X has an exponential dichotomy. Equivalently, we say that ϕ is hyperbolic along X.
Definition. A set S ⊂ Rn is said to be invariant under ϕ if ϕ(S) = S.
Definition. A compact invariant set S is said to be hyperbolic under ϕ if every trajectory X

in S is hyperbolic with the same constants K, α, and the projection matrices Pi have a rank
which is independent of X. Equivalently, we say that ϕ is hyperbolic on S, or that S and ϕ
form a hyperbolic system.

If a system is hyperbolic, then the angle between the stable and unstable subspaces is always
bounded away from 0 (Grebogi, Hammel, Yorke, and Sauer 1990).
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2.1.4 Pseudo-hyperbolicity

This thesis deals not with hyperbolic systems, but with systems whose pseudo-trajectories are
shadowable for finite but nontrivial lengths of time even though they are not hyperbolic. For
this to occur, a system must display pseudo-hyperbolicity. We say that a system is pseudo-
hyperbolic if trajectories of the system tend to have solutions to the variational equation which
can be split into two classes, one of which tends to expand exponentially, while the other tends
to contract exponentially, both simultaneously and for nontrivial lengths of time. This notion
could be made more formal by, for example, attempting to find the two classes of solutions
using the common methods described in the next section, and then performing least-squares
fits of these solutions to exponential curves.

2.2 Survey

2.2.1 Hyperbolic systems

Shadowing was first discussed by Anosov (1967) and Bowen (1975), in relation to hyperbolic
systems. Let S and ϕ be the invariant set and the map of a hyperbolic system, respectively.
In such systems, Anosov (1967) proved that ∀ε > 0 ∃ δ > 0 such that every infinite-length
δ-pseudo orbit remaining in S is ε-shadowed by a true trajectory in S. Bowen (1975) proved
that the same result holds if the map is required to be hyperbolic only along trajectories in the
vicinity of the pseudo-orbit. Palmer (1988) proved a similar theorem along the way towards
using the theory of exponential dichotomies to prove Smale’s Theorem (Smale 1965, 1967).

Theorem 2.2 (Hyperbolic set shadowing theorem). Let S be a compact hyperbolic set
for the C1 diffeomorphism ϕ : Rn → Rn. Then given any ε > 0 sufficiently small there exists
δ > 0 such that every doubly-infinite δ-pseudo-orbit in S has a unique ε-shadowing orbit.

Proof. See Palmer (1988), Theorem 3.5.

Chow and Van Vleck (1992) proved a similar theorem in the case that the function ϕ is
allowed to change at each step. We omit the (rather long and involved) specifications of the
hyperbolicity conditions of the following theorem, except to note that when the conditions hold,
the difference equation

zi+1 = Dϕi(xi)zi

has an exponential dichotomy for all sequences of functions {ϕi}∞i=0 if xi+1 = ϕi(xi). These
conditions, of course, tightly restrict the classes of sequences of functions whose orbits can be
shadowed; otherwise, shadowing of numerical solutions of ODEs would be trivial!

Theorem 2.3 (Random Diffeomorphism Shadowing Lemma). Let M be a smooth com-
pact k-dimensional Riemannian manifold and let Diff(M) represent the set of all diffeomor-
phisms from M to M . Assume further that the [omitted] hyperbolicity conditions are satisfied.
Let {yi}∞i=0 be a sequence of points in M . Then for all ε > 0 sufficiently small ∃δ > 0 such that
if there exists a sequence of functions {ϕi ∈ Diff(M)}∞i=0 satisfying ‖yi+1 − ϕi(yi)‖ ≤ δ then
there exists a unique sequence {xi}∞i=0 such that xi+1 = ϕi(xi) and ‖xi − yi‖ ≤ ε for all i.

Proof. See Chow and Van Vleck (1992).
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2.2.2 Containment

For systems that are not hyperbolic, but whose trajectories display pseudo-hyperbolicity for a
finite number of iterations of ϕ, we must be satisfied with proving the existence of finite-length
shadows. The first studies of shadows for non-hyperbolic systems appear to be Beyn (1987)
and Hammel, Yorke, and Grebogi (1987). Hammel, Yorke, and Grebogi (1988) and Grebogi,
Hammel, Yorke, and Sauer (1990) (hereafter GHYS) provide the first proof of the existence of
a shadow for a non-hyperbolic system over a non-trivial length of time. Their method consists
of two parts. First, they refine a noisy trajectory using an iterative method that produces a
nearby trajectory with less noise. This procedure will be discussed in more detail below. When
refinement converges to the point that the noise is of order the machine precision, they invoke
containment, which can prove the existence of a nearby exact trajectory. Their method, which
we now describe, can be applied only to two-dimensional maps.

Let {yi}b
i=a ⊂ R2 be a two-dimensional δ-pseudo-orbit of ϕ for integers a and b. As i

increases, orbits separated from each other by a small distance along the expanding direction
diverge on average away from each other, while orbits separated by a small distance along the
contracting direction approach each other, on average. The containment process consists of
building a parallelogram Mi around each point yi of the pseudo-orbit such that two sides C±1

i

are separated from each other along the contracting direction, while the other two sides E±1
i

are separated along the expanding direction.1 In order to prove the existence of a shadow, the
image of Mi under ϕ must intersect Mi+1 such that ϕ(Mi) makes a “plus sign” with Mi+1

(Figure 2.1).
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Figure 2.1: Containment in two dimensions, reproduced from GHYS. The horizontal direction is con-
tracting, and the vertical direction is expanding.

The property that GHYS define as a “plus sign” is

ϕ(Ej
i ) ∩Mi+1 = ∅, ϕ(Mi) ∩ Cj

i+1 = ∅, j = ±1. (2.7)

To ensure this occurs, GHYS require a bound on the second derivative of ϕ, and the expansion
and contraction amounts need to be resolvable by the machine precision. The proof of the
existence of an exact orbit then relies on the following argument. Let γ0 be a continuous curve
in M0 connecting the expanding sides E−1

0 and E+1
0 . Its image ϕ(γ0) is then stretched such that

1Note that this naming convention is exactly opposite to that of GHYS, because in two dimensions they
emphasized the direction to which the sides of Mi were parallel. In higher dimensions, the faces of an n-cube are
not parallel to a unique direction, and it is the direction along which a face is separated from the centre of the
n-cube that matters. We change the naming convention now to avoid confusion later.
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there is a section of ϕ(γ0) lying wholly within M1, and in particular ϕ(γ0) leaves M1 through
the expanding sides E±1

1 at both ends. Let γ1 be a section of ϕ(γ0) lying wholly within M1.
Now look at ϕ(γ1) in M2. Repeat this process along the orbit, producing γN lying wholly within
the final parallelogram MN . Then any point lying along γN , traced backwards, represents an
exact orbit that stays within Mi, i = N, N − 1, . . . , 1, 0, and we are done (Grebogi, Hammel,
Yorke, and Sauer 1990).

With this picture, there is a nice geometric interpretation of the requirement that the angle
between the stable and unstable directions be bounded away from 0: if the angle gets too small,
then the parallelogram essentially loses a dimension, and ϕ(Mi) can not make a “plus sign”
with Mi+1. Practically speaking, this occurs when the angle becomes comparable with the
noise amplitude of the refined orbit. Hence, the more accurate the orbit, the longer it can be
shadowed (Grebogi, Hammel, Yorke, and Sauer 1990; Quinlan and Tremaine 1992).

2.2.3 Refinement

Definition. Refinement (Hammel, Yorke, and Grebogi 1987, 1988; Grebogi, Hammel, Yorke,
and Sauer 1990; Quinlan and Tremaine 1991, 1992; Hayes 1995) is a numerical procedure similar
to Newton’s Method (and also analogous to iterative improvement methods for solving linear
systems (Golub and Van Loan 1991)) that takes a noisy orbit as input and attempts to produce
a nearby orbit with less noise, i.e., one with smaller one-step errors. A refinement iteration
is successful if before the iteration the trajectory has noise tightly bounded by δ0, after the
iteration it has noise tightly bounded by δ1, and

δ1 < µδ0 for some practical µ ∈ [0, 1). (2.8)

Otherwise the refinement iteration is unsuccessful. Here, a “practical” µ is one that will allow
a noisy trajectory to be refined to noise levels near the machine precision in a small number of
refinement iterations.

The refinement procedure of GHYS is analagous to Newton’s method for finding a zero of
a function. GHYS presented their method for the two-dimensional case. (The basic idea was
described on page 11 of this thesis immediately following Theorem 2.1.) Assume we have a
noisy n-dimensional orbit Y = {yi}N

i=0, yi ∈ Rn, and it has a shadow {xi}N
i=0, xi ∈ Rn. Then

xi+1 = ϕ(xi) and yi+1 = ϕ̃(yi) = ϕ(yi) + ei+1, where ϕ̃ is an approximation to ϕ with noise
bounded by δ. Now suppose we approximate the one-step errors ei+1 = yi+1 − ϕ(yi) using a
method with noise significantly less than δ. Let ĉi ≡ xi − yi represent a correction term that
perturbs yi towards xi. Then

ĉi+1 = xi+1 − yi+1 = ϕ(xi)− ϕ(yi)− ei+1 = Dϕ(yi)ĉi − ei+1 + O(‖ĉi‖2). (2.9)

In the spirit of Newton’s method, we ignore the O(‖ĉi‖2) term, and so one refinement iteration
defines the corrections along the entire orbit:

ci+1 := Dϕ(yi)ci − ei+1. (2.10)

For a discrete map, Dϕ(yi) is just the Jacobian of the map at step i. For a system of ODEs,
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Dϕ(yi) is the Jacobian of the solution of the ODE from step i to step i + 1.2 For simplicity
of explanation, we assume an n = 2 dimensional problem for the remainder of this subsection.
For a generalization to arbitrary n, see Quinlan and Tremaine (1992) or Hayes (1995).

If the problem did not display pseudo-hyperbolicity, then the correction terms ci could be
computed directly from (2.10). But since Dϕ displays an approximate exponential dichotomy,
it tends to amplify any numerical errors in ci not lying in the stable direction. Thus computing
the ci’s by iterating (2.10) forward will amplify errors and typically produce nothing but noise;
iterating backwards suffers the same problem. Therefore, GHYS split the error and correction
terms into components in the stable (si) and unstable (ui) directions at each timestep:

ei = euiui + esisi, ci = cuiui + csisi. (2.12)

Since it is not known a priori which direction is unstable at each timestep, the unstable
vector u0 at time t0 is initialized to an arbitrary unit vector. The linearized map is then
iterated forward with

ūi+1 = Dϕ(yi)ui, ui+1 = ūi+1/‖ūi+1‖. (2.13)

Since Dϕ(yi) magnifies any component that lies in the unstable direction, and assuming we
are not so unlucky to choose a u0 that lies too close to the stable direction, then after a few
iterations ui will point roughly in the unstable direction at ti. Similarly, the stable unit direction
vectors si are computed by initializing sN to an arbitrary unit vector and iterating backward,

s̄i = Dϕ(yi)−1si+1, si = s̄i/‖s̄i‖. (2.14)

Substituting (2.12) into (2.10) yields

cui+1ui+1 + csi+1si+1 = Dϕ(yi)(cuiui + csisi)− (eui+1ui+1 + esi+1si+1). (2.15)

While Dϕ(yi) magnifies errors in the unstable direction, it damps them in the stable direction.
Likewise, Dϕ(yi)−1 damps errors in the unstable direction and magnifies errors in the stable
direction. Thus the cu terms should be computed backward, and the cs terms forward. Taking
components of (2.15) in the unstable direction at step i + 1, we iterate backward on

cui = (cui+1 + eui+1)/‖ūi+1‖, (2.16)

and taking components in the stable direction, we iterate forward on

csi+1 = ‖Dϕ(yi)si‖csi − esi+1 . (2.17)

2 In other words, let

y′ = f(y(t)) (2.11)

be the first-order ODE. Note that yi+1 = ϕ(yi) is the solution of (2.11) using yi as the initial condition and
integrating f to time ti+1. The Jacobian Df(yi) measures how y′ changes if y is changed by a small amount.
The resolvent R(ti+1, ti) is the integral of Df(y) along the path y(t), and describes how a small perturbation δy
of yi at time ti gets mapped to a perturbation of yi+1 at time ti+1. R(ti+1, ti) is the solution of the variational
equation

∂R

∂t
= Df(y(t))R(t, ti), R(ti, ti) = I,

where I is the identity matrix. The reason the arguments to R seem to be reversed is for notational convenience:
they satisfy the identity R(t2, t0) = R(t2, t1)R(t1, t0), and so a perturbation δy at time t0 gets mapped to
a perturbation at time t2 by the matrix-matrix and matrix-vector multiplication R2δy = R1R0δy (Hairer,
Nørsett, and Wanner 1993). Finally, the linear map in the GHYS refinement procedure, if ϕ is the time-h
solution operator for (2.11), is Dϕ(yi) = R(ti+1, ti).
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The initial choices for cs0 and cuN are arbitrary as long as they are small — smaller than the
maximum shadowing distance — because (2.17) damps initial conditions and (2.16) damps final
conditions. GHYS and QT choose them both as 0. This choice is probably as good as any, but
it can be seen here that, if one shadow exists, there are infinitely many of them.3 Another way
of looking at these initial choices for cs0 and cuN is that they “pinch” the growing components
at the end point, and the backward-growing components at the initial point, to be small. That
is, boundary conditions are being forced on the problem so that the exponential divergence is
forcibly masked, if possible, making the solution of (2.10) numerically stable.

The refinement algorithm of GHYS as originally presented (Hammel, Yorke, and Grebogi
1987; Hammel, Yorke, and Grebogi 1988; Grebogi, Hammel, Yorke, and Sauer 1990) was not
rigorous; if it worked at all, it only produced a new pseudo-trajectory with less noise than the
original. Refinement was made rigorous by Sauer and Yorke (1991) with the following theorem:

Theorem 2.4 (Sauer and Yorke 1991). Let Y = {yi}N
i=0 be an n ≥ 2 dimensional δ-

pseudo-orbit of the map ϕ. Assume further that the local stable and unstable subspaces, Si

and Ui, respectively, at each step are known to a tolerance of δ. Let θi be the angle between the
stable and unstable subspaces at step i.4 Let ‖Dϕ(z)‖ ≤ ri‖z‖ for z ∈ Si, and let ‖Dϕ(z)−1‖ ≤
ti‖z‖ for z ∈ Ui+1. Let C0 = DN = 0, and recursively define Ci+1 = csc θi+1 + riCi for
i = 0, . . . , N − 1 and Di−1 = csc θi−1 + ti−1Di for i = 1, . . . , N . Let B be a bound on
Dϕ,Dϕ−1, D2ϕ, and D2ϕ−1. If δ < 1

20n2 and

max{Ci, Di} ≤
(
n5/2B2

√
δ
)−1

for all i = 0, . . . , N , then Y has an ε-shadow of ϕ such that ε =
√

δ.

The proof of the theorem (see Sauer and Yorke (1991), Theorem 3.3) is constructive, in the
sense that it uses the procedure for refining noisy orbits originally given in Hammel, Yorke, and
Grebogi (1988). The essential point of the proof is to show that under the conditions of the
theorem, the iterated application of the refinement procedure beginning with the pseudo-orbit
results in a sequence of refined pseudo-orbits with decreasing noise level whose limit is an exact
orbit. Furthermore, the exact orbit is not too far from the original pseudo-orbit.

Sauer and Yorke (1991) considered this theorem as a justification for the non-rigorous re-
finement procedure. Conversely, QT argued that if the refinement algorithm fails then there is
good reason to believe that no shadow exists, for two reasons. First, from the more rigorous
study of simpler systems, glitches are known to exist and are not just a failure of any particular
refinement algorithm. Second, QT’s results are consistent with a conjecture by GHYS on the
frequency of glitches. However, there is no guarantee that refinement converges towards an
exact orbit. In fact, even if some refinements are successful, numerical refinement alone does
not prove that an exact shadow exists; it only proves the existence of a numerical shadow,
i.e., a trajectory with less noise than the original. Hayes (1995) frequently saw cases in which
the refinement algorithm failed to find a numerical shadow for noisy orbits of length N , but

3For any system, even a chaotic one, given any exact orbit of fixed length, a small enough perturbation in
the initial condition in any direction produces a small change in the final condition, although for chaotic systems
this perturbation must be exponentially small in the length of the orbit. (If the perturbation is restricted to the
stable subspace, then obviously a similar solution will be obtained.) Thus given any exact orbit that δ-shadows
a noisy orbit, there exist infinitely many exact orbits nearby that also shadow it. However, it may be that all
the exact orbits are packed into a space unresolved by the machine precision.

4Sauer and Yorke (1991) do not specify if θi should be an upper or lower bound; presumably it is a lower
bound, since we want the system to be as pseudo-hyperbolic as possible.
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succeeded in finding a numerical shadow for the superset of length 2N . Hence, the algorithm
failed to find a numerical shadow of length N , even though one clearly exists. On the other
hand, this author often observed the code from his Master’s thesis “converge” to an arbitrary
precision several orders of magnitude less precise than the machine precision but then fail to
converge any further, even though the algorithm is usually capable of converging very close to
the machine precision. This would seem to imply that in these cases, refinement can not reduce
the errors any further, implying that no shadow exists. However, the algorithm fails to “blow
up”. This leads us to ask the question of whether convergence to machine precision is enough:
is it possible that refinement, if continued in higher precision, would stop before converging
to an exact orbit (Hayes 1995)? Despite these objections, this author believes that refinement
to machine precision implies with reasonable probability that a shadow exists whose length is
comparable to that of the numerical shadow, although this evidence should not be taken as
conclusive.

