
CSC-2515 Final Project

Tailoring Boltzmann Machines to Netflix Data

Wesley George wgeorge@cs.toronto.edu

Dustin Wehr wehr@cs.toronto.edu

1. Introduction

A boltzmann machine, introduced in [HS83], is a probabilistic model based on
an undirected graph. Let G = (V, E) be an undirected graph, with a set of
weights,WE = {w{u,v}}{u,v}∈E ⊂ R, on the edges and a set of weights WV =
{wv}v∈V ⊂ R on the vertices. We define the energy of a : V → {0, 1}, an assign-
ment of binary states to the vertices of the graph, as

(1) E(a) = −
∑

v∈V





∑

{u,v}∈E

w{u,v}a(u)a(v) + wva(v)





If we let p(f) ∝ e−E(f), we obtain a probability distribution over assignments of
binary states to the vertices of the machine. Let A(V ) denote the set of assigments
of {0, 1} values to V , i.e. A(V ) = {a | a : V → {0, 1}}.

A restricted boltzmann machine(RBM), introduced in [Smo86], is a boltzmann
machine where the underlying graph is a complete bipartite graph. Let V = V1∪V2

be the partition of the vertex set. If we fix an assignment a1 ∈ A(V1) (respectively
a2 ∈ A(V2)), we can compute the conditional distribution over A(V2) (resp. over
A(V1)). Thus using Gibbs sampling we can sample from the joint distribution over
A(V1) × A(V2). This leads to a tractable way of training an RBM to produce a
desired probability distribution, see [HO06].

Salakhutdinov and Mnih obtained impressive results in the netflix competition by
training an RBM to reproduce ratings data encoded as categorical data([SMH07]).
We have attempted to improve upon their results by encorporating the ordinal
nature of the data, and by explicitly considering the error function used by Netflix
to evaluate the performance of a prediction model.

In section 2 we discuss non-categorical representations of the ordinal ratings
data. In section 3 we discuss the error function of the RBM, how it is different
from the one specified by Netflix, and how we tried to overcome this. In section
4 we present the results of our experiments obtained by altering an RBM in the
methods described. Finally in section 5 we offer our conclusions and future work.

2. Representing Ordinal Data

The netflix data can be thought of as a matrix where the u, jth entry is the
rating that user u has assigned to movie j, or 0 if the user has not rated the movie.
Ratings are integers in the set [1, 5]. If there are M movies in total, then correct
inference of new ratings is equivalent to correct inference about the probability
distribution of ratings over the space [1, 5]M .

1



2

Since an RBM models a probability distributions of binary strings, we need a
way of encoding ratings as binary strings1. [SMH07] treat the ratings as categorical
data, representing each one with a standard 1-of-5 encoding. Since each rating is
encoded over 5 binary units, these RBMs effectively model probability distributions
over [0, 1]5M .

Multinomials are mapped to ratings by taking the ‘inner product’ R : [0, 1]5 →
[1, 5] : x 7→ 〈[1...5], x〉 of the output in question. If we let f5 : [5] → [0, 1]5 : i 7→
standard 1-of-5 coding of i (i.e. [f5(1)|...|f5(5)] is the 5x5 identity matrix) then we
observe that

(2) ∀i ∈ {1, ..., 5} [R(f5(i)) = i]

We note that this property is necessary for any reasonable encoding and that f is
not unique.

The prediction in their model for movie j by user u, is r(E[v|V]) where v is the
multinomial visible variable for movie j and V is the configuration of visible units
corresponding to the ratings for u given in the training set. The underlying prob-
ability distribution for this expectation is, of course, the probability distribution
specified by the RBM, conditioned on the assignment V.

Suppose, during the training of an RBM, a rating r = 3 is reconstructed as
w = [0 1

2 0 1
2 0] instead of the canonical form f5(3). Despite the fact that r(w) =

r(f(3)) = 3, the RBM is penalized for this reconstruction and the weights will
be adjusted so future reconstructions of r look more like f(3). Now even if in
adjusting the weights, future predictions of r will be some convex combination of w
and f(3) (i.e. (1 − λ)w + λf5(3) for some λ, and the rating is always 3 for all such
representations), these weight changes are not adversely affecting the prediction,
but it is unnecessarily perturbing the weights and conforming unnecessarily to the
structure of training set. Our aim is to pick a representation of the ratings data
that suggests to the RBM the relationships between the various categories so that
the RBM is not harshly penalized if it doesn’t reconstruct the exact input, as long
as it gives the correct rating.

