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ABSTRACT

This paper considers the protein structure prediction prob-
lem as a multimodal optimization problem. In particular,
de novo protein structure prediction problems on the 3D
Hydrophobic-Polar (HP) lattice model are tackled by evo-
lutionary algorithms using multimodal optimization tech-
niques. In addition, a new mutation approach and perfor-
mance metric are proposed for the problem. The experimen-
tal results indicate that the proposed algorithms are more
effective than the state-of-the-arts algorithms, even though
they are simple.

Categories and Subject Descriptors

J.3 [Life and Medical Sciences]: Biology and Genetics;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms

Algorithms, Measurement

Keywords

Protein Structure Prediction, Multimodal Optimization, HP
Lattice Model, Relative Encoding, Absolute Encoding, Dis-
tance Metric, Crowding, Fitness Sharing, Evolutionary Al-
gorithm

1. INTRODUCTION
A polypeptide is a chain of amino acid residues. Once

folded into its native state, it is called a protein. Proteins
plays vital roles in living organisms. They perform different
tasks to maintain a body’s life. For instance, material trans-
portations across cells, catalyzing metabolic reactions and
body defenses against viruses. Nevertheless, the functions
of proteins substantially depend on their structural features.
In other words, researchers need to know a protein’s native
structure before its function can be completely deduced. It
gives rises to the protein structure prediction problem.
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The protein structure prediction problem is often referred
as the“holy grail”of biology. In particular, Anfinsen’s dogma
[2] and Levinthal’s paradox [21] play an important role in
the problem. Anfinsen’s dogma postulates that the native
structure of a protein (tertiary structure) only depends on
its amino acid residue sequence (primary structure). On
the other hand, Levinthal’s paradox postulates that it is too
time-consuming for a protein to randomly sample all the
feasible confirmation regions for its native structure. But,
on the other hand, the proteins in nature can still spon-
taneously fold into their native structures in about several
milliseconds.

Based on the above ideas, researchers have explored the
problem throughout several years. In particular, the des-
ignability of a structure and the degeneracy of a sequence
have been studied by Li et. al. [22]. The computational
complexity has also been examined by Hart et. al. [1].

Numerous prediction approaches have been proposed. In
general, they can be classified into two categories, depend-
ing on whether any prior knowledge other than sequence
data has been incorporated [4]. This paper focuses on De
novo (or Ab initio) protein structure prediction on the 3D
Hydrophobic-Polar (HP) lattice model using evolutionary
algorithms [20]. In other words, only sequence data is con-
sidered.

2. BACKGROUND

2.1 HP Lattice Model

2.1.1 Motivation

Different protein structure models have been proposed in
the past [24]. Their differences mainly lies in their resolution
levels and search space freedom. For the highest resolution
levels, all the atoms and bond angles can be simulated using
molecular dynamics. Nevertheless, there is no free lunch.
The simulation is hard to be completed by the current com-
putational power. On the other hand, a study indicated
that protein folding mechanisms might be simpler than the
previous thought [3]. Simplified models are enough. Thus
this paper focuses on the HP lattice model to capture the
physical principles of the protein folding process [11, 27].

2.1.2 Description

HP lattice model was proposed by Dill [10]. It assumes
that the main driving forces are the interactions among the
hydrophobic amino acid residues. The twenty types of amino
acids are experimentally classified as either hydrophobic (H)



Figure 1: Relative Encoding used in this paper

or polar (P). An amino acid residue sequence is thus repre-
sented as a string {H, P}+. Each residue is represented as a
non-overlapping bead in a cubic lattice. Each peptide bond
in the main chain is represented as a connecting line. A pro-
tein is thus represented as a non-overlapping chain in the
cubic lattice.