This author’s Master’s Thesis (Hayes 1995) provided empirical evidence that supports a
conjecture that shadow lengths in “unsoftened” n-body systems scale as O(1/n). However,
more careful analysis (Hayes and Jackson 1997) has revealed that the scaling is much better
described by a O(1/n2) law. No simple explanation is available for this scaling, although one
could conjecture that there is some relation to the fact that there are O(n2) possible interactions
between n particles in an n-body system, and that these interactions somehow conspire to
cause glitches. One could argue that the algorithm itself is at fault: however, Hayes and
Jackson (1996) showed that an artificially created nonlinear pseudo-hyperbolic system with 180
dimensions was easily shadowed by the refinement algorithm. Furthermore, Hayes and Jackson
(1997) demonstrated that shadow lengths of “softened” n-body systems, in which the interaction
between particles is decreased, scale more optimistically even than O(1/n), in fact almost O(1).
On the other hand, the theorem of Sauer and Yorke (1991) also contains a factor of O(1/n2)
in the length of shadows, even though their theorem deals with general n-dimesional systems
in which there is no clear association between dimensions and physical objects like particles.
Apparently, all one can conclude from this discussion is that high-dimensional shadowing is an
area ripe for further study.

In terms of computational cost, note that a resolvent has O(n2) elements in it, and is gen-
erally expensive to compute. Hayes (1995) and Hayes and Jackson (1996) list several optimiza-
tions to the procedure that increase the speed of GHYS/QT refinement by about two orders
of magnitude. If one is interested in studying high-dimensional systems, a chaotic map would
be a better test problem than an ODE system, because no variational equation integration is
needed. We note that the GHYS/QT refinement algorithm is trivially parallelizable, since the
computation of each Dϕ(yi) is completely independent of all the others. For the same reason,
it also has excellent locality of reference in a serial implementation, so virtual memory paging is
minimized. Once the Dϕ(yi)’s are computed, it may also be worth parallelizing the recurrence
(2.10) (Jackson and Pancer 1992). Finally, we note that D2ϕ has O(n3) elements so, unless
significant sparsity is present, actually applying Theorem 2.4 is impractical for any but small
n.

Refinement is closely related to the problem of noise reduction. Farmer and Sidorowich
(1991) make the distinction between observational noise and dynamical noise. The former oc-
curs when one is observing a physical process, which inherently involves observational noise.
One can attempt to dampen the noise by applying a technique similar to refinement in which
one searches the nearby phase space for an exact solution. The basic idea behind their noise-
reduction scheme is illustrated in figure 2.2. One can further attempt to find the closest exact
solution to the observations using a least-squares constraint, presumably giving a good approx-
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Figure 2.2: Schematic representation of the noise reduction technique of Farmer and Sidorowich (1991).
(a) The circles represent noisy measurements of a deterministic trajectory at three different times. (b)
As successive measurements are transported to the same point in time (the middle circle at the bottom),
the associated noise probability distributions distort according to the local derivatives of the dynamical
system. The true state should lie somewhere in the intersection of the three regions (the square region
lying in the intersection of the two ellipses). Averaging the transported measurements at time ti makes
it possible to produce a better estimate of the true state at time ti.

imation to the actual trajectory followed by the process.5 This is in contrast to a numerically
generated pseudo-trajectory, in which the noise is injected into the dynamics and affects the
future evolution of the system. Although the problems are clearly similar, and refinement can
be used as a noise reduction technique, Quinlan and Tremaine (1992) found that some “tricks”
often used when applying noise reduction failed to work when adapted to the refinement algo-
rithm and applied to the shadowing problem.

A tangentially related work (Fryska and Zohdy 1992) proved that numerical solutions of
piecewise linear ODEs can sometimes introduce statistical biases, causing numerical solutions
to have substantially different statistical properties than the closed-form solution. In an ironic
twist to the whole concept of shadowing, they found that the correct statistical properties could
be recovered by injecting uniformly distributed random noise into the numerical solution. The
apparent explanation is that the injected random noise somehow masks the statistical bias
introduced by the numerical method.

2.2.4 Results by bounding non-hyperbolicity

We make the distinction between rigorous results and nonrigorous results. We call a result
rigorous if the method used to produce it is entirely rigorous from start to finish: for example,
if a computational component rigorously bounds numerical errors, and then a theorem is used
to show that the computed properties imply the existence of a shadow. Some results are

5Note that there is no need to make this method rigorous, because it is known that an exact trajectory exists
near the observed one, namely the exact trajectory that is being obscured by noise.
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partially rigorous, in that floating-point computations without rigorous error bounds are used
in combination with a theorem; such results could easily be made rigorous with the application
of interval arithmetic. Finally, non-rigorous results use convincing numerical experiments to
infer properties of noisy trajectories and their purported shadows.

The original results presented in this thesis are rigorous.

Rigorous results

The procedures of containment and refinement do not make explicit use of the hyperbolicity
of the system, although they work only if some measure of hyperbolicity is present (Chow and
Palmer 1991). In contrast, Chow and Palmer (1991, 1992) make explicit use of the hyperbolicity
of the system, and use the ideas of the traditional Shadowing Lemma (Anosov 1967; Bowen
1975; Palmer 1988) to estimate how far a shadow is from a pseudo-orbit. Chow and Palmer
(1991) discussed the one-dimensional case, and Hadeler (1996) made explicit the relationship
between the one-dimensional case and Kantorovich’s Theorem, which lays out conditions under
which Newton’s method will converge. We omit detailed discussion of the one-dimensional case
because later work by the same authors (Chow and Palmer 1992) subsumes it, except to note
one very interesting fact: Chow and Palmer (1991) proved that in the one-dimensional case,
the shadowing distance not only has an upper bound, but a lower bound as well. That is, they
proved that the shadow must maintain a minimum distance from the noisy orbit; it cannot
approach the noisy orbit arbitrarily closely. It is not clear if this result is extendible to higher
dimensions, nor is it clear exactly what the significance of this result is; however, it is certainly
interesting. The high-dimensional theorem and its proof by Chow and Palmer (1992) is so
concise and elegant that we now include it in its entirety.

Let ϕ : Rn → Rn be a C2 function and let {yi}N
i=0 be a δ-pseudo-orbit of ϕ. Given any

sequence (hi)N−1
i=0 in RnN , the difference equation

zi+1 = Dϕ(yi)zi + hi

has many solutions. So the linear operator L : Rn(N+1) → RnN defined for Z = {zi}N
i=0 by

(LZ)i = zi+1 −Dϕ(yi)zi

is onto and so has right inverses. For the following theorem, we choose any such right inverse.

Theorem 2.5 (Chow and Palmer 1992). Let ϕ : Rn → Rn be a C2 function and let M =
sup{‖D2ϕ(x)‖ : x ∈ Rn}. Let {yi}N

i=0 be a δ-pseudo-orbit of ϕ with 2M‖L−1‖2δ ≤ 1, where
L−1 is a right inverse of L. Then there is an exact orbit {xi}N

i=0 of ϕ such that

‖xi − yi‖ ≤ 2‖L−1‖δ
1 +

√
1− 2M‖L−1‖2δ

, i = 0, . . . , N.

Proof. (Chow and Palmer 1992) The sequence {xi}N
i=0 satisfies xi+1 = ϕ(xi), i = 0, . . . , N−

1. If we set xi = yi + zi, we find that zi satisfies

zi+1 = Dϕ(yi)zi + gi(zi), (2.18)

where

gi(z) = ϕ(yi)− yi+1 + ϕ(yi + z)− ϕ(yi)−Dϕ(yi)z. (2.19)
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Remark: Equation (2.18) is the analog of the correction term in the refinement
algorithm, equation (2.10) on page 15. The first two terms in equation (2.19) rep-
resent the one-step error at step i, while the last three terms describe the amount of
nonlinearity in ϕ, i.e., the O(‖c‖2) terms that were ignored in equation (2.9) of the
refinement algorithm, which are bounded by 1

2M‖z‖2.

So our task is to solve equation (2.18) for a sequence zi such that for i = 0, . . . , N ,

‖zi‖ ≤ ε :=
2‖L−1‖δ

1 +
√

1− 2M‖L−1‖2δ
.

Let Z = (zi)N
i=0 ∈ Rn(N+1) and let ‖Z‖ ≡ maxN

i=0 ‖zi‖. Denote by Υ the set of sequences
with max norm ε, Υ = {Z | ‖Z‖ ≤ ε}. Υ is a compact convex subset of Rn(N+1). We define
a mapping T on Υ. Note that we can write equation (2.18) as LZ = g(Z) where

(LZ)i = zi+1 −Dϕ(yi)zi, (g(Z))i = gi(zi).

Then we define TZ = L−1g(Z), where L−1 is the given right inverse of L.
Since the gi’s are continuous, T is a continuous mapping of Υ into Rn(N+1). We show that

T maps Υ into itself. First observe that

‖gi(z)‖ ≤ ‖gi(0)‖+ ‖ϕ(yi + z)− ϕ(yi)−Dϕ(yi)z‖
≤ δ +

1
2
M‖z‖2.

Then, if Z ∈ Υ,

‖(TZ)i‖ ≤ ‖L−1‖(δ +
1
2
Mε2) = ε,

where the middle term is shown equal to ε by moving ε into the middle term and solving the
resulting quadratic equation in ε. So T maps Υ into itself. By Brouwer’s fixed point theorem,
it has a fixed point Z = {zi}N

i=0. Then TZ = Z and so, since LL−1 is the identity, LZ = g(Z).
That is, Z is a solution of equation (2.18) satisfying ‖zi‖ ≤ ε for i = 0, . . . , N . Then xi = yi+zi

is the shadow.

Remark 1: It is not actually necessary to assume that D2ϕ(x) is bounded over Rn because
usually yi would be restricted to a bounded set and M could be replaced by a bound for
‖D2ϕ(x)‖ over that set (Chow and Palmer 1992).

Remark 2: ‖L−1‖ is the “magnification factor”. If δ is the local error made in computing
the orbit, then ‖L−1‖δ is approximately the distance to the shadow.

The next step is to choose L−1 in such a way that ‖L−1‖ is minimized. Not surprisingly,
the best L−1 to choose is one whose components are as aligned as possible with the stable and
unstable subspaces at each step, computed in a fashion similar to the refinement algorithm.
Finally, computing an upper bound for ‖L−1‖ involves noting that even though the orbit {xi}
is not hyperbolic under ϕ, it may be hyperbolic under ϕp for some integer p > 1. If such a
p is found, it allows explicit bounds to be computed on the hyperbolicity constants for the
orbit {xi} under ϕp using the ideas of the traditional Shadowing Lemma (Anosov 1967; Bowen
1975; Palmer 1988), leading to an upper bound on ‖L−1‖. Chow and Palmer demonstrate their
method on a δ-pseudo-orbit of the Hénon map with δ = 2−54 ≈ 10−15.5. For a particular orbit
of N = 333, 000 iterates of the map, they find that p = 40 guarantees hyperbolicity of the orbit
under ϕp and that ‖L−1‖ ≤ 113277 ≈ 105. This means that the shadowing distance is about
105 times the size of the one-step errors, giving a shadow distance of about 10−10.5.
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Non-rigorous results

This “magnification factor”, the ratio between the shadow distance and the local error, is termed
the “brittleness” of an orbit by Dawson, Grebogi, Sauer, and Yorke (1994).6 If the brittleness is
of order the inverse of the machine epsilon or larger, then all accuracy is lost as the shadowing
error is comparable to the size of the variables themselves. They show that if the number of
positive and negative Lyapunov exponents changes, or if a Lyapunov exponent fluctuates about
zero, then the brittleness can blow up. The effect of a fluctuating exponent is depicted in Figure
2.3. However, Dawson, Grebogi, Sauer, and Yorke (1994) make the strong claim that they

(a) (b)

δ
(c) (d)

Figure 2.3: Fluctuating Lyapunov exponent in the “vertical” direction, reproduced from Dawson et
al. (1994). δ is the local error, and the vertical direction is initially contracting, but then becomes
expanding. (a) an ensemble of trajectories that starts off in an ε-ball is first compressed into a sheet.
(b) If the local error steps outside this sheet, and then the direction becomes an expanding direction,
then (c) the numerical trajectory diverges away from all exact trajectories that started in the original
ε-ball, (d) possibly entering regions of phase space with qualitatively different behaviour than the exact
trajectories.

believe this kind of fluctuating Lyapunov exponent is “common” in high dimensional systems,
with the only justification apparently being that there are so many dimensions that there must
be a fluctuating exponent somewhere. Although this argument is not formally compelling, it
may have some merit. On the other hand, Hayes and Jackson (1996) demonstrated numerical
shadowing of a 180-dimensional non-hyperbolic system, although that system was artificially
constructed to have pseudo-hyperbolicity.

Systems which possess such fluctuating Lyapunov exponents are termed hyperchaotic by
Sauer, Grebogi, and Yorke (1997). Let zi be the displacement from the pseudo-orbit to the
shadow at step i. Sauer, Grebogi, and Yorke (1997) observe that the evolution of zi with
i is similar to a biased random walk. A glitch occurs when the random walk pushes the
numerical orbit further away from the shadow than the hyperbolicity can correct for. They
model the random walk formally as a Kolmogorov diffusion process and demonstrate that the
distribution of shadowing distances using this model closely resembles actual shadowing distance
distributions. Furthermore, they compute how often glitches occur, based on the behaviour of
the fluctuating Lyapunov exponent which is closest to zero. They show that the expected time
〈τ〉 for the shadowing distance to become the same size as the variables is proportional to

〈τ〉 ∼ δ−2λ0/σ2
0 ,

where λ0 and σ0 are the mean and standard deviation, respectively, of the fluctuating Lyapunov
exponent closest to zero. Finally, they demonstrate that when the fluctuations are sufficiently
badly behaved, the length of the shadow is virtually independent of the local error — in other

6The terms “modulus of continuity” and “condition number” are commonly used in the literature for this
ratio.



2.2. Survey 23

words, in a sufficiently badly behaved system, the shadow length will never get very long for
any practical local error.

Methods have also been developed to shadow one-dimensional lattice maps, typically dis-
cretizations of partial differential equations (Chow and Van Vleck 1993, 1994b), and for prob-
lems that are piecewise hyperbolic in which the number of stable dimensions is monotonically
increasing with time (Chow and Van Vleck 1994a).

2.2.5 Shadowing lemmas designed explicitly for ODE systems

This thesis concerns the problem of shadowing of ODE systems, including the rescaling of time
(defined below), which is the topic of this subsection.

Introduction

There is a fundamental difference between a discrete map and a discrete solution to an ODE.
Local errors of the former are restricted to being “space like” — there is no notion of the
passage of time between iterations of the map. The latter, however, can have errors in space as
well as time. The numerical error in the length of each timestep can accumulate, leading the
numerical solution to have a slightly different time scale than the real system. In the integration
of periodic or almost periodic systems like the solar system, this is also known as phase error,
because the numerical solution may have a slightly different period than the exact solution.
Thus, although the orbit of a planet may be reproduced correctly by the numerical trajectory,
the time at which a real and simulated planet pass through a fixed plane perpendicular to the
orbit may differ. This is the case even if the integrator is symplectic (Stuart and Gonzalez
1996; Gonzalez and Stuart 1996). Thus, when attempting to shadow a numerical solution of an
ODE, it may be necessary to “rescale” time (Coomes, Koçak, and Palmer 1994b, 1995a, 1995b;
Van Vleck 1995). To take this into account, we redefine a shadow of an ODE system as follows:

Definition of ODE shadowing: A pseudo-trajectory Y = {yi}N
i=0 with timesteps {hi}N−1

i=0

is ε-shadowed by an exact trajectory X = {xi}N
i=0 with timesteps {τi}N−1

i=0 if xi+1 = φτi(xi),
where ‖yi − xi‖ ≤ ε, and |hi − τi| ≤ ε.

Remark: In the above definition, we assume that ε ¿ hi, that is, the shadowing distance is
significantly smaller than the timesteps. In practice, this appears sufficient for the systems we
have studied. If this were not the case, the above definition could be modified to include some
notion of global time error per-unit-step.

In other words, the numerical trajectory is shadowed if it closely follows the path of an exact
solution, but at time t it is allowed to be a little ahead of or behind the exact solution. This
linear growth of time errors is due to a lack of hyperbolicity in the direction of the flow in phase
space (Van Vleck 1995). For large |t − t0| this can be a significant difference, so a shadowing
method which does not take the rescaling of time into account is likely to grossly underestimate
the length of the shadow. Coomes, Koçak, and Palmer (1994b, 1995a, 1995b) dramatically
demonstrate this when they show that a rescaling of time allows the Lorenz equations to be
shadowed for almost 105 time units, while the map method, which does not rescale time, finds
shadows lasting only 10 time units—an astounding increase in shadow length of a factor of 104!

Finally, note that the non-shadowable example given in the tutorial (y′′ = 0, page 11) is
shadowable if time is rescaled. This matches what our intuition would say: as long as we
care only about qualitative properties of the solution, it should not matter if the numerical
trajectory traverses the path at a slightly different velocity than the exact solution, as long as
the trajectories, taken as a whole, remain near to each other.
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Explicitly rescaling time in Newton’s method

Errors in time manifest themselves as errors directed along the direction of y′, and so one way to
account for these errors is to explicitly perturb the noisy solution along the y′ direction. These
perturbations translate back into a rescaling of time. To this end, Van Vleck (1995) proves
a theorem similar to that of Chow and Van Vleck (1993, 1994b) in which time is explicitly
added to the variational equation of the one-step error function. To wit, if Y = {yi}N

i=0 is a
δ-pseudo trajectory with associated timesteps {hi}N−1

i=0 , then let zi = (yi, hi) and Z = {zi}N
i=0

and compute the one-step error by g(Z)i = yi+1 − ϕhi(yi). Then the first variational equation
Dg(Z) : Rn(N+1) ×RN → RnN including the effects of time is

(Dg(Z)∆Z)i = ∆yi+1 − ∂ϕhi(yi)
∂yi

∆yi − θ
∂ϕhi(yi)

∂hi
∆hi

≡ ∆yi+1 − ∂ϕhi(yi)
∂yi

∆yi − θf(ϕhi(yi))∆hi

where θ is a user-input parameter controlling the amount of time rescaling which is allowed.7

More formally, we are changing the norm with respect to which the variation is performed:
θ = 0 corresponds to the norm in which variations with respect to time are not considered at
all, whereas θ = 1 corresponds to the norm in which variations with respect to time are fully
considered. Choosing θ ∈ [0, 1] allows the scale of variations in time to be different from the
scale of variations in space, which is precisely what we need in order to perform a rescaling of
time. Then we have the following theorem.