The encoding of [SMH07] is a deterministic encoding using a 5-state multinomial
where the ith unit of the multinomial variable is activated for a rating of i. We
propose a probabilistic generalization of this encoding by allowing a rating r as
f5(r), but also occaisionally as f5(r − 1) or f5(r + 1). We can immediately see
a problem for ratings of 1 and 5 - given a 5 state multinomial, there is no way
to represent a rating of 0 or 6. If we want the (clearly necessary) property that
the decoding process undoes the encoding process (or that the decoding of the
expectation of the encoding is the original rating), we cannot encode a 1 as anything
higher.

To overcome this difficulty, we change the representation space of the ratings
presented to the RBM. Instead of using 5-state multinomials, we can use 7-state
multinomials to “allow” for ratings of 0 and 6. If we say [f7(0)|f7(1)|...|f7(6)]
is the 7x7 identity matrix, then we can define P[e(i) = f7(i)] = p and P[e(i) =

f7(i − 1)] = P[e(i) = f7(i + 1)] = 1−p
2 , and define our (deterministic) decoding

function d(x) = 〈[0...6], x〉. In this case we have E[d(e(i))] = d(E[e(i)]) = i for
all i ∈ {1, .., 5}. We note also that despite the fact that we are adding units to

1RBM can also model distributions over the real line using normally or poisson distributed
hidden or visible units, but we have ignored this units for this project



3

represent ratings of 0 and 6, it is very unlikely (though technically possible) that
we will predict a rating lower than 1 or higher than 5, because none of the training
examples we present to the RBM have this property.

Besides the attempt to make the data look more ordinal to the RBM, there are
two justifications for this encoding based on the psychology of users. First, the
range of ratings a user can assign is perhaps too small to capture what the user
would like to express. A user may wish to assign a rating of 3.5 to a movie, but is
forced to choose between 3 and 4. Second, there is certainly variance in the rating
assigned by a user based on the context in which they assigned the rating - for
example, depending on their current mood they may be inclined to give a higher
or lower rating.

3. The Netflix error function

Given an encoding of ratings as binary strings, the distribution of vectors of
ratings (i.e. representing a user’s rating across all movies) induces a distribution
over binary strings. Because an RBM is ultimately a representation of a proba-
bility distribution, training an RBM amounts to minimizing the Kullback Leibler
divergence between the distribution of binary strings induced by the distribution of
ratings and the encoding, and the distribution over binary strings as specified by
the particular RBM.

The performance of a model, by Netflix standards, is the root mean square
of the difference between the predictions of the model (floating point numbers in
[1,5]) and the actual movie rating. What is not clear is that minimizing the KL
divergence between the distribution of the RBM and the distribution of ratings
actually minimizes the Netflix error function. Given our earlier comments in section
2, training by contrastive divergence is forcing the RBM to conform to the training
data more than is necessary to minimize the Netflix error function. Since the
ultimate goal of the Netflix competition is to minimize this specific error function,
if we are not explicitly optimizing this error function (as [SMH07] is not), we may
not be achieving the best possible performance by Netflix standards.

The attempts at an ordinal representation of the input data given in Section
2 do not provide an obvious solution to this issue, and without a better way of
representing ordinal data with an RBM, there is no obvious way to minimize this
error function by training an RBM. On the other hand, many machine learning
methods rely on gradient descent of the error function, and any error function
whose gradients can be derived can be used. We trained an autoencoder by first
training an RBM on the data, then unrolling the RBM into a neural network
and fine-tuning the weights by computing the gradient on the actual Netflix error

function. The results of this experiment are in section 4.2.

4. Experiments

4.1. Representing Ordinals as Multinomials.

4.1.1. Neural Network with different error functions. To investigate the benefit of
using the error function specified by Netflix, we implemented a feed-forward neural
network. It is the closest model to an RBM that we are familiar with, and for which
we are able to optimize the error function of our choosing (assuming we can derive
the expressions for the gradients needed in backpropogation, which is easy).



4

0 5 10 15 20 25 30 35 40
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

epoch

va
lid

at
io

n 
er

ro
r

 

 
Multinomial error fn
Ordinal error fn

Figure 1. Four trials of neural net optimizing different error functions

Figure 4.1.1 depicts four trials of the following experiment. For speed, so that
we could do several trials, we trained on only the first 2000 users, and used no
regularization. However, the results are similiar on the whole data set. The archi-
tecture is the same as what you get if you unfold the RBM and untie the weights,
so 5000 multinomial input and outputs units. We initialized two nets to the same
small random values. We used a batch size of 250. Using the ordinal error function
consistently produced better results. We also observed that the difference between
the training and validation errors for the multinomial error function was much less
than for the ordinal error function, but that is not depicted in the figure.