2.1.3 Objective

Based on the above model, the objective of the protein
structure prediction problem is to find the conformation
with the minimal energy for each protein. Mathematically,
it is to minimize the following function [22]:

H =
∑

i+1<j

Eσiσj
∆(ri − rj)

where ri and rj are the amino acid residues at the sequence
position i and j. The constraint i + 1 < j is to ensure
that ri and rj are not next to each other in their sequence
and examined together once only. ∆(ri − rj) = 1 when ri

and rj are adjacent in the lattice space, otherwise ∆(ri −
rj) = 0. As stated in the previous section, each residue is
represented as either H or P . Thus Eσiσj

could be EHH ,
EHP , EPH , and EPP . For their values, three schemes have
been proposed. The most widely used scheme is EHH = −1,
EHP = 0, EPH = 0, and EPP = 0. The second scheme
EHH = −2.3, EHP = −1, EPH = −1, and EPP = 0 was
proposed by [22]. The last scheme EHH = −2, EHP = 1,
EPH = 1, and EPP = 1 is called functional model protein
(or“shifted”HP model) [9]. As mentioned in [24], the results
are insensitive to the value of EHH as long as the physical
constraints [22] are satisfied. Thus we have chosen the first
scheme in the following sections.

2.2 Representation
For the representation of an amino acid residue sequence,

there are two conditions to be satisfied: [20]

1. Sequence connectivity

2. Self-avoidance

Among the representations proposed [9], Internal Coordi-
nate should be a favorable choice since it can handle the first
condition implicitly. Internal Coordinate is a representation
system which residue positions depend on their sequence-
predecessor residues. There are two types of Internal Coor-
dinate representation: Absolute Encoding and Relative En-
coding. Absolute Encoding represents each residue position
as the absolute direction from the previous residue. A se-
quence is represented as {U, D, L, R, F, B}n−1 (Up, Down,
Left, Right, Forward, Backward) [29]. On the other hand,

Relative Encoding represents each residue position as the di-
rection relative to the previous direction of the two predeces-
sor residues. Backward direction is omitted for one-step self-
avoiding. Thus a sequence is represented as {F, R, L, U, D}n−2

[26]. Except the forward move, a cyclic conformation is
formed if a move is repeated four times. Krasnogor et al.
[20] have examined both representations on square lattices.
Their results showed that Relative Encoding had better per-
formance than Absolute Encoding on square lattices. Our
preliminary results also indicated that the performance of
Absolute Encoding degraded as a sequence got longer on
cubic lattices. Thus we have chosen Relative Encoding as
the representation in the following sections. For this repre-
sentation, different orientations can be taken. Nevertheless,
few explicitly stated their representations in a pictorial way.
Thus the representation we have adopted is depicted in Fig.1
for the sake of clarity. The most left sub-figure denotes the
absolute direction axis, whereas the remaining sub-figures
denotes the Relative Encoding representations for all the
six directions in cubic lattices. For instance, the second left
sub-figure denotes the Relative Encoding representation the
subsequent move should use when the current move is in the
positive X direction. In particular, the subsequent move is
called a forward move if it is still in the positive X direction.

2.3 Related Works
Although the 3D HP model seems relatively simple among

other models, it has been proved that the protein structure
prediction problem on the model is NP-Complete [5]. Thus
researchers propose heuristics as compromising solutions. In
particular, the seminal work by Unger et al. [29] experimen-
tally showed that genetic algorithm approaches were bet-
ter than Monte Carlos simulations. Thus many researchers
tried genetic algorithm as one of the heuristics to solve the
problem. Nevertheless, the genetic algorithm approach by
Unger et al. [29] was actually hybridized with Monte Carlo
moves. Hence Patton et al. [26] further generalized it into
a standard genetic algorithm approach, which search space
included infeasible regions penalized by a penalty function.
Furthermore, they proposed Relative Encoding so that one-
step self-avoiding constraints could be implicitly incorpo-
rated in the genome representation. Few years later, Krasno-
gor et al. [20] published a work discussing the basic algorith-
mic factors affecting the problem. Since then, researchers
explored different ways to tackle the problem. For instance,
Krasnogor et al. further applied a multimeme algorithm,
which adaptively chose multiple local searchers to reach op-
timal structures [19]. Cox et al. [8] and Hoque et al. [15]
utilized heavy machinery of specific genetic operators and
techniques. Ant colony algorithm [28], differential evolution
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Figure 2: Some conformations of UM20 [7]

[6], immune algorithm [9] and estimation of distribution al-
gorithm [27] were also customized and reported in litera-
tures. In particular, some diversity preserving techniques
were often incorporated in them. For instance, duplicate
predator [8], aging operator [9], and additional renormal-
ization of the pheromone [28]. They can be deemed as the
signs of the multimodality in the problem. However, to the
authors’ knowledge, none of them has explicitly focused on
the necessity of multimodal optimization techniques.