Theorem 2.6 (Van Vleck 1995). Given constants δ, c > 0 and η ≥ 0 suppose L is an ap-
proximation to Dg(Z) such that

(i) a right inverse L−1 of L satisfies ‖L−1‖ ≤ c.

(ii) ‖L−1 −Dg(Z)−1‖ ≤ η for some right inverse Dg(Z)−1 of Dg(Z).

Assume that ‖g(Z)‖ ≤ δ and let ε := 2δ(η + c). If ‖Dg(Z) − Dg(W)‖ ≤ 1/(2(η + c)) for
‖W − Z‖ ≤ ε, then g has a solution W of g(W) = 0 such that ‖W − Z‖ ≤ ε.

Proof. See Van Vleck (1995), Theorem 2.2, which quotes a theorem from Chow, Lin, and Palmer
(1989).

For problems that lack hyperbolicity in the direction of motion, Van Vleck (1995) demonstrates
that non-zero values of θ are capable of finding shadows between 10 and 100 times longer than if
θ = 0, with shadow lengths for the Lorenz system lasting up to about 104 time units. However,
good values for θ must be found by trial and error.

Implicitly rescaling time

Coomes, Koçak, and Palmer (1994b, 1995a) provide the most impressive results to date on
shadowing numerical solutions to ODEs. They detail a rigorous method allowing for the rescal-
ing of time that finds shadows for the Lorenz system longer and with a smaller global error
than any other published work (except this thesis, which matches their results). Their method
relies upon building a hyperplane Hi perpendicular to f(yi) and containing yi, and then finding
a sequence of points xi ∈ Hi such that xi+1 = ϕτi(xi) and |τi − hi| < ε. (See Figure 2.4.) In

7This is the only place in this thesis where Dϕ includes a differentiation with respect to hi. It is this term
which allows a rescaling of time by allowing an adjustment along y′.
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Figure 2.4: Pseudo-orbit yi and the shadowing orbit xi in hyperplane Hi (Coomes, Koçak and Palmer
1994).

this way, they avoid having to find τi explicitly, as opposed to Van Vleck (1995) who computed
the τi explicitly as part of a Newton’s method. The statement of their theorem requires some
introductory notation.

Let Y = {yi}N
i=0 be a δ-pseudo orbit with associated stepsizes {hi}N−1

i=0 . Also suppose that
we have a sequence {Yi}N−1

i=0 of n× n matrices such that

‖Yi −Dϕhi(yi)‖ ≤ δ, i = 0, . . . , N − 1.

Now, let Si be an n × (n − 1) matrix chosen so that its columns form an almost-orthonormal
basis for the subspace orthogonal to f(yi),

‖ST
i f(yi)‖ ≤ δ1, ‖ST

i Si − I‖ ≤ δ1,

for some positive number δ1. Now, we compute (n− 1)× (n− 1) matrices Ai satisfying

‖Ai − ST
i+1YiSi‖ ≤ δ1, i = 0, . . . , N − 1.

Geometrically, Ai is Yi restricted to the subspace orthogonal to f(yi) and then projected to the
subspace orthogonal to f(yi+1). Next, define a linear operator L : (R(n−1))(N+1) → (R(n−1))N

in the following way: If Ξ = {ξi}N
i=0 is in (R(n−1))(N+1), then we take LΞ = {(LΞ)i}N−1

i=0 where

(LΞ)i = ξi+1 −Aiξi, i = 0, . . . , N − 1.

The operator L has right inverses and we choose one such right inverse L−1. We now define
several constants. Let U be a convex subset of Rn containing {yi}N

i=0 in its interior. For such
U , we define

M0 = sup
x∈U

‖f(x)‖, M1 = sup
x∈U

‖Df(x)‖, M2 = sup
x∈U

‖D2f(x)‖.

Then we define
h = sup

0≤i≤N−1
hi, h = inf

0≤i≤N−1
hi.
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Next, we choose a positive number ε0 ≤ h such that for i = 0, . . . , N − 1 and all x satisfying
‖x − yi‖ ≤ ε0, the solution ϕt(x) is defined and remains in U for 0 ≤ t ≤ hi + ε0. Finally, we
define

M0 = inf
0≤i≤N

‖f(yi)‖, M0 = sup
0≤i≤N

‖f(yi)‖, M1 = sup
0≤i≤N

‖Df(yi)‖, Θ = sup
0≤i≤N−1

‖Yi‖.

Then, we have the following theorem.

Theorem 2.7 (Coomes, Koçak, and Palmer 1994b). Let

C = max
{

M−1
0 (Θ ‖L−1‖ (1 + δ1) + 1), ‖L−1‖

√
1 + δ1

}
,

δH = C((M1 +
√

1 + δ1)δ + (3δ1(
√

1 + δ1 + M−1
0 ))/(1− δ1(1 + M−2

0 )),

M = (M1 + M2νδ)
(
M0 + M1νδ + 2eM1(h+ε0)

√
1 + δ1

)
+ M2(h + ε0)(1 + δ1)e2M1(h+ε0),

where
ν = 2C(eM1(h+ε0)

√
1 + δ1 + M0)(1− δH)−1 + 1.

If these quantities together with δ, δ1 and ε0 satisfy the inequalities

(i) δ1(1 + M−2
0 ) < 1

(ii) δH < 1

(iii) 2C(1− δH)−1δ
√

1 + δ1 < ε0

(iv) 2MC2(1− δH)−2δ ≤ 1,

then Y is ε-shadowed with shadowing distance

ε ≤ 2C(1− δH)−1δ
√

1 + δ1.

Proof. See Coomes, Koçak, and Palmer (1994b, 1995a).

Coomes, Koçak, and Palmer use a Taylor series integration method with interval arithmetic (see,
for example, Nedialkov 1999) to produce a rigorously bounded local error of their numerical
trajectory, and also require the computation of an integer p identical to the p in Chow and
Palmer (1992) (cf. p. 21).

As Coomes, Koçak, and Palmer state, “Admittedly, the statement of the theorem seems
rather imposing.” The proof, which spans some 9 pages, quotes several other nontrivial the-
orems and lemmas from other papers, and omits many details, also appears imposing to this
author. It is also of practical importance to note that M0,M1, and M2 are bounds on f and
its derivatives over the entire convex set U containing the pseudo-trajectory. This makes the
theorem inapplicable to problems which may contain poles in U , such as the unsoftened gravi-
tational n-body problem. By contrast, containment only requires bounds over a much smaller
volume, essentially a (possibly self-intersecting) “tube” containing the pseudo-trajectory and
its shadow. If the requirement that U be convex were withdrawn, perhaps this restriction could
be lifted. Furthermore, the bound on the second derivative of f over U could be very expensive
to compute if a closed form bound is not available. However, requiring bounds on the first
and second derivatives of f is a significant improvement over requiring bounds on the first and
second derivatives of ϕ, as required by Theorem 2.4.
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For a local error of about 10−13, Coomes, Koçak, and Palmer were able to find shadows for
the Lorenz system lasting 105 time units, with a shadowing distance of about 10−9. Adding
to this the fact that their results are entirely rigorous, it is this author’s opinion that Coomes,
Koçak, and Palmer have the best results in the field thus far. As we will see later, the results
of this thesis are comparable.

Periodic shadowing

The problem of errors in time is exacerbated when attempting to shadow periodic solutions of
ODEs, because any non-zero error in time is repeated ad infinitum. Thus, a rescaling of time
is absolutely necessary to shadow periodic solutions of ODEs.

The idea for shadowing periodic solutions is simple. Given a pseudo-trajectory {yi}N
i=0

with timesteps {hi}N−1
i=0 , we require not only that the local error ‖yi+1 − ϕhi(yi)‖ is small,

but also that ‖y0 − ϕhN
(yN )‖ is small. This gives a periodic pseudo-orbit. Then, only minor

modifications are required to non-periodic shadowing theorems to produce a periodic shadowing
theorem (Van Vleck 1995; Coomes, Koçak, and Palmer 1994a). It is also possible to use
refinement-like algorithms to produce accurate pseudo-trajectories from remarkably inaccurate
ones, allowing one to prove the existence of very long periodic trajectories (Coomes, Koçak,
and Palmer 1997).

2.2.6 Shadowing conservative integrations

As described in Chapter 1, much attention has recently been devoted to integrators that preserve
various quantities such as symplectic structure (Channell and Scovel 1990; Sanz-Serna 1992)
and energy (Stuart and Gonzalez 1996; Gonzalez and Stuart 1996; Shadwick, Bowman, and
Morrison 1999). Coomes (1997) demonstrates that such integrations are often shadowable. In
particular, if M is the submanifold of interest (eg., symplectic manifold or energy surface) on
which the initial condition y0 lies, then a shadow of the pseudo-orbit Y = {yi}N

i=0 exists in
M if Y has sufficiently small local error, remains close to M, avoids the neighborhood of fixed
points of f , and the variational equation along Y exhibits sufficient hyperbolicity. This is a
very significant result for problems in which such submanifolds occur, most notably Hamiltonian
systems.

2.2.7 Are shadows typical of true orbits chosen at random?

The presence of a shadowing orbit does not imply that the statistical properties of the numerical
orbit are typical of those of true orbits chosen at random; the shadowing orbit might be atypical
(Quinlan and Tremaine 1992). This observation is perhaps the most fundamental open question
remaining for shadowing research. Although it is not directly related to the work in this thesis,
it is important enough to discuss briefly.

For example, consider the binary shift map xi+1 = 2xi mod 1. Iteration on a computer that
uses binary floating point arithmetic always results in xi = 0 after a finite (and relatively small)
number of iterations. Although {xi = 0}∞i=m for some m is a valid exact orbit, it is highly atyp-
ical, with misleading statistical properties (Farmer and Sidorowich 1991). Fryska and Zohdy
(1992) proved that numerical simulation of a simple piecewise linear ODE sometimes produces
solutions with substantially different statistical properties than the closed-form solution. This
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idea is taken further by Corless (1994b) (see also Corless 1992a), who studies the Gauss map,

G(x) =
{

0, if x = 0,
x−1 mod 1, otherwise.

(2.20)

This well-known map has several properties which make it very interesting, especially from the
shadowing viewpoint (Corless 1994b):

1. The orbit {xi} (where xi+1 = G(xi), i = 0 . . .∞) of every rational initial point x0 goes
to zero in a finite number of iterations. The rationals are dense in [0,1].

2. An orbit is ultimately periodic if and only if it starts from a quadratic irrational or,
trivially, a rational initial point. Quadratic irrationals are roots of quadratics with integer
coefficients, and are dense in [0,1]. Like the rationals, they are countable, and hence of
measure zero. There are an infinite number of orbits with each period.

3. The map is ergodic, meaning almost all initial points have orbits that are dense in [0,1].

4. The Lyapunov exponent of this map is, for almost all initial points, π2/(6 log 2) ≈ 2.3731,
but is undefined for rational initial points and is different for each quadratic irrational
initial point.

As Corless (1994b) states, we see that there are “formidable numerical difficulties in simulating
this map.” From point #1, we see that unless our numerical orbit converges to zero in a
finite number of iterations, it is not representing the properties of the exact orbit starting
at our (numerically represented) initial point. Since any numerical orbit must ultimately be
periodic, and if our numerical orbit does not converge to zero, we see from point #2 that we
can only shadow periodic solutions whose initial points are unrepresentable. From point #4
we see that a numerically computed Lyapunov exponent may be completely unrepresentative
of almost all orbits. Paradoxically, the numerically computed Lyapunov exponent does give a
good approximation to the almost-sure value. In fact, a very strong shadowing result can be
proved (Corless 1992a; Corless 1997). However, from point #2, we see that, ultimately, we
can shadow only periodic orbits, and thus the shadow that follows our numerical solution has
a quadratic irrational initial point, and thus does not have a dense orbit (point #3) or the
“correct” Lyapunov exponent. The final resolution of this paradox must account for the fact
that the true shadowing orbit behaves like a typical orbit, even though it is not. An analysis
of this behaviour is provided by Corless (1994b), based upon Góra and Boyarsky (1988).

On the other hand, Góra and Boyarsky (1988) showed that long pseudo-trajectories of a
one-dimensional map τ satisfying some special properties have densities which approach that
of τ itself. This is an exciting result, and if it can be generalized to continuous systems of
arbitrary dimension, it may go a long way towards answering this question.

A weak result concerning this question can be abstracted from Coomes, Koçak, and Palmer
(1997). The paper is chiefly concerned with shadowing long periodic orbits, and they use the
Lorenz equations as their example. Long-term solutions to the Lorenz system are confined
approximately to two disks in three-space (cf. Figure 4.1, p. 56 and §4.1.1, p. 55), and so-
lutions generally jump between the two disks chaotically. If a revolution around one disk is
labelled ‘0’ and a revolution around the other is labelled ‘1’, Coomes, Koçak, and Palmer (1997)
demonstrated that they were able to build pseudo-trajectories with an arbitrary sequence of
‘0’s and ‘1’s, and then prove the existence of periodic shadows for these pseudo-trajectories.
This eliminates at least one simple kind of bias: if we assume that true periodic orbits of the
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Lorenz system chosen at random can produce arbitrary sequences of 0s and 1s, it appears that
we can build pseudo-trajectories that possess each sequence, and so shadows of the Lorenz
system are not biased in such a way as to disallow certain sequences. Palmer and Stoffer (1995)
demonstrate a similar result for the Hénon map.

Note that if shadows are generally atypical of true orbits chosen at random, then the prop-
erties of the original pseudo-trajectories that produce the shadows are also atypical. This
conclusion would have grave implications for the vast quantities of literature over the past
several decades that have studied problems numerically. If otherwise reliable-looking pseudo-
trajectories are atypical, they must be atypical in an extremely subtle way, because researchers
have been making apparently reliable, self-consistent, peer-reviewed conclusions based on nu-
merical simulations for decades. Considering that shadowing is only one of many available
methods of error analysis, it would be very surprising (to say the least!) if shadows and their
otherwise reliable-looking parent pseudo-trajectories were atypical in a substantial way. This
does not mean that the problem should not be studied, of course; the apparently small chance
that pseudo-trajectories are substantially atypical is balanced by the importance of proving
that they are not.

Finally, we would like to point out that similar criticisms can be levelled against all forms
of backward error analysis. For example, defect analysis says that the solution obtained by a
defect-controlled method is the exact solution to a nearby problem in which the right-hand-
side of the ODE suffers a small time-varying perturbation. We can then ask, “Is this slightly
perturbed problem typical of nearby problems chosen at random?” Or even more pointedly,
we can ask if the perturbations are typical of perturbations suffered by a real-life system? We
argue in section 1.2 that the answer is sometimes “no”. This criticism can also be levelled at
the method of modified equations. Even symplectic integrations, which have received much
attention recently, suffer the same problem: a solution to a Hamiltonian problem integrated
with a symplectic integrator is guaranteed to be exponentially close to the exact solution of a
nearby Hamiltonian problem; but is that nearby Hamiltonian problem typical of (pertinent)
nearby Hamiltonian problems chosen at random?

This discussion illustrates that answering the question, “Are shadows typical of exact solu-
tions chosen at random?” may be a very difficult one to answer, and that to be fair, we must
ask similar questions of other forms of backward error analysis.
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Chapter 3

Containment

3.1 Introduction

The method in this thesis relies on a very simple geometrical argument, which is a generalization
of the containment process first introduced by Grebogi, Hammel, Yorke, and Sauer (1990),
hereafter refered to as GHYS.

Although containment was the first method introduced for proving the existence of finite-
time shadows of numerical orbits, and even though it is in this author’s opinion the most
intuitive and easily understood method for proving the existence of shadows, it has not, to this
author’s knowledge, been pursued beyond its initial conception. This thesis fills that gap, and
demonstrates that at least in the cases of no more than one contracting or expanding dimension,
containment is about as strong a method as any currently in the literature.

3.1.1 Chapter outline

We first present the proofs that are central to the thesis in section 3.2. Formally, these proofs
break into two steps. First, we must prove that ϕ(Mi) and Mi+1 satisfy the property analogous
to the “plus sign” of GHYS (cf. Figure 2.1 on page 14). We call this property the (n, k)-Inductive
Containment Property (ICP for short), and it is formalized in n dimensions for k expanding
directions and n−k contracting directions in section 3.3. The Inductive Containment Property
can be proven computationally using a validated ODE integrator; we defer discussion of how to
prove ICP until section 3.5. Second, we must show that the Inductive Containment Property
implies the existence of a shadow. We prove this in n dimensions for the cases that there are
either no more than one expanding direction (§3.2.3), or no more than one contracting direction
(§3.2.4). We present our ideas for extending these proofs to the general case in n dimensions in
section 3.4.2. For now, we assume that ϕ is simply a map; extending it to apply effectively to
ODE integrations requires a modification dealing with the rescaling of time, which is presented
in section 3.6.

3.2 Containment theorems and proofs

3.2.1 Containment in two dimensions

For an introduction to containment applied to two-dimensional maps, the reader is referred to
section 2.2.2, starting on page 14. Here we provide a proof of what we call the (2, 1)-Inductive
Containment Theorem, viz. the two-dimensional case in which one direction is expanding and
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the other is contracting. The proof is more rigorous and formal than previous containment
proofs that have appeared in the literature, and demonstrates some of the ideas used in the
higher-dimensional proofs that appear in the following sections. Furthermore, previous proofs of
containment required explicit a priori bounds on spatial derivatives, whereas our proof requires
no such bounds.1

Let Mi be a parallelogram in R2 with sides oriented in the order E−1
i , C−1

i , E+1
i , C+1

i , for
i = 0, . . . , N . We denote the union of a set of faces by listing multiple integers in the superscript.
Let ∂XMi ≡ E−1

i ∪ E+1
i ≡ E±1

i , and ∂CMi ≡ C−1
i ∪ C+1

i ≡ C±1
i . Let ϕ : R2 → R2 be

a homeomorphism. Let int X represent the interior of X. Then Mi and Mi+1 satisfy the
(2, 1)-Inductive Containment Property if

(1) ϕ(E±1
i ) ∩ Mi+1 = ∅, and ϕ(E−1

i ) and ϕ(E+1
i ) are on opposite sides of Mi+1, i.e., on

opposite sides of the infinite slab between the lines containing E−1
i+1 and E+1

i+1.

