Exact size of the smallest min-depth branching programs solving the Tree Evaluation Problem

Dustin Wehr

January 21, 2012

All the definitions needed to read this document are in the paper *Pebbles and Branching Programs for Tree Evaluation*, ACM Transactions on Computation Theory, Vol. 3, No. 2, Article 4, Publication date: January 2012.

You can find it here: http://www.cs.toronto.edu/~wehr/research_docs/TCT_ 2012_Pebbles_and_Branching_Programs_for_the_Tree_Evaluation_Problem. pdf

We write $TE^{h}(k)$ as an abbreviation for "BT₂^h(k) or FT₂^h(k)". We show that a BP solving $TE^{h}(k)$ has minimum depth (defined below) if and only if it is both thrifty and read-once (Fact 3), and that the upper bound of $(k + 1)^{h} - k$ non-output states for $FT_{2}^{h}(k)$ is the exact minimum for these (very restricted) BPs (Theorem 4).

Define the depth of a deterministic BP to be the maximum number of states visited by any input, with the output state included. It is easy to prove that depth 2^h is required to solve $TE^h(k)$ by considering those inputs all of whose internal node functions are quasigroups (see [Weh10] for a proof). Let us say a BP solving $TE^h(k)$ is **min-depth** if it has depth 2^h . We will use the following results from [Weh10]:

Lemma 1 Every min-depth BP solving $TE^{h}(k)$ is thrifty. ¹

Lemma 2 For every input I to a min-depth BP solving $TE^{h}(k)$, the $2^{h} - 1$ input variables queried by I are exactly the $2^{h} - 1$ distinct thrifty input variables of I. Hence such a BP is read-once.

Theorem 4 is the goal. We will not use the next fact in the proof, but it may be worth noting: Lemmas 1 and 2 charaterize the min-depth BPs solving $TE^{h}(k)$, in the following sense:

Fact 3 A BP solving $TE^{h}(k)$ is min-depth iff it is both thrifty and read-once.

Proof: The left-to-right direction follows from Lemmas 1 and 2. For the right-to-left direction, we use the fact from [Weh10] (page 10, second paragraph and lemma 4) that in a thrifty BP, every input must query all and only its $2^{h} - 1$ thrifty variables. Since the BP is also read-once, every input visits exactly $2^{h} - 1$ states (including an output state).

¹Hence from the lower bound on thrifty programs in [Weh10], we get that every min-depth BP solving $TE^{h}(k)$ has at least k^{h} non-output states. This is the bound that we are slightly improving on here.

Theorem 4 Every min-depth BP solving $TE^{h}(k)$ has at least $(k+1)^{h} - k$ non-output states.

Proof: For *B* a min-depth BP that solves $TE^{h}(k)$ and for each $l \le h$ let States(B,l) be the states of *B* that query a height-*l* node variable. By Lemma 5 the theorem follows if we can show for arbitrary such *B* that:

$$|\operatorname{States}(B,1)| \ge (k+1)^{h-1}$$

and
$$|\operatorname{States}(B,l)| \ge k^2(k+1)^{h-l} \quad \text{for } 2 \le l \le h$$
 (1)

Lemma 5

$$(k+1)^h - k = (k+1)^{h-1} + k^2 \sum_{l=2}^h (k+1)^{h-l}$$

Proof: Since $(k+1)^h - (k+1)^{h-1} = k(k+1)^{h-1}$, after subtracting $(k+1)^{h-1}$ from both sides we can write the equations as:

$$k(k+1)^{h-1} - k = k^2 \sum_{l=2}^{h} (k+1)^{h-l}$$

We add k to both sides, divide both sides by k, and then prove the resulting family of equations

$$(k+1)^{h-1} = 1 + k \sum_{l=2}^{h} (k+1)^{h-l}$$

by induction on $h \ge 2$. For h = 2 it is clear. Now let $h \ge 3$ be arbitrary and assume the equation holds for h - 1.

$$\begin{split} 1+k\sum_{l=2}^{h}(k+1)^{h-l} &= 1+k(k+1)^{h-2}+\ldots+k(k+1)+k\\ &= (k+1)+k(k+1)^{h-2}+\ldots+k(k+1)\\ &= (k+1)[1+k(k+1)^{h-3}+\ldots+k]\\ &= (k+1)[1+k\sum_{l=2}^{h-1}(k+1)^{(h-1)-l}]\\ &= (k+1)(k+1)^{h-2} \quad \text{by I.H.} \end{split}$$

The next lemma shows that it suffices to prove the lower bound on the number of states that query height-2 variables.

Lemma 6 If |*States* $(B,2)| \ge k^2(k+1)^{h-2}$ for every h and B, then (1) holds for every h and B.

Proof: Assume the hypothesis holds. Let *B* be a min-depth BP that solves $BT_2^h(k)$ (the proof is the same for $FT_2^h(k)$).