4.1.2. Input encoding for a feed forward Neural Network. Our first experiment con-
cerning input representation was with a feed forward neural net. Our intention
was to make an input representation that could not be worse than the multinomial
representation, and so we simply added, for each movie, four binary units that
represent the binary features “user rated 4 or 5”, “user rated 3 or 4”, etc. So all
the local minima that were there before, would still be there - the net would just
need to ignore the extra units. In retrospect, it could have been worse, because
backpropogation only does local optimization. We trained two networks, Net1 with
the normal representation, and Net2 with the extra units.

Figure 4.1.2 depicts the result of a single, typical trial. The weights that Net1
and Net2 had in common, were initialized to the same random values. The extra
weights for Net2 (on the edges attached to the extra visible units) were initialized
to zero. So the two nets started out computing exactly the same function. Also,
they looked at the data in the same order. That explains why the curves are so
similarly shaped.

4.1.3. Input encodings and RBMs. We trained an RBM with 100 hidden units, with
regularization of 0.001 and learning rate (for biases and weights) of 0.1 for 10 epochs
on a variety of different encodings of the netflix data. The encodings used are:

• regular - standard 1-of-5 encoding (as in [SMH07])



5

0 0.5 1 1.5 2 2.5 3
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

epoch

va
lid

at
io

n 
er

ro
r

 

 
Extra input features
Normal Encoding

Figure 2. Neural net with and without extra binary input features

• ‘Suzy2’ - ratings are encoded as 7-state multinomial. The 7 states represent
ratings of 0 through 6. A rating of i is encoded as ith state of the multino-
mial with probability p = 0.7 and i−1th or i+1th state of the multinomial
with probability 0.15. The expectations of each of the ratings are given as
the rows of the following matrix:













0.15 0.7 0.15 0 0 0 0
0 0.15 0.7 0.15 0 0 0
0 0 0.15 0.7 0.15 0 0
0 0 0 0.15 0.7 0.15 0
0 0 0 0 0.15 0.7 0.15













Note that a rating of 2 is always presented as (0 .15 .7 .15 0 0 0), as
opposed to choosing (0 1 0 0 0 0 0) with probability .15, (0 0 1 0 0 0 0)
with probability .7, etc. We did not investigate the latter encoding, though
it may work well.

• ‘Seth’ - as suzy but with p = 0.4. The expectations of the encoding of each
of the ratings are given as the rows of the following matrix:













0.3 0.4 0.3 0 0 0 0
0 0.3 0.4 0.3 0 0 0
0 0 0.3 0.4 0.3 0 0
0 0 0 0.3 0.4 0.3 0
0 0 0 0 0.3 0.4 0.3













• ‘Edith3’ - ratings encoded to multinomials with 11 values, representing
ratings {0.5, 1, 1.5, ..., 5, 5.5}. A rating of i is encoded as i with probability
p = 0.5 and i − 0.5 or i + 0.5 with probability 0.25. The expectation of
the encoding of each of the ratings are given as the rows of the following

2S for seven
3E for eleven



6

matrix:












0.25 0.5 0.25 0 0 0 0 0 0 0 0
0 0 0.25 0.5 0.25 0 0 0 0 0 0
0 0 0 0 0.25 0.5 0.25 0 0 0 0
0 0 0 0 0 0 0.25 0.5 0.25 0 0
0 0 0 0 0 0 0 0 0.25 0.5 0.25













0 1 2 3 4 5 6 7 8 9 10
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Epoch

R
M

S
E

 o
n 

V
al

id
at

io
n 

S
et

 

 
1−of−5
Suzy
Seth
Edith

(a) Validation error

1 2 3 4 5 6 7 8 9 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Epoch

R
M

S
E

 o
n 

T
ra

in
in

g 
S

et

 

 
1−of−5
Suzy
Seth
Edith

(b) Training error

Figure 3. RBM errors for various input representations

We created a validation set from about 1% of the non-zero ratings from training
data. This was selected in a way to minimize the bias towards users with a large
number of ratings; first we selected a user uniformly at random, then we selected
one of their ratings at random; Netflix does something similar in building their test
set. The validation error for the RBM was computed by reconstructing the full
vector of ratings for a user based on the training data (rather than using the free
energy).

Figure 3(a) shows the validation error resulting from training RBMs on these
input representations. In this figure we have also plotted the error for the movie-
average predictor(1.038 on our validation set), and for the netflix baseline (0.9514
on their hidden test set). We are pleased to report that Suzy and Seth beat the
netflix baseline, which is a challenging task given the small size of the dataset. The
best validation error for Suzy was 0.9439, the minimum for Seth was 0.9451 and
the minimum for Edith was 0.9517.