(2) ∃Qi+1, a compact convex set s.t. ϕ(Mi) ⊂ int Qi+1, Qi+1 ∩ Ej
i+1 6= ∅ for j = ±1, and

Qi+1 ∩ C±1
i+1 = ∅.

Let γ0 ⊂ M0 be a simple curve joining E−1
0 to E+1

0 and remaining in the interior of M0, i.e.,

int γ0 ⊂ int M0 ∧ γ0 ∩ E−1
0 6= ∅ ∧ γ0 ∩ E+1

0 6= ∅,
where ∧ means “and”.

Qi+1

E i+1

E
i+1

M
i+1

C
i+1

C
i+1

φ(γ  )
i

-1

+1

-1

+1

φ(Μ  )i

Figure 3.1: The image ϕ(Mi) and Mi+1. The solid dark curves at the bottom and top are ϕ(E−1
i ) and

ϕ(E+1
i ), respectively. The dashed curves at the left and right are ϕ(C−1

i ) and ϕ(C+1
i ), respectively.

Theorem 3.1 ((2, 1)-Inductive Containment Theorem). If Mi and Mi+1 satisfy (2,1)-
ICP ∀i = 0, . . . , N − 1, then

∀i = 0, . . . , N ∃ simple curve γi ⊆ ϕi(γ0) s.t. int γi ⊂ int Mi ∧ γi∩E−1
i 6= ∅ ∧ γi∩E+1

i 6= ∅,
i.e., γi touches the boundary of Mi in precisely two places, connecting E−1

i to E+1
i , and otherwise

remains entirely inside Mi.
1Of course, our algorithm (Nedialkov 1999) must compute bounds on derivatives in order to compute enclo-

sures, but these bounds are not a priori; they are computed on-the-fly, and if a bounds check fails, we can always
try a smaller timestep to compensate.
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Proof. By induction on i. The proof of the base case i = 0 is immediate, by the definition of γ0.
For the inductive case, assume ∃ simple curve γi ⊆ ϕi(γ0) s.t. int γi ⊂ int Mi ∧ γi ∩ E−1

i 6=
∅ ∧ γi ∩ E+1

i 6= ∅. First, since Qi+1 is convex and intersects E−1
i+1 and E+1

i+1 but not C±1
i+1,

Qi+1−Mi+1 is disconnected into two components, say Q−1
i+1 and Q+1

i+1, and Qi+1 encloses ϕ(E−1
i )

and ϕ(E+1
i ), which are on opposite sides of Mi+1 with ϕ(E±1

i )∩Mi+1 = ∅, by ICP(1). Without
loss of generality, assume ϕ(Ej

i ) ⊂ Qj
i+1, j = ±1. Now, consider one of the components,

say Q−1
i+1. It contains one of the two endpoints of ϕ(γi) since that endpoint is a point of

ϕ(E−1
i ) ⊂ Q−1

i+1, while the other endpoint of ϕ(γi) is in ϕ(E+1
i ) ⊂ Q+1

i+1. Since γi is a simple
curve and ϕ is a homeomorphism, ϕ(γi) is a simple curve. Now, Q−1

i+1 ∩ Q+1
i+1 = ∅, and ϕ(γi)

connects the two. Thus, ϕ(γi) must cross the boundary of Q−1
i+1. This boundary consists of

exactly two contiguous segments, one of which is a segment of ∂Qi+1, while the other is a
segment of E−1

i+1. Since ϕ(γi) ⊂ ϕ(Mi) ⊂ int Qi+1, ϕ(γi) ∩ ∂Qi+1 = ∅, and so ϕ(γi) leaves
Q−1

i+1 through E−1
i+1. A similar argument shows that ϕ(γi) leaves Q+1

i+1 through E+1
i+1. Thus,

ϕ(γi) ∩ Ek
i+1 6= ∅ for k = ±1.

Since ϕ(γi) is a simple curve, by definition there exists a parameterization γ(t) for t ∈ [0, 1]
s.t. γ([0, 1]) = ϕ(γi) and γ(t) is a homeomorphism(Munkres 1975). Let s−1 = ϕ(γi)∩E−1

i+1 and
s+1 = ϕ(γi) ∩ E+1

i+1. Now, s−1 and s+1 are disjoint since E−1
i+1 ∩ E+1

i+1 = ∅, they are compact
because Ek

i+1 and γi are compact and ϕ is a homeomorphism and the intersection of two
compact sets in Rn is compact. Finally, γ−1(s±1) is compact because γ is a homeomorphism.
To prove that there exists a simple curve γi+1 ⊂ ϕ(γi) s.t. int γi+1 ⊂ int Mi+1, we need to
show that there exist two points in [0, 1], one each from γ−1(s−1) and γ−1(s+1), such that no
points from either set are between them. This will prove that there exists a simple curve, which
is a section of ϕ(γi), that connects E−1

i+1 to E+1
i+1 without otherwise intersecting ∂Mi+1. The

following lemma completes the proof.

0 1
x x x x x x x x x x

Figure 3.2: Schematic representation of the sets γ−1(s−1) (dots) and γ−1(s+1) (×’s).

Lemma 3.2. Let G and R be (possibly infinite) disjoint compact nonempty subsets of [0, 1].
Then ∃g ∈ G, r ∈ R s.t. the open interval (g, r) ∩ (G ∪R) = ∅.
Proof. Consider the function f(x, y) = |x − y| over the subset G × R of the plane. f is
continuous and G×R is compact. Thus, f attains its minimum at some point (g, r) ∈ G×R,
i.e., |g − r| ≤ |g′ − r′| for any other g′ ∈ G, r′ ∈ R. Thus, 6 ∃ an element of either set between
g and r, so the open interval (g, r) is disjoint from G ∪R.

Theorem 3.3 (Shadowing Containment Theorem). Let {Mi}N
i=0 be a sequence of paral-

lelepipeds enclosing a pseudo-trajectory {yi}N
i=0. Let ε be the maximum diameter of Mi over i.

Let γi ⊂ Mi, γi 6= ∅, i = 0, . . . , N and let γi+1 ⊆ ϕ(γi), i = 0, . . . , N − 1. Then ∃ an ε-shadow
{xi}N

i=0 of {yi}N
i=0, i.e., |xi − yi| ≤ ε, i = 0, . . . , N .

Proof. Pick any point xN ∈ γN , and recursively define xi = ϕ−1(xi+1), i = N−1, N−2, . . . , 0.
Since ϕ is a homeomorphism, it is uniquely invertible, and so xi ∈ γi, i = 0, . . . , N since

γi+1 ⊆ ϕ(γi) =⇒ ϕ−1(γi+1) ⊆ γi and xi+1 ∈ γi+1 =⇒ xi = ϕ−1(xi+1) ∈ γi.

Since yi ∈ Mi and xi ∈ γi ⊂ Mi, |yi − xi| < diam(Mi) ≤ ε.
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Thus, applying Theorem 3.3 to an orbit satisfying the (2,1)-Inductive Containment Property
implies the existence of a shadow.

Remark: Note that Theorem 3.3 is independent of the number of dimensions n, and in-
dependent of the number of expanding and contracting directions, because the only parts of
the Inductive Containment Theorem that are used are the conclusions that γi+1 ⊆ ϕ(γi) for
i = 0, 1, . . . , N − 1 and γi ⊂ Mi for i = 0, . . . , N . As will be seen, the (n, 1) and (n, n − 1)
Inductive Containment Theorems also assert this property. The 0-expanding and 0-contracting
directions are handled separately. We conjecture that the general (n, k)-Inductive Containment
Theorem will also assert this property, so that the above Shadowing Containment Theorem is
applicable to the general (n, k) case.

3.2.2 Informal description of containment in 3 dimensions

The process described by GHYS and rigorously proved above is not directly applicable to
systems with more than 2 dimensions, and GHYS provided no argument for how it could be
extended beyond 2 dimensions. We describe the method in 3 dimensions, in which there are
precisely two interesting cases:

(i) 1 expanding direction, and 2 contracting (Figure 3.3). Assume that the z direction is
expanding, while the x and y directions are contracting. (We assume, for simplicity of
exposition and for ease of drawing, that these three directions are roughly orthogonal,
although in practice they need only be resolvable from each other.) Then, analogous to
the 2 dimensional argument, we draw cubes Mi around the noisy points yi, and require
that ϕ(Mi) maps over Mi+1 so that ϕ stretches Mi into a long, thin tube, a segment of
which lies wholly in Mi+1. Then, precisely as in the 2-dimensional case, we introduce
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γ

γ )
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 (  )
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y
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Figure 3.3: Containment in 3D, case (i): 1 expanding direction and 2 contracting.

a curve γi that runs approximately along the expanding (vertical) direction from any
point on the top of Mi to its bottom. If ϕ(Mi) maps over Mi+1 as in Figure 3.3, then
we are guaranteed that a contiguous section of ϕ(γi) lies inside Mi+1, connecting its top
and bottom along the expanding direction. This becomes γi+1, and by induction γN lies
inside MN , and any point xN on it can be traced backwards to a point xi ∈ Mi for
i = 0, 1, . . . , N − 1.

(ii) 2 expanding and 1 contracting direction (Figure 3.4). Assume now that the z (vertical)
direction is contracting, while the x and y directions are expanding. We again draw a
cube Mi around each noisy point yi, except now ϕ(Mi) maps over Mi+1 so that ϕ flattens
Mi into a thin slice, cutting Mi+1 into 3 pieces, the middle piece of which contains a
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contiguous section of ϕ(Mi). Now, γi must be a surface, whose boundary connects all of
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Figure 3.4: Containment in 3D, case (ii): 2 expanding directions and 1 contracting.

the expanding sides, so that under the mapping, ϕ(γi) is stretched in all the directions
it has extent (both horizontal directions), and is “compressed” along the direction it has
measure zero (vertical). Then, we are guaranteed that there is a contiguous segment of
ϕ(γi) lying wholly in Mi+1 and connecting all of its expanding sides. We call this surface
γi+1, and by induction γN lies wholly within MN , and any point on γN , traced backwards
to a point xi ∈ Mi for i = 0, 1, . . . , N − 1.

It seems intuitively clear that we can replace “cube” with “n-cube”, “surface” with “man-
ifold”, and the above argument still applies in arbitrarily high dimension. The crucial points
appear to be that γ has dimension equal to the number of expanding directions, and that its
border must “wrap around” all the expanding sides of Mi.2

3.2.3 Containment in n dimensions with one expanding direction

Let Mi be a parallelepiped in Rn with faces F j
i , for i = 0, . . . , N and j = ±1, . . . ,±n, with

opposite signs in the superscript representing opposite faces of a parallelepiped. Without loss
of generality, we assume that the first direction is the “expanding” one. We will denote the
union of a set of faces by listing all of them in the superscript; for example, F

±1,... ,±(n−1)
i

represents the set of all the faces of Mi except F−n
i and F+n

i . Let ∂XMi ≡ F−1
i ∪ F+1

i ≡ F±1
i ,

and ∂CMi ≡
⋃n

j=2 F−j
i ∪ F+j

i ≡ F±2,... ,±n
i . Let ϕ : Rn → Rn be a homeomorphism. Let

int X represent the interior of X. Then Mi and Mi+1 satisfy the (n, 1)-Inductive Containment
Property (called ICP for short throughout this section) if

(1) ϕ(F±1
i ) ∩ Mi+1 = ∅, and ϕ(F−1

i ) and ϕ(F+1
i ) are on opposite sides of the infinite slab

between the two hyperplanes containing F−1
i+1 and F+1

i+1, respectively.

(2) ∃Qi+1, a parallelepiped in Rn with faces Gj
i+1 parallel to the faces F j

i+1 of Mi+1 for
j = ±1, . . . ,±n s.t.

(i) ϕ(Mi) ⊂ int Qi+1,

(ii) F±2,... ,±n
i+1 ∩Qi+1 = ∅, and ∀j ∈ {2, . . . , n}, F−j

i+1 and F+j
i+1 are on opposite sides of the

infinite slab between the two hyperplanes containing G−j
i+1 and G+j

i+1, respectively.

2Discussion of how the the phrase “wrap around” generalizes to higher dimensions is beyond the scope of this
thesis, although it can be defined precisely by means of homotopy theory (see for example Munkres 1975).
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Let γ0 ⊂ M0 be a simple curve joining F−1
0 to F+1

0 and remaining in the interior of M0, i.e.,

int γ0 ⊂ int M0 ∧ γ0 ∩ F−1
0 6= ∅ ∧ γ0 ∩ F+1

0 6= ∅.

Theorem 3.4 ((n, 1)-Inductive Containment Theorem). If Mi,Mi+1 satisfy ICP ∀i =
0, . . . , N − 1, then ∀i = 0, . . . , N

∃ simple curve γi ⊆ ϕi(γ0) s.t. int γi ⊂ int Mi ∧ γi ∩ F−1
i 6= ∅ ∧ γi ∩ F+1

i 6= ∅, (3.1)

i.e., γi touches the boundary of Mi in precisely two places, connecting F−1
i to F+1

i , and otherwise
remains entirely inside Mi.

Proof. By induction on i. The proof of the base case i = 0 is immediate, by the definition of γ0.
For the inductive case, assume ∃ a simple curve γi ⊆ ϕi(γ0) s.t. int γi ⊂ int Mi ∧ γi ∩F−1

i 6=
∅ ∧ γi ∩ F+1

i 6= ∅. From ICP(1) and ϕ(F±1
i ) ⊂ Qi+1 and the fact that Qi+1 is convex,
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Figure 3.5: The image ϕ(Mi) and Mi+1 for 2 dimensions. The dark curves at the bottom and top are
ϕ(F±1

i ). The dashed curves at the left and right are ϕ(F±2
i ).

we know that Qi+1 intersects both F−1
i+1 and F+1

i+1; and from ICP(2ii), Qi+1 does not intersect
F±2,... ,±n

i+1 . Thus, since Qi+1 is convex, Qi+1 − Mi+1 is disconnected by the slab defined in
ICP(1) into two disjoint components3 say Q−1

i+1 and Q+1
i+1, each containing one of ϕ(F±1

i ), by
ICP(1). Without loss of generality, assume ϕ(F j

i ) ⊂ Qj
i+1, j = ±1. Now, consider one of the

components, say Q−1
i+1. It contains one of the two endpoints of ϕ(γi) since that endpoint is a

point of ϕ(F−1
i ) ⊂ Q−1

i+1, while the other endpoint of ϕ(γi) is in ϕ(F+1
i ) ⊂ Q+1

i+1. Since γi is a
simple curve and ϕ is a homeomorphism, ϕ(γi) is a simple curve. Now, Q−1

i+1 ∩Q+1
i+1 = ∅, and

ϕ(γi) connects the two. Thus, ϕ(γi) must cross the boundary of Q−1
i+1. This boundary consists

of exactly two mutually exclusive patches, one of which is a subset of ∂Qi+1, the other a subset
of F−1

i+1. Since ϕ(γi) ⊂ ϕ(Mi) ⊂ int Qi+1, this implies ϕ(γi) ∩ ∂Qi+1 = ∅, and so ϕ(γi) leaves
Q−1

i+1 through F−1
i+1. A similar argument shows that ϕ(γi) leaves Q+1

i+1 through F+1
i+1. Thus,

3This is because F−1
i+1 and F+1

i+1 are each patches of an n−1 dimensional hyperplane residing in n dimensions,
and so they each disconnect any convex set they intersect, as long as that convex set does not intersect their
boundaries ∂F−1

i+1 and ∂F+1
i+1, respectively.
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ϕ(γi) ∩ F j
i+1 6= ∅, j = ±1. It remains to show that there exists a segment γi+1 of ϕ(γi) which

is a simple curve and maintains the property defined in (3.1).
Since ϕ(γi) is a simple curve, there exists a parameterization γ(t) for t ∈ [0, 1] s.t. γ([0, 1]) =

ϕ(γi) and γ(t) is a homeomorphism (Munkres 1975). Let sj = ϕ(γi)∩ F j
i+1, j = ±1. Now, s−1

and s+1 are disjoint since F−1
i+1∩F+1

i+1 = ∅, they are compact because F j
i+1 for j = ±1 and γi are

compact and ϕ is a homeomorphism and the intersection of two compact sets in Rn is compact.
Finally, γ−1(s±1) are compact because γ is a homeomorphism. To prove that there exists a
simple curve γi+1 ⊂ ϕ(γi) s.t. int γi+1 ⊂ int Mi+1, we need to show that there exist two points
in [0, 1], one each from γ−1(s−1) and γ−1(s+1), such that no points from either set are between
them. This will prove that there exists a simple curve, which is a section of ϕ(γi), that connects
F−1

i+1 to F+1
i+1 without otherwise intersecting ∂Mi+1. Let G = γ−1(s−1) and R = γ−1(s+1) and

note that G and R are compact, disjoint, non-empty subsets of [0, 1]. Applying Lemma 3.2
completes the proof.

Applying Theorem 3.3 proves that a shadow exists for any noisy trajectory {yi}N
i=0 s.t. yi ∈

Mi, i = 0, . . . , N .

3.2.4 Containment in n dimensions with one contracting direction

Remark: This case could immediately be proved by applying the one-expanding-direction theo-
rem in backward time, since a system with one contracting direction in forward time is equivalent
to a system with one expanding direction in backward time. However, we provide a different
proof because although it is not applicable to the general case, we believe a proof of the following
form is more likely to be generalizable (cf. section 3.4.2).

Remark: In the one expanding direction case, γ is one dimensional; in the one contracting
direction case, γ is (n− 1)-dimensional.