To show $|\text{States}(B,1)| \ge (k+1)^{h-1}$, we transform B into a min-depth BP B' that solves $BT_2^{h+1}(k)$. Replace each state that queries a leaf variable with a copy of the BP for $FT_2^2(k)$ in the obvious way. Each such replacement involves adding k^2 height-2 querying states. Hence if B has

less than $(k + 1)^{h-1}$ leaf-querying states then B' has less than $k^2(k + 1)^{h-1} = k^2(k + 1)^{(h+1)-2}$ height-2 querying states, which contradicts the hypothesis. We still need to argue that we haven't increased the depth by too much. Since every input to B visits exactly 2^{h-1} leaf-querying states, and B has depth 2^h , it is not hard to see that every computation path in B' has length $2^h + 2 \cdot 2^{h-1} = 2^{h+1}$.

Now we assume $h \ge 3$ and give the argument for $|\text{States}(B,3)| \ge k^2(k+1)^{h-3}$. It will be clear how to generalize it to get $|\text{States}(B,l)| \ge k^2(k+1)^{h-l}$ for all $3 \le l \le h$. We transform B into a min-depth BP B' that solves $\text{BT}_2^{h-1}(k)$. The height-3 querying states of B will become the height-2 querying states for B'. Hence B must have at least $k^2(k+1)^{h-3}$ height-3 querying states, since otherwise B' would have fewer than $k^2(k+1)^{(h-1)-2}$ height-2 querying states, which contradicts the hypothesis. Let E_1 be the inputs to B all of whose leaf values are 1. The computation path of each input I' to B' will be derived in a simple way from the computation path of some $I \in E_1$. First, remove every state in B that queries a variable in

 $\{f_u(a,b) \mid u \text{ is a height-2 node and } \langle a,b \rangle \neq \langle 1,1 \rangle \}$

Also, for every leaf-querying state q, remove the k - 1 out-edges of q labeled $2, \ldots, k$. Removing those states and edges does not break the path of any input in E_1 ; this is clear for the edges, and for the states it follows from the thrifty property (Lemma 1). We need to be a bit more careful about removing the leaf-querying states, since they *are* visited by inputs in E_1 . Place a token on the start state, which must be a leaf state by thriftiness. Repeat the following while there remains some leaf-querying state q. We know q has a single out-edge labeled 1; let q' be the state that edge points to. Redirect all the edges going into q so that they go into q' instead. If the token is on qthen move it to q'. Finally remove q. When this process finishes, the token will be resting on a height-2 querying state q^* with no in-edges; specifically some state that queries a variable in the set $V = \{f_u(1,1) \mid u \text{ is a height-2 node}\}$. The last step is just to relabel the states that query variables in V: for each height-2 node u, change every occurrence of the state label $f_u(1,1)$ to $l_{\lfloor u/2 \rfloor}$. The start state of the resulting BP B' is q^* .

Now we need to argue that we have *decreased* the depth enough. Consider an input $I \in E_1$ to B. The construction above determines the input I' to B' that I gets mapped to. Since I is thrifty, it does not visit any of the height-2 querying states in B that were removed. We also know that I visits exactly 2^{h-1} states in B that query leaf variables. It follows that the computation path of I' is shorter than that of I by exactly 2^{h-1} , and so it has length 2^{h-1} .

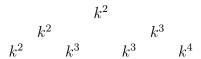
Fix h, k and a depth 2^h BP B that solves $TE^h(k)$. Let E be the set of inputs to B. We want to show B has at least $k^2(k+1)^{h-2}$ height-2 querying states. Let Q^2 be the states of B that query a height-2 variable. For $t \leq 2^{h-2}$ let Q_t^2 be the states $q \in Q^2$ such that q is the t-th Q^2 -state visited by some input to B.

Lemma 7 $Q_{t_1}^2 \cap Q_{t_2}^2 = \emptyset$ for distinct $t_1, t_2 \le 2^{h-2}$.

Proof: Otherwise, there are t_1, t_2 with $t_2 < t_1$ such that there is a state q that is the t_1 -th state visited by some input I_1 and the t_2 -th state visited by some other input $I_2 \neq I_1$. Since B has depth 2^h , by Lemma 2 we get that I_1 visits $2^h - t_1$ states after q and I_2 visits $2^h - t_2$ states after q. However, since B is read-once, every syntactic computation path is a semantic (i.e. consistent)

computation path, so there must be some input I_3 whose computation path is the same as that of I_1 up to q, and then the same as that of I_2 from q until the output. But then the computation path of I_3 has length $t_1 + 2^h - t_2 > 2^h$, a contradiction.

Next, for $2 \le l \le h$ we will define a sequence $\vec{z_l}$ of positive integers of length 2^{h-l} . To see the purpose of $\vec{z_l}$, consider the min-depth BP B^* for $FT_2^4(k)$ that we get from the optimal black pebbling that always pebbles the left subtree before the right subtree. If you draw the tree minus the leaves, and label each node u with the number of states in B^* that query a u-node, then your picture should look like this:



 $\vec{z_l}$ gives the exponents of the height l nodes in such a picture, read from left to right. So for h = 4, we have $\vec{z_2} = 2, 3, 3, 4$. Formally: $\vec{z_h} = 2$, and for $2 \le l \le h - 1$, $\vec{z_l}$ is $\vec{z_{l+1}}$ followed by the sequence obtained by adding 1 to each element of $\vec{z_{l+1}}$. We write $\vec{z_l}(t)$ for the *t*-th element of $\vec{z_l}$. Later we will appeal to the following equivalent definition of $\vec{z_2}$.