3. MULTIMODAL OPTIMIZATION

3.1 Motivation
For the protein structure prediction problem, it is gener-

ally believed that the native state of a protein should be in
the conformation with the lowest energy. Thus the previ-
ous works mainly focus on the minimal energy they could
achieve: the minimal energy ever found (H(x)) and the av-
erage and standard deviation of the minimal energy across
several runs (mean± σ).

Nevertheless, Jahn et al. [16] has shown that the native
state is not necessarily a single global optimum. It may
also be a local optimum in Fig.1 of [16]. For the HP lat-
tice model, Unger et al. [30] have observed that there can
be multiple conformations for each energy value. A recent
fitness landscape study also indicated that HP landscapes
were multimodal [12].

Thus we propose applying multimodal optimization tech-
niques to the problem explicitly in this paper, in order to
preserve diversity. In other words, building blocks and op-
tima can be preserved. A more effective search is guaranteed
throughout each run. Both global and local optima are more
likely to be found. The native state information is less likely
to be lost.

3.2 Multimodal Optimization Techniques
The work by De Jong [17] is the first known attempt to

solve multimodal optimization problems. He introduced the
crowding technique to increase the chance for locating mul-
tiple optima: an offspring can only replace the parent which
is most similar to the offspring itself. Such a strategy can
preserve the diversity and maintain different types of indi-
viduals in a run. Twelve years later, Goldberg et al. [13]
proposed a fitness-sharing niching technique as a diversity
preserving strategy. He proposed a shared fitness function,
instead of an absolute fitness function, to evaluate the fitness
of an individual in order to favor the growth of the individ-

uals which are distinct to others. With this technique, a
population can be prevented from the domination of a par-
ticular type of individuals. Species conserving genetic algo-
rithm(SCGA) [23] is another technique for evolving parallel
subpopulations. Before each generation starts to crossover,
the algorithm selects a set of species seeds which can bypass
the subsequent procedures to the next generation.

The previous techniques are the backbone techniques for
multimodal optimization. All of them are implemented and
tested for the protein structure problem in the following sec-
tions. Historically, they were originally designed for real
number optimization. Careful modifications are needed be-
fore applying them to the protein structure prediction prob-
lem. In particular, there are two critical factors to be con-
sidered:

• How to determine the distance between two conforma-
tions? The most widely used distance measure should
be the root mean square deviation (RMSD) [14]. RMSD
calculates the average absolute distances between two
superimposed conformations’ points. Nevertheless, if
two conformations differ by only one point direction
in Relative Encoding, their RMSD cannot reflect such
small change. For instance, some conformations of the
benchmark UM20 [7] are visualized in Fig.2. Fig.2(a)
depicts one of the optimal conformations. The other
sub-figures depict two candidate conformations:

– Optimal : LDLDFLUFDDFRFRDDFD

– Example A: LDLDFLUFDDFRFFDDFD

– Example B: LDLDDLLRLLDRFRDDFD

To be mutated to the optimal conformation, Example
A is only needed to change its move between a1 and a2
to R whereas example b is needed to change nearly all
of its moves between b1 and b8. However, the RMSD
between Example A and the optimal conformation (5
diagonal point changes a2 to a6) is larger than that
between example B and the optimal conformation (4
diagonal point changes b2,b3,b5,b6). RMSD cannot
capture the move information in Relative Encoding.