Let Mi be a parallelepiped in Rn with faces F j
i , for i = 0, . . . , N and j = ±1, . . . ,±n, with

opposite signs of j representing opposite faces of a parallelepiped. Without loss of generality,
let the nth direction be the “contracting” one. We will denote the union of a set of faces by
listing all of them in the superscript; for example, F

±1,... ,±(n−1)
i represents the set of all faces

except F−n
i and F+n

i .
Let ϕ : Rn → Rn be a homeomorphism. Let int X represent the interior of X. Then Mi and

Mi+1 satisfy the (n, n − 1)-Inductive Containment Property (called ICP for short throughout
this section) if

(1) ϕ(F±1,... ,±(n−1)
i ) ∩ Mi+1 = ∅ and ∀j ∈ {1, . . . , n − 1} ϕ(F−j

i ) and ϕ(F+j
i ) are on op-

posite sides of the infinite slab between the two hyperplanes containing F−j
i+1 and F+j

i+1,
respectively.

(2) ∃Qi+1, a parallelepiped in Rn with faces Gj
i+1 parallel to the faces F j

i+1 of Mi+1 for
j = ±1, . . . ,±n s.t.

(i) ϕ(Mi) ⊂ int Qi+1,

(ii) F±n
i+1 ∩Qi+1 = ∅ and F−n

i+1 and F+n
i+1 are on opposite sides of the infinite slab between

the two hyperplanes containing G−n
i+1 and G+n

i+1, respectively.

Lemma 3.5. In an n-dimensional cube, the border of each face is contained in the union of
all the other faces except the one opposite itself, i.e., ∂F j

i ⊂
⋃

k∈{±1,... ,±n}
k 6=±j

F k
i .
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Proof. Without loss of generality, we will look at the n-dimensional unit cube C = [0, 1]n.
The border ∂C of C consists of all points p = (p1, . . . , pn)T that have pk = 0 or 1 for some
k ∈ {1, . . . , n} and pj ∈ [0, 1] for all j ∈ {1, . . . , n}. A face F of C is defined by assigning
0 or 1 to precisely one of the co-ordinates pk of p (with the choice between 0 and 1 being
the choice between opposite faces), and freeing all the other co-ordinates pj , j 6= k to roam in
[0, 1]. Without loss of generality, let pk = 0. Note that the associated face F is a hypercube of
dimension n − 1. Thus, ∂F consists of all points q = (q1, . . . , qn)T with qk = 0 and qj = 0 or
1 for j 6= k. However, if a co-ordinate qj for some j 6= k is 0 or 1, then in addition to being in
F , q is in some other face F ′ of C. Furthermore, F ′ can be any face of C except F or the one
opposite F by choosing j and qj ∈ {0, 1} appropriately.
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Figure 3.6: Schematic representation of the one-contracting-dimension proof in two dimensions. (a) γi,
Mi and the faces of Mi. (b) The dark curves at the left and right represent ϕ(F±1

i ). The dashed curves
at the top and bottom are ϕ(F±2

i ). The proof of Theorem shows that no path in Mi+1 connects F−2
i+1

to F+2
i+1 without intersecting γi+1 = ϕ(γi) ∩Mi+1.

Lemma 3.6. Both ϕ(F−n
i ) and ϕ(F+n

i ) path disconnect F−n
i+1 from F+n

i+1 in Mi+1.

Proof. By Lemma 3.5, the border of F−n
i is contained in F

±1,... ,±(n−1)
i . Since ϕ is a homeo-

morphism, the border of ϕ(F−n
i ) is contained in ϕ(F±1,... ,±(n−1)

i ), which by ICP(1) is disjoint
from Mi+1. However, by ICP(2i), ϕ(F−n

i ) is contained in the slab between G−n
i+1 and G+n

i+1.
Since ϕ(F−n

i ) is homeomorphic to a face of Mi+1 and it lies in the slab between G−n
i+1 and G+n

i+1

of Mi+1 and its border lies outside Mi+1, it path disconnects Mi+1 somewhere inside the slab
between G−n

i+1 and G+n
i+1. Furthermore, since by ICP(2ii) the slab between G−n

i+1 and G+n
i+1 is

contained in the slab between F−n
i+1 and F+n

i+1, then F−n
i+1 and F+n

i+1 must be path disconnected
in Mi+1 by ϕ(F−n

i ). The same argument applies to ϕ(F+n
i ).

Let γ0 ⊂ M0 be a set constructed such that γ0 path-disconnects M0 in such a way that no path
exists in M0 that connects F−n

0 to F+n
0 without intersecting γ0.

Theorem 3.7 ((n, n− 1) Inductive Containment Theorem). If Mi,Mi+1 satisfy ICP for
all i = 0, . . . , N − 1, then

∀i = 0, . . . , N ∃ a set γi ⊆ ϕi(γ0) s.t. γi ⊂ Mi and γi path disconnects F−n
i from F+n

i in Mi.
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Proof. By induction on i. The proof of the base case i = 0 is immediate, by the definition
of γ0. For the inductive case, assume there exists a set γi ⊆ ϕi(γ0) s.t. γi ⊂ Mi and γi

path disconnects F−n
i from F+n

i in Mi. Assume to the contrary that there exists a path β in
Mi+1 from F−n

i+1 to F+n
i+1 that does not intersect ϕ(γi). By Lemma 3.6, ϕ(F−n

i ) and ϕ(F+n
i )

each path disconnect F−n
i+1 from F+n

i+1 in Mi+1. Thus, β intersects both ϕ(F−n
i ) and ϕ(F+n

i ),
and connects the two, but by assumption does not intersect ϕ(γi). Since β ⊂ Mi+1, ICP(1)
implies β ∩ ϕ(F±1,... ,±(n−1)

i ) = ∅. Thus, β intersects ϕ(∂Mi) only in ϕ(F±n
i ). Without loss of

generality, assume that β intersects each only once, i.e., it enters ϕ(Mi) through ϕ(F−n
i ) and

leaves through ϕ(F+n
i ). Thus, β connects ϕ(F−n

i ) to ϕ(F+n
i ) without leaving ϕ(Mi), and, by

assumption, without intersecting ϕ(γi). However, ϕ is a homeomorphism, and applying ϕ−1

to ϕ(F±n
i ), ϕ(Mi), and β, we see that ϕ−1(β) is a path from F−n

i to F+n
i that remains in Mi

and does not intersect γi, contradicting our inductive hypothesis. Thus, any path in Mi+1 that
connects F−n

i+1 to F+n
i+1 must intersect ϕ(γi). Let γi+1 = ϕ(γi)∩Mi+1. Then no path exists from

F−n
i+1 to F+n

i+1 in Mi+1 that does not intersect γi+1.

Thus, γi+1 ⊆ ϕ(γi) and γi+1 ∩Mi+1 6= ∅ for all i. Applying Theorem 3.3 proves that a shadow
exists for any noisy trajectory {yi}N

i=0 s.t. yi ∈ Mi, i = 0, . . . , N .

3.2.5 Containment with zero contracting or expanding directions

For completeness, we mention the trivial cases in which all directions are contracting, or all
directions are expanding. We call these the (n, 0) and (n, n) cases, respectively. The former
case is entirely trivial, because the problem is stable: if ϕ(Mi) ⊂ ϕ̄(Mi) ⊂ Mi+1 for all i, then
clearly any exact solution starting in M0 will be in Mi for all i > 0. Similarly, if all directions
are expanding, then we apply the same argument in the reverse direction: if ϕ−1(Mi+1) ⊂
ϕ̄−1(Mi+1) ⊂ Mi for all i, then any exact solution finishing in MN , traced backwards, lies in
Mi for i = N − 1, N − 2, . . . , 0.

3.2.6 Discussion

The four cases (n, 0), (n, 1), (n, n − 1), and (n, n) cover all cases when n = 3. That is, the
theorems in this thesis can prove the existence of shadows for any n-dimensional system, n ≤ 3,
in which some measure of pseudo-hyperbolicity is present. Furthermore, although the proofs,
for simplicity, only deal with a single function ϕ, the induction argument could just as easily use
a different ϕ at each step, so the proofs work just as well if each step uses a different function
ϕi. In particular, ϕi could be the ODE time-hi solution operator ϕhi from equation 1.4. Thus,
modulo a rescaling of time (which we discuss later), the above proofs are valid for use in finding
shadows of noisy trajectories of ODE systems, as well as maps, with up to three dependent
variables. They can also be used in the case of n dependent variables, with the restriction
that solutions have no more than one expanding direction, or no more than one contracting
direction.

Ideally, of course, we would like to be able to use containment to prove the existence of shad-
ows for any system which displays pseudo-hyperbolicity, regardless of the number of expanding
and contracting directions; certainly no other rigorous method currently in the literature has
such restrictions on the hyperbolicity. Unfortunately, after months of diligent searching, this
author has been unable to prove the general case, even after consulting many other people.
We tried about a dozen distinct methods of proof of the general case, without success. Ideas
that appear promising at first always evaporate under closer scrutiny. Despite these failures,



40 Chapter 3. Containment

this author remains optimistic that a proof of the general case exists. At the very least, we
know that other, completely different proofs of high-dimensional shadows exist, namely those of
Coomes, Koçak, and Palmer. The theorems and proofs presented in this thesis seem so simple
and elegant that we are compelled to believe that a similar proof must exist for the general
case.

3.3 The general Inductive Containment Property

The essence of the Inductive Containment Property can be explained by looking at a simpli-
fied homeomorphism ψ : Rn → Rn with the following properties. Let x = (x1, . . . , xn)T

and let x|xj=a be x with its jth component replaced with the value a ∈ R. Let ψ =
(ψ1(x), . . . , ψn(x))T . Let {1, . . . , k}, k ∈ {1, . . . , n} be the expanding directions. If for all
x in the unit cube [0, 1]n, ψ satisfies

∀j ∈ {1, . . . , k} ψj(x|xj=0) < 0 and ψj(x|xj=1) > 1,

∀j ∈ {k + 1, . . . , n} ψj(x|xj=0) > 0 and ψj(x|xj=1) < 1,

then ψ maps the unit cube In = [0, 1]n over itself in such a way that In satisfies the Inductive
Containment Property with itself. The rightmost diagrams in Figures 3.3 and 3.4, respectively,
are schematic representations of the Inductive Containment Property if n = 3 and Mi = Mi+1 =
[0, 1]3 in each Figure.

It is not hard to see how the Inductive Containment Properties defined in Theorems 3.4 and
3.7 can be generalized. The Inductive Containment Property is topologically unchanged from
the above if we compose an arbitrary homeomorphism with ψ. In particular, if ϕ = L◦ψ where
L is an arbitrary linear transformation, then the Inductive Containment Property can be more
generally stated as follows.

The (n, k)-Inductive Containment Property Let Mi be a parallelepiped in Rn with faces
F j

i , for i = 0, . . . , N and j = ±1, . . . ,±n, with opposite signs in the superscript representing
opposite faces of a parallelepiped. Let the first k directions be the nominally expanding di-
rections,4 while the remainder are called nominally contracting directions. We will denote the
union of a set of faces by listing all of them in the superscript; for example, F

±1,... ,±(n−1)
i

represents the set of all faces except F−n
i and F+n

i . Let

∂XMi ≡
k⋃

j=1

(
F−j

i ∪ F+j
i

)
≡ F±1,... ,±k

i

be the set of expanding faces, and

∂CMi ≡
n⋃

j=k+1

(
F−j

i ∪ F+j
i

)
≡ F

±(k+1),... ,±n
i

be the set of contracting faces. Let ϕ : Rn → Rn be a homeomorphism. Let int X represent
the interior of X. Then Mi and Mi+1 satisfy the (n, k)-Inductive Containment Property if

(1) ϕ(∂XMi) ∩Mi+1 = ∅ and ∀j ∈ {1, . . . , k}, ϕ(F−j
i ) and ϕ(F+j

i ) are on opposite sides of
the infinite slab between the two hyperplanes containing F−j

i+1 and F+j
i+1, respectively.

4Nominally because they do not expand uniformly for all time; otherwise the system would be hyperbolic.
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(2) ∃Qi+1, a parallelepiped in Rn with faces Gj
i+1 parallel to the faces F j

i+1 of Mi+1 for
j = ±1, . . . ,±n s.t.

(i) ϕ(Mi) ⊂ int Qi+1,

(ii) Qi+1 ∩ ∂CMi+1 = ∅ and ∀j ∈ {k +1, . . . , n}, F−j
i+1 and F+j

i+1 are on opposite sides of
the infinite slab between the two hyperplanes containing G−j

i+1 and G+j
i+1, respectively.

Remark: ICP(1) is probably stronger that we need, because we do not generally care where
each of the expanding faces maps to, provided that they “pull” the border of γi outside of
Mi+1. A more topologically sophisticated proof might be constructed assuming only that
ϕ(∂XMi) ∩ Mi+1 = ∅ along with some statement about ϕ(∂XMi) “wrapping around” Mi+1

in some topological sense. A similar remark may hold for the contracting faces described by
ICP(2ii).

3.4 Discussion of containment in the general case

3.4.1 A simplistic linear example

In this subsection, we present an n-dimensional proof in the case that ϕ is a simple linear
function. The intent is to show that there exists an n-dimensional system with an arbitrary
number k of expanding directions that we can shadow using containment.

Let ρ > 1, let x = (x1, . . . , xn)T , and let ϕ(x) = (ϕ1(x), . . . , ϕn(x))T , where

ϕj(x) =
{

ρxj , j = 1, . . . , k.
1
ρxj , j = k + 1, . . . , n.

That is, ϕ(x) is linearly expanding about the origin in the first k directions, linearly contracting
about the origin in the remaining directions, and each direction is orthogonal to all the others.
Note also that ϕ is clearly hyperbolic along any exact orbit, and so shadows of pseudo-orbits
certainly exist for sufficiently small local error. Let M be the n-dimensional cube centred at the
origin with maximum diameter ε > 0, i.e., M = [−µ, µ]n where µ = ε/(2

√
n), and let Mi = M

for all i. We want to demonstrate how (n, k)-containment is applied to this system.
A cursory glance at ϕ shows that Mi,Mi+1 satisfy the (n, k)-Inductive Containment Property

under ϕ for all i. Let

γ0 = {z ∈ Rn | zj ∈ [−µ, µ] for j ∈ {1, . . . , k}, and zj = 0 for j ∈ {k + 1, . . . , n}},

and γi+1 = ϕ(γi) ∩M. Now pick x ∈ γ0. Then clearly,

ϕm(x) = (ρmx1, . . . , ρmxk, 0, . . . , 0)T .

Theorem 3.8 (Containment in n dimensions for a linear ϕ). Let ϕ, {Mi}∞i=0 and γ0 be
defined as above. Then

∀m ≥ 0 ∃x ∈ γ0 s.t. ϕi(x) ∈ M for i = 0, . . . , m.

Thus {ϕi(x)}m
i=0 is an ε-shadow of any pseudo-orbit {yi}m

i=0 of ϕ that remains in M .

Proof. Pick a z = (z1, . . . , zn)T ∈ Mm = M such that zj ∈ [−µ, µ], j = 1, . . . , k and zj = 0, j =
k + 1, . . . , n. Clearly z ∈ M and

(
ϕi(z)

)
j

= 0, for all i and for j = k + 1, . . . , n, where (w)j
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extracts the jth component of the vector w. Looking at the first k (expanding) directions, we
want first to show that z = ϕm(x) for some x ∈ γ0. Pick xj = zj

ρm , j = 1, . . . , k, xj = 0, j =
k + 1, . . . , n. Clearly x ∈ γ0 ⊂ M , since zj ∈ [−µ, µ] and ρm ≥ 1. Then,

ϕm(x) = (ρm z1

ρm
, . . . , ρm zk

ρm
, 0, . . . , 0)T

= z.

Finally,
ϕi(x) = (ρi−mz1, . . . , ρi−mzk, 0, . . . , 0)T ∈ M,

since zj ∈ [−µ, µ] and ρi−m ≤ 1 for i ≤ m. Since the maximum diameter of Mi is ε, and
yi ∈ Mi for i = 0, . . . ,m, {ϕi(x)}m

i=0 ε-shadows {yi}m
i=0.

Thus, this system satisfies the (n, k)-Inductive Containment Property, and is shadowable.
What remains to prove is that the former always implies the latter.

Although this argument is not very useful in itself, it is still interesting. Note that we can
apply an arbitrary homeomorphism to the objects in the theorem, producing a theorem that
is applicable to the general n-dimensional case in which ϕ(γi) ∩Mi+1 is topologically identical
to γi. In particular, the topological aspects of the argument are unchanged in the case that
we can prove that ϕ(γi) never causes δγi to “loop back” on itself and intersect Mi+1 in a
manner that produces topological entities often described as “handles”, “ears”, or “fingers”. In
fact, the original proof of two-dimensional containment (Grebogi, Hammel, Yorke, and Sauer
1990) contained the restriction that the first and second spatial derivatives of ϕ needed to be
bounded. We showed in section 3.2.1 that the two-dimensional theorem still holds when such
restrictions are lifted. It seems plausible to conjecture that the same could be true in the general
n-dimensional case.