Fact 8 Let #ones(t) be the number of 1s in the binary representation of $t \ge 0$. Then $\vec{z}_2(t) = 2 + \#ones(t-1)$ for $t \ge 1$.

Eventually we will get the quantity $k^2(k+1)^{h-2}$ using the following simple lemma:

Lemma 9 $\sum_{t=1}^{2^{h-l}} k^{\vec{z}_l(t)} = k^2 (k+1)^{h-l}$ for every $2 \le l \le h$

Proof: Easy by induction on h - l.

We assign to each input I a pebbling sequence C^{I} of length exactly 2^{h} such that the following Property 1 holds. Because of the depth restriction, which implies B is thrifty (Lemma 1), there is exactly one way to do this. The definition follows the statement of Property 1.

Property 1 For each pair of adjacent states q_1, q_2 on the computation path of I, if C_1^I and C_2^I are the associated pebbling configurations, then a pebble is added to a node u in the move $C_1^I \rightarrow C_2^I$ iff q_1 queries u, and a pebble is removed from a non-root node u in the move $C_1^I \rightarrow C_2^I$ iff q_1 queries the parent of u.

Fix I and let P be the computation path of I. The pebbling sequence assignment can be described inductively by starting with the last state on P and working backwards. The pebbling configuration for the last state in P (i.e. the output state) has just a black pebble on the root. Assume we have defined the pebbling configurations for q and every state following q on P, and let q' be the state before q on P. This inductive construction, together with Lemmas 1 and 2, ensures that q' queries some node u that is pebbled in q (see page 10 of [Weh10] for a more-detailed argument). The pebbling configuration for q' is obtained from the configuration for q by removing the pebble from u and adding pebbles to both children of u (if u is an internal node - otherwise you only remove the pebble from u).

We will use the next lemma in the proof of Lemma 11.

Lemma 10 For every input I and $t \le 2^{h-2}$, if C is the pebbling configuration associated with the t-th Q^2 -state visited by I, then there are at least $\vec{z}_2(t)$ pebbled nodes in C.

Proof:

Let C and t be as in the statement of the Lemma, and let u be the height 2 node that gets pebbled in the next configuration after C. By Property 1, the two children of u are pebbled in C. Also by Property 1, there are exactly t - 1 height 2 nodes –namely, the height 2 nodes pebbled earlier– that are "covered" by a pebbled node in C, meaning either v or some ancestor of v is pebbled in C. Recall #ones from Fact 8. It is not hard to see that #ones(t - 1) is the smallest number m such that there exists a set of m nodes U which, if pebbled, would cover *exactly* t - 1 height 2 nodes; #ones(t - 1) is the number of terms needed to represent t - 1 as a sum of distinct powers of 2, and the presence of the term 2^i corresponds to a node in U at height 2 + i. Now, since the children of uare pebbled in C, and cannot cover a height 2 node, C must have a total of at least 2 + #ones(t - 1)pebbled nodes. Then by Fact 8 we conclude C has at least $\vec{z}_2(t)$ pebbled nodes.

Recall E is the set of all inputs to the BP B. Let E_q be the inputs that visit state q.

Lemma 11 For all $t \le 2^{h-2}$ and q in Q_t^2 : $|E_q| \le |E|/k^{\vec{z}_2(t)}$.

Proof: (*sketch*)

Here is the **idea**. Given Lemma 10, this proof is an easy adaptation of the thrifty lower bound proof from [Weh10]. In fact, for $t = 2^{h-2}$ it is exactly the same proof, since $\vec{z}_2(2^{h-2}) = h$ and for $t = 2^{h-2}$ we are counting the states q such that q is the last height-2 querying state visited by some input. Note it is necessary to use the fact that for every input I and all of the pebbling configurations C that we assigned to I, there is at most one pebbled node in C on any path from the root to a leaf in T_h .

Using Lemma 7, we have:

$$|Q^2| = \sum_{t=1}^{2^{h-2}} |Q_t^2|$$

Clearly $\{E_q\}_{q \in Q_t^2}$ is a partition of E for every $t \leq 2^{h-2}$. So from Lemma 11 we get that $|Q_t^2| \geq k^{\vec{z}_2(t)}$ for every $t \leq 2^{h-2}$. Combining this with the previous equation we have:

$$|Q^2| \ge \sum_{t=1}^{2^{h-2}} k^{\vec{z}_2(t)}$$

Finally, combining the previous equation with Lemma 9 (for l = 2), we finish the proof:

$$Q^2| \ge k^2 (k+1)^{h-2}$$

References

[Weh10] Dustin Wehr. Pebbling and branching programs solving the tree evaluation problem, 2010. arXiv:1002.4676.