Furthermore, if RMSD is applied in our algorithms,
it will be quite computationally intensive: To calcu-
late the RMSD between two conformations, the corre-
sponding Relative Encoding genomes are converted to
absolute 3D coordinates. Once converted, one of them
is then translated and rotated to be optimally super-
imposed on the other. RMSD is then calculated which
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involves multiplications and square root calculations.
In contrast, Hamming distance calculates the move dif-
ferences between two Relative Encoding genomes. It
is relatively computational tractable. Thus Hamming
distance is adopted as the distance metric in this pa-
per.

Using Hamming distance, rotational symmetry can be
implicitly handled by omitting the first move in the
Relative Encoding representation. That’s why a con-
firmation is represented as {F, R, L, U, D}n−2, instead
of {F, R, L, U, D}n−1 in the previous sections. In other
words, a single sequence in Relative Encoding repre-
sentation actually represents the confirmations for all
the six rotational directions in cubic lattices. Never-
theless, as a trade-off, mirror symmetry has not been
handled in the distance metric. In the future, improve-
ments will be definitely needed. One of the possible
solution may draw the inspirations from the contact
map memory [19].

• How to handle infeasible conformations? Basically there
are two approaches:

– Delete infeasible conformations

– Tolerate infeasible conformations by adjusting their
energy values by a penalty score

Both approaches were thought beneficial in different
view angles [29, 24, 20, 12]. For the first approach,
it is conjectured that search space can be smaller if
infeasible conformations are deleted. For the second
approach, it is conjectured that the paths to optimal
conformations are shorter if infeasible conformations
exist. Nevertheless, the study in [12] had a detailed
analysis supporting the first approach. Furthermore,
our problem is a discrete optimization problem. Un-
like continuous optimization, its gene can easily flip
between different values. Thus there may be alterna-
tive paths to optimal conformations even if infeasible
conformations are disallowed. Thus the first approach
is taken in this paper.

Having decided the distance and infeasible confirmation han-
dling methods, the multimodal optimization techniques are
applied to the protein structure prediction problem. In ad-
dition, a mixed mutation method is also proposed and ex-
amined.

3.3 Proposed Mutation
As discussed in [20], the mutations in Relative Encoding

differ from those in Absolute Encoding. For instance, sup-
pose we have a straight sequence as shown in Fig.3. The
resultant conformations after the two mutations are shown
in Fig.3(b) and Fig.3(c). Preceding the mutation point p,
there is no changes (e.g. point c). The affected sequence
regions always lie in the points (e.g. point d) succeeding
the mutation point p. These points are rotated by ninety
degrees during the mutation in Relative Encoding (RM),
whereas these points are merely translated diagonally by
one unit during the mutation in Absolute Encoding (AM).
The degree of changes is higher in RM than AM. Thus RM
and AM can be thought as a pair of coarse-adjusting and
fine-tuning operations. A mixed use of them is motivated.
Therefore, a straightforward approach is proposed as shown
in Algorithm 1.

Without loss of generality, a simple threshold is chosen
(0.8 in this paper). If a random number generator generates
a value higher than the threshold, AM is taken. Otherwise,
RM is taken. To fully model AM and RM as a pair of coarse-
adjusting and fine-tuning operations, AM only mutates one
gene whereas RM tries to mutate all the genes in this paper.

To implement AM in Relative Encoding, an approach is
outlined in the procedure AbsolutelyMutate in Algorithm 1.
Fig.3 depicts an example. Before the (forward) move be-
tween point p and q is mutated (Fig.3(a)), the absolute di-
rection of the subsequent move between point q and r (pos-
itive X) is saved. Once saved, the (forward) move between
point p and q is randomly mutated to another direction.
This (right) direction is examined to select its corresponding
Relative Encoding representation (the third left sub-figure
in Fig.1). The absolute direction of the subsequent move
(positive X) is then recalled and searched through the se-
lected representation to obtain the corresponding (left) di-
rection to restore its absolute direction (positive X) before
the mutation (Fig.3(c)).