3.4.2 Ideas for proving the general case

The fundamental reason we believe the general (n, k) case to be provable is because ϕ is a
homeomorphism, and thus introduces no holes into ϕ(γi) that did not exist in γi. So if a k-
dimensional γi “covers” Mi in the k expanding directions, and ϕ(Mi) stretches Mi over Mi+1

in those same directions, then ϕ(γi) will “cover” Mi+1 in the k expanding directions. The only
place holes are introduced is where ϕ(γi) intersects δXMi+1, at which point fingers, ears, and
handles may be cut off, introducing holes of unknown topology where ϕ(γi) meets ∂XMi+1.
Now, recall that ∂XMi is the set of expanding faces of Mi, so that ϕ(∂XMi) ∩ Mi+1 = ∅.
However, these new holes in γi+1 = ϕ(γi) ∩ Mi+1 are of no consequence because ϕ(∂XMi+1)
in turn lies outside Mi+2; the only part of ϕ(γi+1) that is inside Mi+2 was also inside Mi+1,
inside of which there were no holes in γi+1. Thus, there are no new holes inside ϕ(γi+1)∩Mi+2,
and by induction, no holes inside any γi ∩ Mi, i = 0, . . . , N . Even more succinctly, the
only holes in γi+1 are in its border ∂γi+1 ≡ ϕ(γi) ∩ ∂XMi+1, and the Inductive Containment
Property ensures that ϕ(∂γi+1) ⊂ ϕ(∂XMi+1) is outside Mi+2. Here, a “hole” may be defined
as something through which an (n − k)-dimensional manifold β can pass, analogous to the
simple curve β created to induce a contradiction in the proof of Theorem 3.7. Note that this
argument does not claim that no holes (fingers, handles, or ears) exist in γi; it merely says
that they are of no consequence, because if a hole exists in γi+1 through which a β can pass,
then a similar hole must have existed in γi. If we start with a γ0 with no such holes, then a
contradiction results, and a proof analogous to that of Theorem 3.7 would hold.

Unfortunately, formalizing this argument has proved surprisingly difficult. A start may be
to generalize Lemmas 3.5 and 3.6.



3.5. Four ways to verify the Inductive Containment Property 43

3.5 Four ways to verify the Inductive Containment Property

We have devised four different methods of verifying that the general Inductive Containment
Property holds for a given pseudo-trajectory derived from the numerical solution of an ODE.
We note in passing that all of these schemes could easily be adapted to the simpler problem
of maps. Each has strengths and weaknesses, which we will discuss. Each one requires the use
of interval arithmetic, or a validated ODE integrator (cf. §1.3.2) if ϕ derives from an ODE.
The validated ODE integrator that we use is called VNODE (Nedialkov 1999). VNODE works
with n-dimensional parallelepipeds, and satisfies the following property: given an n-dimensional
parallelepiped A and a timestep h, VNODE will return an n-dimensional parallelepiped B such
that ϕh(A) ⊂ B, where ϕh is the solution operator for the ODE defined in equation (1.4). For
the purposes of this description, we will denote the output B as ϕ̄h(A),

ϕh(A) ⊂ ϕ̄h(A).

We will usually omit the timestep parameter h; we will talk only of ϕ, keeping in mind that in
the induction, ϕ can be different for each step.

3.5.1 Direct integration of all 2n faces

The most direct method of building a pair of parallelepipeds Mi,Mi+1 satisfying the Inductive
Containment Property is to integrate each face of Mi individually, building Mi+1 explicitly
to satisfy the Inductive Containment Property. See Figure 3.7. A separate validated ODE

M i

a)

b)

F

φ(   )F

i+1Q

φ(   )F

i+1M

Figure 3.7: Schematic diagram of the direct 2n face-integration approach to proving the Inductive
Containment Property. (a) An enclosure of the image of each individual face is built. (b) From these
enclosures, Mi+1 is built. Qi+1 is a parallelepiped enclosing ϕ(Mi) by enclosing the enclosures of all its
faces. For simplicity, Mi, Qi+1 and Mi+1 are all drawn axis-aligned, although in reality they may be
arbitrarily oriented (as long as they are identically oriented).
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integration is performed on each of the 2n faces of Mi, as shown in Figure 3.7.a. A face F is
simply represented by an n-dimensional parallelepiped which has zero width in one particular
dimension. The image of F under ϕ lies inside the box ϕ̄(F ). In Figure 3.7.b, the vertical
direction is depicted as expanding, while the horizontal direction is contracting. In the rightmost
section of the Figure, the rectangles with thin solid boundaries depict ϕ̄(F ) for each face F
of Mi. The thin dotted box is the boundary of Qi+1, which is a parallelepiped convex hull
enclosing the images of all the faces, thus ensuring ICP(2i). Mi+1 (heavy dashed line) is built
as follows: for the expanding directions j = ±1, . . . ,±k, F j

i+1 is aligned one machine number
inside the inner boundary of ϕ̄(F j

i ), thus enforcing ICP(1). For the contracting directions
j = ±(k + 1), . . . ,±n, F j

i+1 is aligned strictly outside the boundary of Qi+1, thus enforcing
ICP(2ii). Note that it is probably sufficient if the contracting faces of Mi+1 are aligned strictly
outside the outer boundary of ϕ̄(F j

i ), j = ±(k + 1), . . . ,±n. This choice would give a slightly
smaller Mi+1, and thus tighter containment, although it would complicate the proof of the
Inductive Containment Theorem slightly.

As with any shadowing method, the system becomes hard to shadow when it lacks pseudo-
hyperbolicity. This means either that the nominally contracting directions fail to contract
enough for us to detect contraction, or the nominally expanding directions fail to expand enough
for us to resolve the two faces opposite each other in that direction. In the former case, the width
of Mi grows in the contracting directions as i increases, eventually resulting in a shadowing
distance which grows without bound. In the latter case, we cannot resolve the two opposite
faces because the bounding boxes for their images overlap; see Figure 3.8.

F+1

F-1

Figure 3.8: How the 2n direct face integration method can fail when not enough expansion occurs.
Here, the vertical direction is the nominally expanding direction.

The direct 2n face integration method was the first method of proving the Inductive Con-
tainment Property that we implemented in our code. However, we found that this method
had several drawbacks. The most catastrophic problem is that the current implementation of
VNODE is not designed to handle parallelepipeds that have some dimensions initially of zero
thickness, and thus it is not always capable of providing tight enclosures of the images of faces.
This problem is particularly bad if the initially zero width dimension lies along an expanding
direction. Then, numerical errors very quickly compound to give an enclosure which is useless
for containment purposes (see Figure 3.9). The amount by which a validated ODE enclosure
over-estimates the error is called the “excess”. It is well-known that most current implemen-
tations of validated ODE integration have a large excess. It may be possible to decrease the
excess for this particular application (Nedialkov, personal communication), although it may
not be worth the effort given that we introduce below more efficient and accurate methods for
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F+1

F-1

Figure 3.9: How the 2n direct face integration method actually fails, because the current implementation
of VNODE cannot produce tight enclosures of the images of faces. Again, the vertical direction is the
nominally expanding direction.

proving ICP.
Finally, we note that the 2n direct face integration method is expensive: it requires 2n

validated ODE integrations per shadow step; we will show below that there exist ways of
verifying ICP with fewer validated integrations per shadow step. On the other hand, each of
the 2n validated integrations is independent of all the others, so they could be performed in
parallel.

3.5.2 Direct integration of n + 1 corners of Mi

If a bound similar to those in Theorem 2.4 (page 17) on the first and second spatial derivatives
of ϕ can be found either analytically or computationally, then we can bound the curvature of
ϕ(F ) for a face F of Mi. This allows us to compute an enclosure of ϕ(F ) by integrating only
the corners of F . Furthermore, we can implicitly get the positions of all 2n corners of Mi using
the positions of only n+1 corners by choosing one corner c as an origin and finding the lengths
and directions of the n distinct edges emanating from c. Given the bound on the first and
second spatial derivatives of ϕ, this allows us to compute enclosures on all 2n faces of ϕ(Mi)
using only n + 1 validated integrations of the appropriate corners of Mi (Nedialkov, Jackson,
and Corliss 1999). From this, it is easy to build an Mi+1 that satisfies ICP, as shown in Figure
3.10. In particular, from the enclosures of the corners and a bound on the derivatives of ϕ,
we can build parallelepipeds Qi+1 and Ri+1 such that Ri+1 ⊂ ϕ(Mi) ⊂ Qi+1. Then, the faces
of Mi+1 can be chosen to be strictly outside those of Qi+1 in the contracting directions, and
strictly inside those of Ri+1 in the expanding directions.

This method has the disadvantage that the second spatial derivatives need to be computed,
which can be expensive if done computationally, and tedious if done analytically. On the
other hand, if the analytical bounds can be computed a priori, they may be computationally
cheap. The n + 1 validated integrations can also be performed cheaply because they are point
integrations. That is, [ri−1] in equation (1.8) is zero and so, if the validated integrator can
integrate from ti to ti+1 in one step, [Si−1], which is the expensive part of a validated integration,
need not be computed. The n + 1 point integrations are also independent, so they can be done
in parallel. Since point integrations are cheap and produce very tight enclosures, if one can
also produce a priori tight bounds on the first and second spatial derivatives of ϕ, and these
bounds are small, then one can efficiently produce very tight enclosures of the faces of ϕ(Mi).
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M i
R i+1

Q
i+1

M iφ(      )

c

φ(   )c

i+1M

Figure 3.10: The direct n + 1 corner integration method of proving ICP. In the depicted 2-dimensional
case, 3 corners (c and the two adjacent to it) are integrated using VNODE; the top right corner is not
integrated explicitly. Qi+1 (outer dotted box) is the outer bounding box of ϕ(Mi), and Ri+1 (inner
dotted box) is the inner bounding box. As before, Mi+1 is aligned so that its expanding faces are strictly
inside Ri+1, while its contracting sides are strictly outside Qi+1. The sizes of the enclosures of the corners
are highly exaggerated; in practice, they can have a diameter approaching the machine precision.

This implies that this method is both efficient for small n and likely to produce the tightest
containment boxes of all the methods discussed in this thesis, as long as ϕ is not too far from
being linear, and we can compute a priori bounds on the derivatives. This can usually be
arranged by choosing a sufficiently small timestep, although too small a timestep can lead to
other complications. We have not pursued this idea beyond this discussion.

Finally, this method also has the advantage that, if one does not require rigor, then the n+1
integrations can be done with a non-validated integrator, and a local error estimate can be used
to build Qi+1 and Ri+1. This method was actually employed by the author during a very early
prototyping phase of code development, using LSODE (Hindmarsh 1980) as the non-rigorous
integrator. The results are beyond the scope of this thesis, but were sufficiently encouraging to
demonstrate that containment could work as a method of finding high-dimensional shadows.

3.5.3 Forward-backward iterative method

The above two methods can be used on arbitrary n-dimensional systems, but require order n
validated ODE integrations for each containment step. Since validated ODE integrations are
very expensive, we would like to find a way to ensure that the Inductive Containment Property
holds using fewer integrations, especially for large n. The following method demonstrates that
it is possible to verify ICP using an iterative method that we have found empirically to require
about 3–4 validated integrations per step on average, independent of n. This method rigorously
verifies ICP in the cases for which we have proven the Inductive Containment Theorem. We are
not sure if it verifies ICP in the general case, and would need to perform further work to ensure
that it does before using it in the general problem. However, considering that this method of
verifying ICP holds is cheaper and easier to work with than the previous two methods and that
it verifies ICP holds in exactly the cases for which we can prove the Inductive Containment
Theorem, we are content to leave further exploration of this method until later.
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In this paragraph, we look at the simple two-dimensional case in which one of the directions
is expanding, while the other is contracting. First, assume that the only information provided
by our validated ODE integration is an outer bound ϕ̄(Mi) on ϕ(Mi). Then, it is not possible
to verify (2, 1)-ICP with only one validated integration, because this information can only
prove contraction, not expansion. Refer to Figure 3.11. In both Figures 3.11.a and 3.11.b,

M
i

φ(Μ )
M

i

a) b)

φ(Μ )

φ(Μ ) φ(Μ )

i i

i i

Figure 3.11: Enclosure methods prove contraction, but not expansion.

ϕ̄(Mi) is a valid enclosure of ϕ(Mi). In both Figures, ϕ̄(Mi) can be used to prove that ϕ(Mi)
has contracted in the horizontal direction. However, enclosure methods cannot directly prove
expansion, as Figure 3.11.b demonstrates: although ϕ̄(Mi) is a valid enclosure of ϕ(Mi), it is
not a very good one, because the actual image ϕ(Mi) of Mi has not expanded in any direction.
To solve this problem, we perform two validated integrations. Refer to Figure 3.12.a. The
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Figure 3.12: (a) The two validated integrations required to prove (2, 1)-ICP. (b) A potential problem,
which is solved by doing a (cheap) point integration of one point on each expanding face, to verify there
are points of ϕ(Mi) on both side of Mi+1.

first integration (solid rectangles) is a forward integration that provides ϕ̄(Mi), which in turn
gives us a bound on the size of ϕ(Mi) in the contracting directions (depicted as the horizontal
direction in the Figure). Now, assume we can find an Mi+1 which satisfies ICP not with ϕ(Mi),
but with ϕ̄(Mi). (If we cannot find such an Mi+1, then our method fails and we cannot prove the
existence of a shadow beyond step i.) A validated integration backwards (dashed rectangles) is
then performed on Mi+1, giving ϕ̄−1(Mi+1). If ϕ̄−1(Mi+1) proves that contraction has occured
in the nominally expanding directions when moving back from Mi+1 to Mi, then we argue that
expansion in forward time has occurred, as follows. Choose any x ∈ Mi − ϕ̄−1(Mi+1). Since
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x 6∈ ϕ̄−1(Mi+1) ⊃ ϕ−1(Mi+1), this implies ϕ(x) ∈ ϕ(Mi)−Mi+1. Since F±1
i ⊂ Mi−ϕ̄−1(Mi+1),

this tells us that ϕ(F±1
i )∩Mi+1 = ∅. This is insufficient to prove ICP(1), as illustrated in Figure

3.12.b: perhaps ϕ̄(Mi) is a loose enclosure of ϕ(Mi), and all of ϕ(Mi) is actually on one side of
Mi+1. To verify that this is not the case, we pick one point on each of F+1

i and F−1
i and perform

a validated point integration (which can be done cheaply, as described above) of each to verify
that they land on opposite sides of Mi+1.5 Since there is exactly one expanding direction, Mi+1

cuts ϕ̄(Mi) into two disjoint sets, and a simple continuity argument shows that the two faces
in their entirety land on opposite sides of Mi+1, thus verifying ICP(1). A similar argument in
reverse time shows that the chosen Mi+1 also verifies ICP(2ii).

The argument of the previous paragraph clearly applies just as well in n dimensions when
there is exactly one expanding direction, for the same reasons that Theorem 3.1 is easily trans-
formed into Theorem 3.4. To prove that it also works when there is exactly one contracting
direction, note that there is a precise symmetry between the two cases (one expanding vs. one
contracting): if we simultaneously reverse the order of {Mi}N

i=0 giving Li = MN−i and let
ψ = ϕ−1, then the above argument applies to the sequence {Li}N

i=0 using ψ as the homeomor-
phism. Thus, by symmetry, this method is also rigorous in the case that there is exactly one
contracting direction.

M i+1

M i

φ  (Μ    ) -1

i+1

Figure 3.13: Shortcomings of the two-integration method: sometimes it can not prove expansion even
if the Mi+1 is valid.

Figure 3.13 demonstrates that it is possible to choose an Mi+1 that satisfies ICP, but for
which it we cannot verify ICP holds. This occurs when Mi+1 is chosen to be “almost as large”
as ϕ̄(Mi) in the expanding directions; then, the excess when computing ϕ̄−1(Mi+1) swamps
the contraction that occurs when integrating the expanding direction backwards in time. We
solve this problem by iteratively shrinking Mi+1 in the nominally expanding directions until
ϕ̄−1(Mi+1) fits inside Mi in those directions. If we shrink Mi+1 to size zero in the expanding
direction without being able to integrate it backwards to fit inside Mi, then the method fails, and
we cannot prove the existence of a shadow past step i. We have found empirically that, when
the algorithm is succeeding, no more than 2 to 3 backward integrations are usually required,
independent of n. The number of backwards integrations is occasionally significantly larger,
when the system encounters areas of non-hyperbolicity.

If the system were hyperbolic, then the nominally expanding directions would always ex-
pand, and the nominally contracting directions would always contract, on average. However, in

5We have found empirically that this problem must be very rare, because it has not happened even once
during our experiments. We suspect that it may be possible to prove ICP without this extra point integration,
but we have not devoted much thought towards how to avoid it.
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systems that are only pseudo-hyperbolic, the nominally expanding directions may expand most
of the time, but not always; and similarly for the contracting directions. One of the reasons our
shadowing method can fail is if a nominally expanding direction contracts too much or for too
long a time (Figure 3.14). Then, the expanding dimensions of Mi can become so small that no

M M M
i-2 i-1 i

-1

i+1
φ  (Μ    ) Miφ(      )

trial M
i+1

Figure 3.14: Example of the nominally expanding direction contracting too much for our integrator to
prove contraction in the backwards direction.

backwards integration from Mi+1 can fit inside Mi in the nominally expanding directions.
We note that this method is not parallelizable across dimensions in the fashion that the

previous two methods are, so that a parallel implementation may be faster using one of the
previous methods, if it can overcome the other shortcomings mentioned for those methods.

3.5.4 Single integration method

There may be more efficient ways to implement the verification of ICP. For example, it may
be possible to prove both expansion and contraction using a single forward integration if we
take advantage of knowledge of the second term in equation (1.8), which essentially tells us how
much uncertainty is introduced to the boundary of the image of [ri] as a result of new error
introduced on this step, both inwards and outwards. This would allow us to build both the
outer bound Qi+1 on ϕ(Mi) and the inner bound Ri+1 as depicted in Figure 3.10 using only
one validated integration. This would be a tremendous improvement over the current methods
which all require several validated integrations per shadow step. Alternatively, there are other
implementations of validated ODE integration that we could use that are more expensive, but
provide tighter bounds on the solution. We have not yet explored any of these options.

3.6 Rescaling time

3.6.1 Informal description

Containment as presented thus far has put no restrictions on ϕ other than that it is a home-
omorphism. As has also been mentioned, all of our theorems and proofs have been based on
a single application of ϕ, and there is no explicit connection between the ϕ used at one step,
and the one used on the next. Thus, everything said thus far is also applicable if we allow ϕ
to change between steps. In particular, at each step we could use ϕhi as defined in equation
(1.4) with h = hi being the length of the ODE integration timestep taken at step i. The re-
sulting method for shadowing numerical ODE integrations has been dubbed the Map Method
by Coomes, Koçak, and Palmer (1994b, 1995a, 1995b). As described in section 2.2.5, however,
ODE integrations suffer from errors in time. For systems in which the y′ direction lacks even
pseudo-hyperbolicity, errors in time (which manifest themselves in phase space as errors in the
y′ direction) can lead to short shadowing times that can be dramatically increased if time is
rescaled. In this section, we describe how the rescaling of time can be applied to containment.