Suzy, Seth and Edith are variations on the same theme - we are probabilistically
choosing which state of the multinomial to activate based on what rating the user
has selected, and ratings that are close to each other will often activate the same
variable. Edith is a more moderate representation - we introduced variables repre-
senting values between integer ratings, so 2 would occaisionally encoded as 1.5 or
2.5. By activating 1.5 which is also activated by the rating 1, we are suggesting an
association between these variables to the RBM. Before running the experiment,
we felt that Edith would be the best performer - by introducing variables that cor-
relate neighbouring ratings, we felt we had suggested the ordinal nature of the data
in a moderate way. Suzy and Seth were both much more extreme versions of this
encoding, encoding neighbouring ratings in a very similar way. We were surprised



7

to find that Seth performed almost as well as Suzy, and that Suzy was the best
performer on the dataset.

We also note that RBMs trained on the standard(1-of-5) representation of the
ratings data overfit much faster than RBMs trained on ratings represented as ‘Suzy’,
‘Seth’ or ‘Edith’. We also tried (results not shown) training RBMs with 25 and 10
hidden units. The 25 hidden unit RBM still overfit, but a little later. The 10 hidden
unit RBM did not overfit in 10 epochs, but it also did not improve on the validation
error obtained by the 100 hidden unit RBM. We also point out that training time for
Suzy, Seth and Edith was longer than for the regular input representation because
there were more input variables (7 and 11 per movie respectively instead of 5 for
the regular encoding).

4.2. Fine tuning using backpropogation. We hypothesized that we could im-
prove a trained RBM by unrolling it into a feed forward neural net, and then “fine
tuning” the weights with backpropogation, as in [HS06]. Further, we used the gra-
dient computed from the ordinal error function specified by Netflix, as opposed to
the multinomial error function that gets minimized by contrastive divergence (of
course, decreasing the multinomial error does decrease the ordinal error). We were
not successful. We observed the training of two models, one where the learning
rates were initialized to zero, so that no training happened, and another where the
learning rates were initialized to very small values. As in Section 4.1.2, everything
else was the same between the two training sessions. We tried various input repre-
sentations, including the normal one. We tried various initializations of the learning
rates, including not training the first level weights and biases at all. Whenever we
initialized the learning rates to large enough values that the training error would
visibly decrease, the validation error would visibly increase. Because the training
errror did decrease, we do not think there is an error in the code. We believe that
the idea is flawed -in particular, the idea of using the ordinal error function; fine
tuning with backpropogation has been shown to work in other situations- though
we cannot give an adequate explanation. We did not attempt to do the fine tuning
with the multinomial error function.

5. Conclusion and Future Work

We have shown that the 1-of-k encoding of the data is not the best, and that
encodings that consider the ordinal nature of the data can obtain better results.
We have also shown that by explicitly optimizing for the Netflix error function, in
the feed-forward neural net model, better results can be achieved on a validation
set.

There are a number of questions that this exploration raised that we did not have
time to address, but that provide avenues for future work. First, it is not clear that
any of our choices of ratings representation in binary stochastic units are optimal.
For the input representation known as ‘suzy’, we are suggesting relationships be-
tween each rating and it’s immediate neighbour. For example, by encoding a rating
of 2 occaisionally as f(1) and f(3), we are suggesting associations between 2 and 1
and between 2 and 3. What we are trying to do is embed the five ratings on a line.
Consider the set of points x1 = (0, 0, 0, 0), x2 = (1, 0, 0, 0), x3 = (1, 1, 0, 0), x4 =
(1, 1, 1, 0), x5 = (1, 1, 1, 1)) - each one is a unit distance from it’s neighbour, but
distances are not additive, nor are the points arranged optimally in space.



8

Besides playing with various multinomial representations of the data, another
choice for input representation is to represent each rating with a single binary
stochastic unit, representing higher ratings by activating the unit with higher fre-
quency. For example, we could turn a unit on with a probability of r/6 for a rating
of r. This encoding strictly enforces the order of the ratings, it also accomodates for
the fact that users are not selecting movies to watch at random - i.e. if they expect
that they will hate a movie, they are extremely unlikely to view it (thus a lack of
a rating does, in a certain sense, imply a dislike from the user. A further benefit
of this model, is that it has a smaller number of weights than the multinomial
representation. A possible drawback is that performance may be very sensitive to
the particular mapping chosen.

References

[HO06] Geoffrey E. Hinton and Simon Osindero. A fast learning algorithm for deep belief nets.
Neural Computation, 2006.

[HS83] G. E. Hinton and T. Sejnowski. Optimal perceptual inference. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, pages 448–
453, Washington, D.C., June 1983. IEEE Computer Society Press.

[HS06] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, July 2006.

[SMH07] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann ma-
chines for collaborative filtering. In ICML ’07: Proceedings of the 24th international

conference on Machine learning, pages 791–798, New York, NY, USA, 2007. ACM.
[Smo86] P. Smolensky. Information processing in dynamical systems: foundations of harmony

theory. pages 194–281, 1986.