4. EXPERIMENTS

4.1 Performance Metrics
As stated in [31, 32], the objective of multimodal opti-

mization is to strike a balance between convergence and di-
versity. For convergence, the widely used performance met-
rics have already covered. The energy of the best confor-
mation found (H(x)) indicates the best convergence an al-
gorithm can achieve across several runs, whereas the mean



Algorithm 1 Proposed Mutation Method

genome: A Relative Encoding genome
random: A random real number from [0,1]
threshold: A real constant from [0,1]
procedure NewMutation(genome)

savedGenome← copy of genome;
if random > threshold then

AbsolutelyMutate(genome);
else

RelativelyMutate(genome);
end if
if genome is infeasible then

genome = savedGenome;
end if

end procedure

procedure AbsolutelyMutate(genome)
i← a random integer from [1, genome.length];
Randomly change the move i in genome;
Accordingly change the move i + 1 in genome to
restore its absolute direction;

end procedure

procedure RelativelyMutate(genome)
for i from 1 to genome.length do

if random <= mutation probability then
Randomly change the move i in genome ;

end if
end for

end procedure

and standard deviation of the minimal energy across several
runs (mean ± σ) can report the stochastic convergence be-
havior of an algorithm. For diversity, however, none of the
above performance metrics can reflect. Hence we propose a
new performance metric for diversity.

To measure the diversity of the solutions, it is intuitive
to count the number of different conformations. Thinking
about this measurement deeply, it assumes that different
conformations belong to different types of solutions even if
they differ by only one residue position. Nevertheless, in our
problem, the emphasis is on the formation of non-local H-H
bonds (hydrophobic-hydrophobic pairs not adjacent in se-
quence, but adjacent in lattice). With slight perturbations
in the bonds other than H-H bonds, a conformation can
spawn a lot of different conformations with the same set of
non-local H-H bonds. Similar observation was also arrived
by Lopes [24]. Thus we propose counting the number of con-
formations with different sets of non-local H-H bonds (N).
The mean and standard deviation of N across several runs
(mean± σ of N) are reported in the following experiments.

4.2 Parameter Settings
The parameter settings for the implemented algorithms in

all benchmarks are tabulated in Table 1. Crowding (CGA
[17]), fitness sharing (SharingGA [13]), and species-conserving
(SCGA [23]) techniques have been implemented in the EC4
framework [18]. In particular, the proposed mutation method
is equipped in CGA which is then donated as ’CGA-mixed’
in this paper. The unified evolutionary algorithm (UN) [18]
was also run as a control experiment. For all algorithms
other than the crowding algorithms, truncation was applied

Table 1: Parameter Settings

Parameter Setting

Population Initialization Straight line (FFFF....FF)
Population Size 100
Generation Type Overlapping
Parent Selection Uniform Deterministic
Survival Selection Truncation/Crowding
Mutation Type Bit Flip
Mutation Probability 0.8
Crossover Type Two Point Crossover
Crossover Probability 1
Random Seed 123
Implementation EC4 framework [18]

in survival selection for fairness. Except CGA-mixed, all al-
gorithms adopted the bit flip mutation [18]. With the over-
lapping generation type and high selection pressure imposed
in the survival selection, the mutation probability was set to
a high value for achieving global search capability. Thus 0.8
was adopted. Crowding factor was set to population size
to avoid replacement error. To be comparable to the state-
of-the-art algorithms [27, 9, 7], all algorithms were run 50
times up to 105 and 5× 106 energy evaluations respectively.
The benchmarks were taken from [27, 9, 7].

4.3 Results
Table 2 and Table 3 show the experimental results for

the multimodal optimization techniques, which were run
50 times up to 105 and 5 × 106 energy evaluations respec-
tively. For each benchmark, the performance metrics dis-
cussed have been calculated. For instance, looking at Ta-
ble 2 and sequence s1, CGA-mixed has ever achieved -11
as its minimal energy across 50 runs. On average, CGA-
mixed has also achieved -10.8 as its minimal energy and
found 97.04 confirmations with different sets of non-local
H-H bonds for a run. UN is a simple evolutionary algo-
rithm [18]. It is canonical enough to be a control algorithm
without any multimodal optimization techniques. Compar-
ing its results with the other algorithms, it can demonstrate
that all multimodal optimization techniques are beneficial
to the problem in terms of the performance metrics used.
In particular, the crowding techniques with and without the
proposed mutation (CGA-mixed and CGA) outperformed
the other algorithms. Thus we further compared their re-
sults with the results of the state-of-the-art algorithms [27]
as shown in Table 4 and Table 5.