Our idea for rescaling time in containment was inspired in part by the rescaling of time of
Coomes, Koçak, and Palmer (1994b, 1995a) as depicted in Figure 2.4 (although our proofs are
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profoundly different), and partly by the idea of the Poincaré section, also known as a Poincaré
map or return map. There are several variations on this idea, but the one that concerns us
is the following. Assume that the solution to an ODE is “almost periodic”, in the sense that
the solution passes through some given plane H approximately every T time units, where H is
approximately perpendicular to the orbit at the point the orbit crosses the plane. The Poincaré
map generates the sequence of points where the orbit intersects H. To accomplish the general
rescaling of time, we modify this idea to remove the almost-periodic requirement of the orbit,
and simply place a plane Hi in the vicinity of the solution at time ti, placed so that Hi is
approximately perpendicular to y′(ti).

To facilitate containment, we must extend the idea of the Poincaré section to encompass
a small ensemble of solutions. To that effect, we wish to take a set Mi−1 ⊂ Hi−1, where the
diameter of Mi−1 is small, and place a plane Hi in the vicinity of ϕhi−1(Mi−1). Then we define
the Poincaré section of the set ϕhi−1(Mi−1) pointwise as follows. Let ∆hi−1 bound the time
interval over which the ensemble ϕhi−1(Mi−1) crosses Hi; i.e.,

∀x ∈ Mi−1∃h ∈ [hi−1 −∆hi−1, hi−1 + ∆hi−1] s.t. ϕh(x) ∈ Hi,

where we assume that for each x, the h chosen is unique. That is, we take the point-by-
point Poincaré section of the points in Mi−1 with respect to the plane Hi. We call this a
splash operation, because we imagine that the points in Mi−1, evolving via ϕh for h ∈ [hi−1 −
∆hi−1, hi−1 + ∆hi−1], “splash” through Hi approximately simultaneously, and we assume that
each trajectory intersects Hi precisely once during that interval. See Figure 3.15.

i-1h i-1φ     (Μ    )
H i-1

i-1M

x

i-1h xφ     (  )

H i

Figure 3.15: The “splash” operation depicted for a two-dimensional ensemble evolving in a three-
dimensional configuration space. Mi−1 is embedded in the plane Hi−1, and evolves through one timestep
to ϕhi−1(Mi−1). As depicted, the ensemble is about to splash through Hi.

Our intent in this endeavor is to build our parallelepipeds Mi inside Hi, and then show that
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the point-by-point Poincaré section at Hi, i.e., the splash operation, is a homeomorphism. We
can then directly apply the previously proved containment theorems to the n− 1-dimensional
Mi’s which are each contained in the n− 1-dimensional hyperplane Hi, for an ODE system of
n equations.

We note that since rescaling time via the splash operation effectively deletes one dimension
from the problem, and our map containment theorems are rigorous in three dimensions, this
means that the methods presented in this thesis are capable of rigorously shadowing ODE
solutions of up to four dimensions, as long as a rescaling of time is applied.

3.6.2 Theorem: splash is a homeomorphism

Refer to Figure 3.16. Let Qi be a parallelepiped. Let F±1
i be two opposing faces of Qi that

are approximately normal to y′ inside Qi+1, and let vi be the normal vector to these two faces,
with vi pointing from F−1

i to F+1
i . That is, vi is approximately parallel to y′ inside Qi+1. Let

D be the distance between F−1
i and F+1

i along vi. Let Zi be the closed infinite slab between
the two hyperplanes containing F−1

i and F+1
i , and let the infinite planes be H−1

i and H+1
i . Let

Bi be a parallelepiped with faces parallel to Qi satisfying Qi ⊂ Bi ⊂ Zi, with two of the faces
of Bi contained in H±1

i . Let {f(x) · vi | x ∈ Bi} ⊂ [v0, v1], and assume 0 < v0 ≤ v1.

Hi

vi

Z

Zi

i

Qi

Si

Bi

D

H H
i i

+1-1

Figure 3.16: The objects used in Lemmas 3.9–3.12. Note that the left and right sides of Qi, Si, Bi, and
Zi are all in the planes H−1

i ,H+1
i , respectively; they have been drawn distinct for illustrative purposes

only.

Lemma 3.9. If a trajectory remains in Bi while it is in Zi, then it remains in Zi for at least
time εt

i ≡ D/v1 and at most ε̄t
i ≡ D/v0.

Proof. Let y(t) be a trajectory that remains in Bi while it is in Zi. Let z(t) = y(t) · vi. Since
0 < v0 ≤ z′(t) ≤ v1, and the width of Bi in the vi direction is D, the maximum time to cross
Bi is D/v0, while the minimum time to cross is D/v1.

Let f̄(Bi) be an enclosure of {f(x) | x ∈ Bi}. Let Si be a parallelepiped enclosure of{
Zi ∩ (Qi + hf̄(Bi)) | h ∈ [−ε̄t

i, ε̄
t
i]
}

and assume Si ⊆ Bi.
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Remark: Si is intended to enclose how far a trajectory can drift from Qi along the direction
approximately perpendicular to y′ as it travels across Zi. This is required because a point in
Qi may not remain in Qi when it is “splashed” onto Hi. The following lemma formalizes this
statement.

Lemma 3.10. Any trajectory intersecting Qi remains in Si while in Zi, and thus remains in
Bi as well.

Proof. Since Si ⊆ Bi, f̄(Bi) bounds y′ ≡ f inside Si. Since ε̄t
i is the maximum time a trajectory

remains in Zi, and since Si ⊂ Zi, {hf̄(Bi) | h ∈ [−ε̄t
i, ε̄

t
i]} encloses the maximum possible

distance from Qi that a trajectory can travel in time |ε̄t
i| while it remains in Bi. Thus, since

Qi ⊂ Si ⊆ Bi, {Qi + hf̄(Bi) | h ∈ [−ε̄t
i, ε̄

t
i]} encloses the position of any trajectory y(t) that is

within time ε̄t
i of intersecting Qi, unless y(t) leaves Zi during that time. Intersecting with Zi

completes the proof.

Let Hi be any plane perpendicular to vi which intersects Qi.

Lemma 3.11. Every trajectory intersecting Qi intersects Hi at precisely one point while it
crosses Zi.

Proof. Let y(t) be a trajectory that intersects Qi. By Lemma 3.10, y(t) remains in Si ⊆ Bi

while it crosses Zi. Let z(t) = y(t) · vi. Let the z co-ordinates of H−1
i ,Hi,H

+1
i be z−1, z0, z+1,

respectively. While the trajectory remains in Si ⊆ Bi, z′(t) ≥ v0 > 0, and, since z(t) is
continuous, it increases monotonically while y(t) remains in Si, taking on every value between
z−1 and z+1 precisely once, by the Intermediate Value Theorem. In particular, it takes on the
value z0 precisely once, and thus crosses Hi precisely once.

Assume Qi is an enclosure of ϕhi−1(Mi−1). Lemma 3.11 implies that every trajectory through
Qi crosses Hi precisely once while in Si. For a point x ∈ Mi−1, let ϕi−1(x) be this unique point
in Hi. Let M̄i = Si ∩Hi. Clearly, M̄i is an enclosure of ϕi−1(Mi−1).

To show that ϕi−1 applied to Mi−1 is a homeomorphism, we need to show it is continuous
and one-to-one. We will prove it is continuous below, and by Lemma 3.11, it is at worst
many-to-one.

Let εt > 0 be given.
Assumption 1: Assume ε̄t

i < εt and 6 ∃ distinct x,y ∈ Mi−1 s.t. y = ϕt(x) for |t| < εt.
Each of the Assumptions introduced in this section are assumed to hold throughout the

remainder of section, once they are introduced.

Lemma 3.12. ϕi−1 applied to Mi−1 is one-to-many.

Proof. Assume to the contrary that there exist distinct x,y ∈ Mi−1 s.t. ϕi−1(x) = ϕi−1(y) =
z ∈ M̄i. Since ϕhi−1(x), ϕhi−1(y) both splash to z, they are on the same trajectory, and since
they are both in Qi, the time-shift between them is ≤ ε̄t

i. Thus, ∃t1, t2 s.t. ϕt1(x) = z = ϕt2(y)
with |t1 − t2| ≤ ε̄t

i. Then x = ϕt2−t1(y), contradicting Assumption 1.

Theorem 3.13. ϕi−1 applied to Mi−1 is one-to-one.

Proof. Lemma 3.11 proves that ϕi−1(Mi−1) is many-to-one, and Lemma 3.12 proves it is one-
to-many. Thus, it is actually one-to-one.
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Assumption 2: ϕt(x) exists and is continuous in both t and x for all x ∈ Mi−1 and t s.t.
ϕt(x) ∈ Bi. Note that this is true as long as f is Lipschitz continuous (Stuart and Humphries
1996, Theorem 2.1.12).

Recall that a fundamental tenet of the definition of continuity is that a function f is contin-
uous at a point x only if f(y) exists in an open neighborhood N (x) around x, lim

y→x
f(y) = f(x),

and this limit is the same regardless of the path taken by y as it approaches x.
In the following, we assume that, in order for two things to be equal, they must both exist.

Lemma 3.14. ϕi−1(x) is continuous for all x ∈ Mi−1.

Proof. Assume to the contrary that ϕi−1 is not continuous at x0 ∈ Mi−1. That is,

lim
y→x0

ϕi−1(y) 6= ϕi−1(x0)

=⇒ lim
(h,y)→(t0,x0)

ϕh(y) 6= ϕt0(x0),

where t0 is chosen to put ϕt0(x0) in Hi, and for each y the h is chosen to put ϕh(y) in Hi. (h
is unique for each y, by Theorem 3.13.) This means that the limit as y approaches x0 along
a path remaining in Hi is not equal to ϕt0(x0), i.e., either ϕh(y) is discontinuous at (t0,x0),
or either lim

(h,y)→(t0,x0)
ϕh(y) or ϕt0(x0) does not exist. This contradicts Assumption 2, and so

ϕi−1(x) is continuous at x0, and is thus continuous for all x ∈ Mi−1.

Let Wi be an infinite slab with width E > D in the vi direction, parallel to Zi such that
Zi ⊂ Wi. Let Ci be a parallelepiped with sides parallel to Qi, also with a width of E in the vi

direction, satisfying Mi ⊂ Ci ⊂ Wi, where Mi is built inside Hi to satisfy ICP with Mi−1 under
ϕi−1. Let {f(x) · vi | x ∈ Ci} ⊂ [u0, u1], and assume 0 < u0 ≤ u1. Let f̄(Ci) be an enclosure
of {f(x) | x ∈ Ci}. Let Ti be a parallelepiped enclosure of {Wi ∩ (Mi + hf̄(Ci)) | h ∈ [−εt, εt]},
and assume Ti ⊆ Ci.

Assumption 3: Assume E/u1 > εt, i.e., the minimum crossing time of Ci is greater than εt.

Lemma 3.15. 6 ∃ distinct x,y ∈ Mi s.t. y = ϕt(x) for |t| < εt.

Proof. Substituting Mi for Qi, Wi for Zi, Ti for Si, and Ci for Bi in Lemmas 3.9–3.11, we see
that

1) If a trajectory remains in Ci while it is in Wi, then it remains in Wi for at least time
E/u1 and at most E/u0.

2) Any trajectory intersecting Mi remains in Ti while it is in Wi, and thus remains in Ci.

3) Every trajectory intersecting Mi intersects Hi at precisely one point while it remains in
Wi, where Hi ⊂ Wi and Hi is parallel to the planes enclosing Wi.

Thus, by point (3), to intersect Hi more than once inside Mi, a trajectory must, at least, first
traverse the distance from Hi to ∂Ci, exit and then re-enter Ci, and traverse the distance from
∂Ci back to the same point on Hi. By point (1), it takes time at least E/u1 to do so. By
Assumption 3, E/u1 > εt. Thus, no trajectory can intersect Mi, exit Ti, and then re-enter Ti

to again intersect the same point of Mi in time less than εt.

Remark: It is Lemma 3.15 at step i − 1 that gives us the second part of Assumption 1 at
step i.

Remark: The base case of the induction is produced by substituting M0 for Mi in Lemma
3.15, after building suitable W0, C0, and T0.
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3.6.3 Algorithmic details

Algorithmic verification of the requirements for the above theorems and lemmas are fairly
straightforward: Qi is simply the enclosure of ϕhi−1

(Mi−1) given to us by VNODE; the size
of Bi is computed heuristically in an effort to ensure that Si ⊆ Bi, and if our first guess is
incorrect we simply increase its size until Si ⊆ Bi, or fail if increasing the size of Bi results in
0 ∈ {f(x) · vi | x ∈ Bi}; εt, which is an upper bound on the time error introduced at each step
by the rescaling of time, must currently be pre-chosen by trial and error, although this author
believes that good, simple heuristics for choosing it probably exist. The sole complication is
to maintain the property that Qi has a pair of faces approximately normal to y′ inside Qi.
Recall from section 1.3.2 that VNODE maintains a rotation matrix Ai which represents the
orientation of the parallelepiped Qi. Let the columns of Ai be aj

i , j = 1, . . . , n. We simply
assign a1

i to be parallel to our best estimate of y′(ti). VNODE then ensures that a1
i+1 evolves

via the variational equation to be approximately parallel to y′(ti+1). To account for the slow
buildup of error that would allow a1

i to drift away from y′(ti), we reset a1
i to be parallel to the

computed y′(ti) at each timestep. This corresponds to rotating Qi about its centre by a small
angle θ, computed by solving

cos(θ) =
a1

i · y′(ti)
‖a1

i ‖ ‖y′(ti)‖
,

where a1
i is the vector computed via evolution of the ODE from the previous timestep, and

y′(ti) is the value of y′ computed directly from the right hand side of the ODE at the current
timestep. The largest distance a point in Qi will move as a result of this rotation is rθ, where
r is the distance of the furthest corner in Qi from its centre. Thus, after rotating Qi by θ, we
increase its size by rθ in all directions, thus ensuring that it still encloses ϕhi−1(Mi−1).

A simple variable stepsize algorithm was used: whenever containment of a particular step
succeeds, we increase the stepsize by a small factor; whenever it fails, we decrease the stepsize
by a factor of 2. We do not explicitly fail due to small stepsize, because too small a stepsize
results in failures in other parts of the method, for example as depicted in Figure 3.14.

Finally, we note that the rescaling of time theorems presented in this section are independent
of the containment results of previous sections, and thus do not need to be modified if and when
our proofs are extended to cover the general case (c.f. §§3.3, 3.4.2).



Chapter 4

Results and discussion

In this Chapter, we will present results of our containment method for ODEs, compare our
results to those of others, discuss some of the interesting implementation details of our method,
and comment on observations of the behaviour of our method including how it fails and some
improvements that were discovered by accident.

4.1 Quantitative comparisons with other methods

4.1.1 The Lorenz system of equations

The Lorenz equations (Lorenz 1963),



x′

y′

z′


 =




σ(y − x)
ρx− y − xz

xy − βz


 , (4.1)

define a dissipative dynamical system (i.e., energy is not conserved) which was originally con-
structed to be a very simplified weather model. It can be shown (Coomes, Koçak, and Palmer
1995a) that under the Lorenz equations, the set

U = {(x, y, z) : ρx2 + σy2 + σ(z − 2ρ)2 ≤ σρ2β2/(β − 1)}

is forward invariant, i.e., any solution that is in U at time t0 remains in U for all time t ≥ t0.
We, and the authors we compare against in this thesis, solve the Lorenz equations using the
classical parameter values σ = 10, ρ = 28, β = 8/3 (Lorenz 1963). It is easy to show that for
these parameter values, the cube [0, 15]3 lies in U , and so for our experiments we chose initial
conditions randomly inside this cube. A set of initial conditions in this cube will invariably
produce a solution whose three-dimensional shape has been dubbed the “Lorenz butterfly”
(Figure 4.1). Schematically, the Lorenz butterfly consists of two two-dimensional disks in
three-space with a “bridge” between them. The two disks together are termed a “chaotic
attractor”, because solutions tend to remain in the disks, but jump chaotically from one to the
other and back again. Solutions lack pseudo-hyperbolicity in the direction of the flow (Van
Vleck 1995; Coomes, Koçak, and Palmer 1994b, 1995a), and so a rescaling of time is required
to shadow them effectively. As should be clear from Figure 4.1 and the above description, in
addition to the y′ direction, at any given point a solution has one contracting direction, which is
perpendicular to the disk currently housing the solution, and one expanding direction, directed
radially from the centre of the disk. Provided a rescaling of time is employed, solutions to the
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Figure 4.1: The “Lorenz Butterfly”.

Lorenz equations display remarkable pseudo-hyperbolicity for extremely long periods of time.
Thus, this system is a prime first candidate for testing shadowing methods.

We will compare our results to the only other published results on shadowing the Lorenz
equations using a rescaling of time: Van Vleck (1995), whose results could be made rigorous
but currently are not; and Coomes, Koçak, and Palmer, (1994b, 1995a), whose results are
completely rigorous.

First, with no rescaling of time (the “map method”), Van Vleck gives two examples of
shadows with a local error1 of about 10−5 lasting 1.04 and 1.38 time units; Coomes et al. have
six examples with local error of about 10−13 lasting 9.7, 9.8, 9.9, 9.9, 86, and 126 time units.
For this thesis, we have simulated hundreds of shadows with various local errors. We have found
that with local errors of about 10−5, containment finds shadows that last between 1 and 30 time
units, with a median and mean of about 20. With local errors of 10−13, we find shadows lasting
between 10 and 1000 time units, again with a mean and median about halfway through that
range. Thus, it appears that, without a rescaling of time, the containment method is capable
of finding shadows that are about an order of magnitude longer than other methods.