Surprisingly, although CGA-mixed and CGA are two rel-
atively simple algorithms, they could still show comparable
results with the state-of-the-art algorithms when the ter-
mination condition was set to 105 energy evaluations. The
experiments were further extended to 5×106 energy evalua-
tions. CGA-mixed and CGA even showed their competitive
edges. Their effectiveness may be largely due to their in-
dividual replacement technique: crowding. With this tech-
nique, a conformation cannot replace a dissimilar confor-
mation. It gives freedom for all niches to evolve to their
respective optima. Diversity is adaptively preserved. In
particular, such diversity prevent a population from genetic
drift. Useful sub-conformations (like secondary structures
[4]) can be preserved, providing the algorithm a long-term
sustainability for finding multiple optima at the same time
in a single run.



Table 2: Experimental Results of Multimodal Optimization Techniques (105 energy evaluations)
Benchmark Performance CGA-mixed CGA SharingGA [13] SCGA [23] UN [18]

s1 H(x) -11 -11 -11 -11 -10
mean±σ -10.80±0.40 -10.88±0.33 -10.64±0.48 -8.42±1.21 -9.16±0.71
mean±σ of N 97.04±1.50 96.90±1.73 22.44±4.95 51.12±4.47 2.00±1.47

s2 H(x) -13 -13 -13 -12 -11
mean±σ -12.12±0.87 -12.16±0.91 -11.36±0.66 -8.52±1.43 -9.66±0.98
mean±σ of N 91.08±3.39 90.72±3.96 18.98±5.18 48.76±4.33 1.80±1.11

s3 H(x) -9 -9 -9 -9 -9
mean±σ -9.00±0.00 -9.00±0.00 -8.66±0.56 -7.72±0.93 -7.38±0.81
mean±σ of N 66.54±5.85 69.24±5.43 14.42±4.76 36.86±3.48 1.88±1.12

s4 H(x) -18 -18 -17 -15 -15
mean±σ -16.76±0.94 -16.66±0.96 -14.48±1.22 -10.86±2.22 -12.14±1.23
mean±σ of N 93.04±3.71 94.40±4.18 17.30±5.24 62.78±5.35 1.68±1.13

s5 H(x) -29 -29 -25 -17 -22
mean±σ -26.16±1.30 -25.82±1.22 -21.34±1.67 -10.84±2.86 -17.26±1.84
mean±σ of N 97.32±2.00 97.04±3.42 22.64±6.71 77.38±4.96 1.76±1.02

s6 H(x) -28 -28 -24 -15 -21
mean±σ -24.58±1.33 -24.46±1.31 -19.58±1.91 -10.02±2.62 -16.42±1.81
mean±σ of N 97.42±2.19 96.58±2.70 22.84±6.04 72.94±5.55 1.82±1.21

s7 H(x) -45 -48 -40 -32 -37
mean±σ -40.88±2.02 -41.20±2.18 -34.82±2.14 -16.26±4.44 -28.60±3.49
mean±σ of N 99.26±0.69 99.32±0.77 26.66±6.46 89.86±3.44 1.38±0.70

s8 H(x) -49 -47 -39 -30 -32
mean±σ -42.62±2.33 -41.62±2.38 -33.32±2.50 -15.52±3.84 -27.16±2.64
mean±σ of N 99.04±0.64 98.96±0.97 24.90±6.12 87.54±4.17 1.64±0.85

Table 3: Experimental Results of Multimodal Optimization Techniques (5× 106 energy evaluations)
Benchmark Performance CGA-mixed CGA SharingGA [13] SCGA [23] UN [18]

s1 H(x) -11 -11 -11 -11 -11
mean±σ -11.00±0.00 -11.00±0.00 -10.68±0.47 -9.48±1.33 -9.98±0.55
mean±σ of N 82.60±4.84 85.44±4.15 11.28±3.96 53.16±4.29 1.52±0.79

s2 H(x) -13 -13 -13 -13 -12
mean±σ -13.00±0.00 -13.00±0.00 -11.52±0.86 -9.54±1.39 -9.78±0.79
mean±σ of N 77.04±6.18 78.70±6.91 12.14±3.58 50.22±4.74 1.80±0.93

s3 H(x) -9 -9 -9 -9 -9
mean±σ -9.00±0.00 -9.00±0.00 -8.74±0.44 -8.08±0.78 -7.72±0.73
mean±σ of N 33.98±4.81 42.20±6.40 8.78±4.10 36.26±3.34 1.64±1.05

s4 H(x) -18 -18 -17 -15 -14
mean±σ -18.00±0.00 -18.00±0.00 -14.98±1.10 -11.52±2.62 -12.14±0.99
mean±σ of N 84.26±6.43 86.26±5.32 12.08±4.09 63.6±4.16 1.42±0.64

s5 H(x) -30 -31 -26 -22 -21
mean±σ -28.98±0.55 -28.70±0.89 -21.86±1.85 -11.88±3.44 -17.46±1.62
mean±σ of N 93.02±4.58 93.70±3.92 16.90±4.73 77.4±4.48 1.50±0.95

s6 H(x) -31 -30 -24 -18 -21
mean±σ -27.78±1.04 -26.96±1.12 -20.28±1.75 -10.76±3.13 -16.36±1.75
mean±σ of N 94.26±2.93 95.80±2.56 14.20±4.22 74.62±5.34 1.70±0.97

s7 H(x) -50 -50 -41 -36 -35
mean±σ -47.42±1.18 -46.76±1.30 -35.30±2.79 -16.84±5.23 -29.10±2.55
mean±σ of N 97.92±1.26 98.02±1.82 18.92±4.70 90.62±3.27 1.46±0.65

s8 H(x) -55 -52 -41 -31 -32
mean±σ -49.26±1.83 -47.64±1.88 -34.28±2.42 -16.94±5.01 -27.50±2.53
mean±σ of N 98.14±1.85 98.32±1.06 16.54±4.32 87.72±4.05 1.40±0.76

Table 4: Experimental Results of the state-of-the-art algorithms (105 energy evaluations)
Hybrid GA [7] IA [9] MK-EDA2 [27] TreeEDA [27] MT-EDA4 [27] CGA-mixed CGA

s1 H(x) -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
mean±σ -9.84±0.86 -10.90±0.32 -11.00±0.00 -11.00±0.00 -11.00±0.00 -10.96±0.04 -11.00±0.00 -11.00±0.00 -10.80+0.40 -10.88±0.33

s2 H(x) -11 -13 -13 -13 -13 -13 -13 -13 -13 -13
mean±σ -10.00±0.87 -12.22±0.65 -12.94±0.09 -13.00±0.00 -12.86±0.16 -12.96±0.04 -12.70±0.50 -13.00±0.00 -12.12±0.87 -12.16±0.91

s3 H(x) -9 -9 -9 -9 -9 -9 -9 -9 -9 -9
mean±σ -8.64±0.69 -8.88±0.48 -8.94±0.06 -8.96±0.04 -8.90±0.09 -8.98±0.02 -8.98±0.02 -8.98±0.02 -9.00±0.00 -9.00±0.00

s4 H(x) -18 -18 -18 -18 -18 -17 -18 -18 -18 -18
mean±σ -13.72±1.41 -16.08±1.02 -15.66±1.54 -15.48±0.83 -16.34±0.51 -15.00±0.86 -16.32±0.10 -15.02±0.88 -16.76±0.94 -16.66±0.96