With a rescaling of time, Van Vleck gives many examples of shadows (with a local error of
about 10−6) ranging from 102 to 104 time units. Coomes et al. (with a local error of 10−13)
give six examples of shadows lasting at least 105 time units; they do not attempt finding longer
shadows, so in fact their method may be capable of finding shadows longer than 105. The
corresponding numbers for containment are 102 to 105 for local errors of 10−6, and 102 to
almost 106 for local errors of 10−13. The results are summarized in Table 4.1.2 It is clear that
containment is at least as powerful as the other methods. It is worth noting that our results
for local errors of 10−13 were produced using only a 17th order Taylor series, whereas Coomes
et al. used a Taylor series of 31st order.

Figure 4.2 shows two sets of results of shadow lengths, including the rescaling of time. The
1All authors other than that of this thesis used constant timesteps, and so the local errors are implicitly

per-unit-step. The local errors used in the current thesis were normalized to have comparable size per-unit-step,
even though variable stepsize methods were used both for the validated ODE integration (Nedialkov 1999), and
for choosing the size of shadow steps.

2Our attempts to find the longest possible shadows for the latter case have been repeatedly confounded by
having either workstation or disk crashes while our simulations were running. The longest shadow we’ve observed
is thus 7.7× 105, even though, had our machines not crashed, the shadows may have been longer.



4.1. Quantitative comparisons with other methods 57

Author local error global error Map Method Rescaling Time
VV 10−6 10−5 1–2 102 ∼ 104

Hayes 10−6 10−5 10 ∼ 50 103 ∼ 105

CKP 10−13 10−9 10 ∼ 100 ≥ 105

Hayes 10−13 10−9 10 ∼ 1000 ≥ 7.7×105

Table 4.1: Comparison of shadow lengths for the Lorenz system.
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Figure 4.2: Distribution of shadow lengths computed by containment with a rescaling of time. Each
Figure shows a sorted list of shadow lengths for 80 simulations of the Lorenz equations. The horizontal
axis is simply a label for each shadow; the vertical axis is its length. The magnitude of the noise (i.e., the
local error) in the noisy orbits is about 10−6 in the left graph, and 10−13 in the right.

first is for eighty solutions with local error of approximately 10−6, and the second for eighty
solutions with local error of approximately 10−13. The sharp increase in shadow lengths occuring
just left of centre in the first Figure is probably due to the fact that, other than choosing v0

(cf. Figure 3.16 on page 51) to be parallel to y′(t0), the directions of the faces of M0 are
currently chosen at random. This means that we sometimes choose nominally expanding and
contracting directions that are not sufficiently close to the actual expanding and contracting
directions. Thus, many shadows fail early on due to this problem. However, if our nominally
chosen directions are (by luck) close enough to the actual ones, then we get over this hump to
find much longer shadows. There is probably a more clever way to choose the initial M0, but
we have not yet studied this problem closely. This problem becomes less pronounced as the
local error decreases, and is virtually absent in the right figure, which has local error δ = 10−13.

In addition, our shadowing distances (i.e., the maximum distance between the shadow and
the numerical trajectory) are comparable to the above authors: for orbits with noise 10−6 and
10−13, our method and those of Van Vleck and Coomes, Koçak and Palmer find shadowing
distances of approximately 10−5 and 10−9, respectively. For containment, these sizes are based
on εt and the maximum size of Mi over all i, which are at least in part user-controlled. For
Van Vleck and Coomes et al. , the shadowing distances are computed analytically based upon
global bounds of various computed quantities.

4.1.2 Other systems of equations

We have reproduced the shadowing experiments of several other authors, usually getting com-
parable results, as illustrated in Table 4.2. We discussed results for the Lorenz system in the
previous section. In this section, we provide results for three other problems.
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System Auth. δ ε εt L Comment
Lorenz

VV 10−6 10−5 104 NR
Hayes 10−6 10−5 2.5× 10−5 103–105

CKP 10−13 10−9 ≥ 105

Hayes 10−13 10−9 2.5×10−9 ≥ 7.7× 105

Forced Damped
Pendulum

SY 10−18 10−9 3× 104 high machine precision
Hayes 10−15 10−6 10−3 103–3× 104

CVV 10−6 10−3 104 NR
Hayes 10−6 10−5 10−3 103

CVV 10−11 10−8 103 NR
Hayes 10−11 10−8 10−3 103

Forced van
der Pol periodic attractor

VV 10−5 10−4 104 NR
Hayes 10−5 10−6 3× 10−5 ≥ 105

Logistic
Equation

CVV 10−7 5× 10−6 9.22 y0 = 0.01, fixed L, NR
Hayes 10−7 10−6 9.22
CVV 10−7 5× 10−6 18.46 y0 = 10−4, fixed L, NR
Hayes 10−7 10−6 18.46

Table 4.2: Comparison of shadow lengths for four systems. For our results, the lengths shown are
typical results after attempting many trials with the given local and global errors; the results of others
are taken from their respective publications. Legend: δ = local error; ε = global space error; εt = global
time error (if none is listed for this author, then we did not rescale time); L = shadow length; CKP
= Coomes, Koçak, and Palmer (1994b, 1995a); SY = Sauer and Yorke (1991); CVV = Chow and Van
Vleck (1994a); VV = Van Vleck (1995); NR=not rigorous.
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Forced damped pendulum

We first compare our results for the forced damped pendulum problem,

y′′ + ay′ + sin y = b cos t,

to those of Grebogi, Hammel, Yorke, and Sauer (1990), Sauer and Yorke (1991), and Chow
and Van Vleck (1994a). These authors use the values a = 0.2, b = 2.4 and a = 1, b = 2.4, with
initial conditions (y, y′) = (0, 0), and mention that they get similar results with other values
of a, b and initial conditions. We used the above two values of a, b and various random initial
conditions in the unit square [0, 1]2. We convert the second order equation to two first-order
equations by assigning y1 = y, y2 = y′, giving

y′1 = y2,

y′2 = b cos t− sin y1 − ay2.

Grebogi, Hammel, Yorke, and Sauer (1990) and Sauer and Yorke (1991) use an extended ma-
chine precision of 10−29 to generate a trajectory with local truncation error rigorously bounded
by 10−18 per step, which allows them to find a shadow of length 3×104 and rigorous maximum
distance 10−9 from their noisy trajectory. In comparison, we use standard IEEE754 floating-
point numbers and arithmetic, and obtain a local truncation error of about 10−15 at best, so
our shadow distances are significantly less stringent at 10−6, and tend to be shorter, although
in a few instances we successfully found shadows of length ∼ 3 × 104. Given that Sauer and
Yorke used higher precision, we are not surprised that our shadows tend to be shorter and
not as close as theirs. Comparing our results to Chow and Van Vleck (1994a), we see we are
capable of rigorously proving the existence of a shadow which is closer, but lasts for a shorter
time, than they do; on the other hand, our result is rigorous, whereas theirs is only partially
rigorous, because they do not rigorously bound numerical errors before applying their theorem.

The primary problem with shadowing this system appears to be the fact that it is non-
autonomous. We currently handle a non-autonomous system by converting it to an autonomous
system with one component of our solution, y1, representing time: y1(0) = t0, y′1(t) = 1. This
has several drawbacks: (1) assuming we can solve the linear system y′ = 1 exactly, the interval
representing y1 then accumulates roundoff error and as time progresses, the error in y1 grows;
(2) this is exacerbated by the minimum absolute error in y−1 increasing as εmacht, where εmach

is the machine precision; (3) finally, the error in the computation of cos(y1) adds to the error.
These drawbacks, however, do not seem to adequately explain our poor shadowing results for
this system. Perhaps the difficulties would vanish if a native procedure for validated integration
of non-autonomous systems were used, or if we used higher precision, as did Sauer and Yorke
(1991).

Forced van der Pol

The forced van der Pol equation,

x′′ + α(x2 − 1)x′ + x = β cos(ωt),

is studied by Van Vleck (1995). He defines the parameters implicitly with α = k = σ = 2/5,
where k = β/(2α) and σ = (1 − ω2)/α, and uses the initial conditions (x, x′) = (0, 0). We
try this initial condition, as well as others chosen randomly in the unit square [0, 1]2, and we
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convert the second order equation to two first-order equations by assigning y1 = x, y2 = x′,
giving

y′1 = y2,

y′2 = β cos(ωt)− (y2
1 − 1)αy2 − y1.

This equation has a hyperbolic periodic attractor which all solutions approach asymptotically,
and so this system is easy to shadow. With a local truncation error of 10−6, Van Vleck found
numerical shadows of length 104 and distance 10−4, while we went significantly further, finding
rigorous shadows lasting 105 and longer with a distance of 10−6. Since solutions asymptoti-
cally approach a periodic solution that is hyperbolic, we conjecture that containment could be
maintained indefinitely.

Logistic equation

Finally, the logistic equation,

y′ = y(1− y), y(0) = ζ, 0 < ζ ¿ 1,

was studied by Chow and Van Vleck (1994a). In this problem, there is an unstable fixed point
at y = 0 and a stable fixed point at y = 1. Chow and Van Vleck attempt shadowing two
solutions, both starting at y(0) = ζ and integrating until y(T ) ≈ 1 − ζ. If ζ = 10−2, then
T ≈ 9.22, and if ζ = 10−4, then T ≈ 18.46. In both cases, we use a local truncation error of
δ = 10−7. We find that we easily match their results, noting again that ours are rigorous, while
theirs are not. In fact, we find that we can prove the existence of these shadows for ε ≈ 10δ for
δ down to about 10−14.

4.2 Qualitative comparisons with other methods

Although containment is rigorous, it appears to be less robust than non-rigorous methods. For
example, in two examples out of three, the non-rigorous results of Chow and Van Vleck (1994a)
produced shadows that were about an order of magnitude longer than we could produce using
containment. In addition, this author’s Master’s Thesis (Hayes 1995) demonstrated convincing
evidence that the gravitational n-body problem is shadowable, and yet containment could prove
the existence of shadows lasting only 1% as long as those (found nonrigorously) in Hayes (1995).
Even worse, the VNODE package (Nedialkov 1999) is capable of providing a validated enclosure
of an IVP for the n-body problem which is about ten times as long as the containment-produced
shadow! Clearly, if an enclosure of an IVP exists, then a shadow exists for the associated point
solution for at least as long. Thus, at least for some problems, this author’s implementation of
containment is incapable of finding shadows even if they exist. This does not necessarily imply
that the theorems proved in Chapter 3 are deficient; it probably means that our implementation
for verifying that the Inductive Containment Property holds can be improved, for example by
reducing the excess of the validated numerical integrator.

Our method requires some a priori guesses; for example, the maximum and minimum sizes
of the Mi, and the maximum time rescaling εt need to be chosen before the algorithm can run.
We generally had to choose these numbers by trial and error for each problem; if a certain εt did
not work, for example, we often found that increasing it or decreasing the maximum size of Mi

would allow us to find longer or closer shadows, respectively. Van Vleck’s (1995) method also
requires some a priori guesswork to make a rescaling of time work. Although Coomes, Koçak
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and Palmer do not discuss their choice of parameters, it is likely that they require significant
guesswork to find parameters that satisfy their theorems as well. Finally, all shadowing methods
currently in the literature appear to require guesswork to discover the number of expanding
and contracting dimensions, and to choose a local error δ which is stringent enough to satisfy
their respective theorems.

It is also not trivial to see how containment could be parallelized, since each Mi depends on
Mi−1. Possibly an iterative method that guesses all the {Mi}N

i=0 and then iteratively refines
them in parallel could be constructed; this may also be related to two-point boundary value
problems (Ascher, Mattheij, and Russell 1988).

Finally, our method has only been proven to work in three dimensions and the other special
cases noted in Chapter 3.

On the other hand, containment appears to have several advantages over other methods.

• First and foremost, the method of proof is simple and easy to understand. Improving
our results reduces to the problem of producing the best possible Inductive Containment
Property.

• We use an (almost) off-the-shelf validated integrator (Nedialkov 1999) to verify that ICP
holds; this integrator is almost as easy-to-use as any standard integrator, and thus getting
the code “up and running” on a new problem usually takes only a few minutes. Another
advantage of this simplicity is that it requires the user to have no deeper understanding
of the system than knowing the defining equations.3

• Although the success of containment may depend, of course, upon global properties of
the system, the method itself is local. By that we mean that it requires information
only from the previous step to extend the length of the shadow. Several other methods
require computing, storing, and updating global information such as the extent of non-
hyperbolicity (cf. Chow and Palmer’s p parameter (1991, 1992), discussed on page 21).

4.3 Implementation issues

In the original paper that described containment, Grebogi, Hammel, Yorke, and Sauer (1990)
appear to have used boxes Mi of fixed size, and found that smaller boxes seemed to work
better. In contrast, our method dynamically grows and shrinks the Mi as i progresses, simply
in an effort to maintain the Inductive Containment Property. In fact, we find it advantageous
to allow the expanding dimension of Mi to be fairly large, to allow us to “absorb” possible
future non-expansion, in an effort to avoid the situation depicted in Figure 3.14 (page 49).
Simultaneously, the contracting dimension can be relatively small, in order to avoid the opposite
effect (allowing us to “absorb” non-contraction without the nominal contracting dimensions
becoming too large). Practically, we find that our “boxes” can be extremely long and thin:
typically, they are of length 10−3–10−6 in the expanding dimensions, and as small as 10−12–
10−14 in the contracting dimensions.

Referring once again to Figure 3.14 on page 49, we note that when containment fails, the
“expanding” dimension of Mi has often shrunk to almost the same size as the contracting
dimension, and both can be quite small (say, 10−12), whereas when containment is “working”,
the expanding dimension of Mi can be several orders of magnitude larger. It is interesting to
note that this implies that the hardest parts of an orbit to shadow are the places where our

3Some may consider this a disadvantage.
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bounds on the distance between the noisy and shadow orbits are smallest, i.e., where we can
prove that they are unusually close together. This appears counter-intuitive, but may be related
to the one-dimensional result of Chow and Palmer (1991), where they proved that shadows must
maintain a minimum distance from the noisy orbit.



Chapter 5

Future work

There are several directions in which this research can be extended.
First and foremost, the author firmly believes that the general containment theorem (cf.

§3.4.2) is true, and that containment can be extended to rigorously prove the existence of
periodic shadows. Proving both of these results would add a measure of closure to the current
work.

Second, our current implementation of ICP is tied intimately to the C++ implementation of
VNODE (Nedialkov 1999). As such, the only pseudo-trajectories we can shadow are the ones
produced by VNODE (cf. the ŷi in equation 1.7, page 6). In contrast, the refinement code
of the author’s Master’s Thesis (Hayes 1995) could be given any noisy trajectory on which to
perform refinement. Since there is no explicit dependence of our theorems on the algorithm
that produces pseudo-trajectories, extending our code so it can be run on any given pseudo-
trajectory would be a good practical improvement.

Software exists that produces so-called “continuous numerical solutions” to ODE problems
(see for example Enright 1993). These methods use sophisticated interpolation techniques to
allow the user to request the solution at any floating-point time t in the interval of integration.
It should not be too difficult to extend our results to produce enclosures of these solutions,
rather than the discrete sequence of points which we currently shadow.

The question of whether shadows are typical of true orbits chosen at random is a large open
question, but we point out that the same question must be asked of other methods of backwards
error analysis. A possible start would be to extend the work of Góra and Boyarsky (1988) to
continuous systems in arbitrary dimension, as discussed in Chapter 2.

Currently, almost all shadowing work of which this author is aware consists of trying to prove
that a shadow exists. However, failure to prove existence does not imply a shadow does not exist.
Trying to prove that a shadow does not exist for a pseudo-trajectory is an interesting problem,
because it would lead naturally to the question of, in what sense is a non-shadowable trajectory
valid? Some convincing work has already been done in this direction (Dawson, Grebogi, Sauer,
and Yorke 1994; Sauer, Grebogi, and Yorke 1997), although none of it is rigorous. Making the
work rigorous could involve, for example, proving non-hyperbolicity via validated integration
of the variational equation (which would be very expensive).

Note that it may not be possible to disprove the existence of shadows in general for any
particular system of equations. For example, although we have found that the n-body problem
is hard to shadow, and previous work (Quinlan and Tremaine 1992; Hayes 1995) suggests that
n-body shadows do not last forever, there almost certainly exist pseudo-trajectories of the n-
body problem which possess infinitely long shadows: eg., any machine-representable periodic
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orbit with sufficiently small local noise, or even stable non-periodic solutions, are probably
shadowable indefinitely.

For the most part, the current thesis expounds only a method of producing shadows. It
would clearly be interesting to start applying this method to interesting problems. The author,
for example, is very interested in determining whether long-term solar system integrations
(Wisdom and Holman 1991; Wisdom 1992; Sussman and Wisdom 1992; Laskar 1994; Laskar
1997), or long-term three-body problem integrations which are known to be stable (Gladman
1993), are shadowable. More generally, the only work of which we are aware that deals with
systems with more than a few dimensions is this author’s Master’s thesis; clearly, shadowing
high-dimensional systems is an area ripe for further study.



Glossary

arc A topological term that is used to describe what is more commonly called a simple curve.
Formally, an arc, or simple, non-closed curve is a one-dimensional space that is home-
omorphic to the unit interval [0,1] (Munkres 1975). This implies that an arc can be
parametrized by a variable t ∈ [0, 1]. (The “non-closed” adjective is to distinguish it from
a simple closed curve, which is a curve that is homeomorpic to a circle.)

curve a line, either straight, or continuously bending; a path. Note that a curve, by definition,
is continuous.

diffeomorphism a homeomorphism whose first derivative is also a homeomorphism.

ergodicity a map is ergodic if almost all initial conditions lead to solutions whose time distri-
bution in the limit as t →∞ is independent of the initial state.

homeomorphism a map which is continuous, 1-to-1, and onto.

simple curve a non-self-intersecting curve. Also an arc.
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Coomes, B. A., H. Koçak, and K. J. Palmer (1994b). Shadowing orbits of ordinary differential
equations. Journal of Computational and Applied Mathematics 52, 35–43.
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