s5 H(x) -28 -28 -22 -24 -27 -24 -23 -24 -29 -29
mean±σ -18.90±2.08 -24.82±0.71 -19.66±1.37 -20.52±1.15 -23.62±1.83 -20.68±1.65 -18.44±1.60 -20.22±2.30 -26.16±1.30 -25.82±1.22

s6 H(x) -22 -23 -30 -26 -30 -26 -28 -24 -28 -28
mean±σ -19.06±1.46 -22.08±1.43 -26.30±2.26 -23.38±1.30 -26.00±2.82 -22.08±2.48 -26.70±1.97 -22.54±1.27 -24.58±1.33 -24.46±1.31

s7 H(x) -38 -41 -37 -38 -37 -38 -35 -38 -45 -48
mean±σ -32.28±3.09 -39.02±0.50 -32.66±3.13 -33.84±2.91 -32.94±1.53 -33.10±3.11 -31.72±2.98 -32.46±3.03 -40.88±2.02 -41.20±2.18

s8 H(x) -36 -42 -42 -40 -44 -34 -37 -37 -49 -47
mean±σ -30.84±2.55 -39.07±1.20 -36.66±4.02 -34.66±2.60 -34.70±6.87 -30.82±2.97 -32.24±2.47 -30.96±2.47 -42.62±2.33 -41.62±2.38



Table 5: Experimental Results of the state-of-the-art algorithms (5× 106 energy evaluations)
Hybrid GA [7] MK-EDA2 [27] TreeEDA [27] MT-EDA4 [27] CGA-mixed CGA

s1 H(x) -11 -11 -11 -11 -11 -11
mean±σ -10.52±0.54 -10.82±0.38 -10.68±0.51 -10.84±0.37 -11.00+0.00 -11.00±0.00

s2 H(x) -13 -13 -13 -13 -13 -13
mean±σ -11.28±0.90 -12.02±0.94 -11.30±0.85 -11.88±0.93 -13.00±0.00 -13.00±0.00

s3 H(x) -9 -9 -9 -9 -9 -9
mean±σ -8.54±0.64 -8.96±0.19 -8.92±0.27 -9.00±0.00 -9.00±0.00 -9.00±0.00

s4 H(x) -18 -18 -18 -18 -18 -18
mean±σ -15.76±1.05 -16.40±0.80 -16.24±0.83 -16.50±0.96 -18.00±0.00 -18.00±0.00

s5 H(x) -28 -29 -29 -29 -30 -31
mean±σ -24.60±1.57 -27.24±0.92 -26.88±0.93 -27.06±1.08 -28.98±0.55 -28.70±0.89

s6 H(x) -26 -29 -31 -28 -31 -30
mean±σ -23.02±1.48 -25.70±1.26 -25.94±1.58 -25.74±1.22 -27.78±1.04 -26.96±1.12

s7 H(x) -49 -49 -49 -48 -50 -50
mean±σ -41.18±2.75 -46.30±2.04 -43.78±3.10 -42.00±6.76 -47.42±1.18 -46.76±1.30

s8 H(x) -46 -52 -49 -50 -55 -52
mean±σ -40.40±2.50 -46.78±2.28 -43.72±2.43 -45.64±2.03 -49.26±1.83 -47.64±1.88

4.4 Effect of Crowding Factor
To demonstrate the effectiveness of crowding, CGA and

CGA-mixed were run 50 times up to 105 energy evaluations
with different values of crowding factor. The results are de-
picted in Fig.4. The horizontal axis denotes different values
of crowding factor used, whereas the vertical axis denotes
the corresponding means of N. The results showed that the
mean of N is directly proportional to the value of crowd-
ing factor, indicating that more diverse conformations can
survive if the value of crowding factor gets larger. Less re-
placement errors occur when crowding factor gets larger [25].

5. CONCLUSION
In this paper, we have modeled the protein structure pre-

diction problem as a multimodal optimization problem. To
foster its development, several mutlimodal optimization tech-
niques have been implemented and tested. In particular, we
have proposed a new mutation approach mixing AM and
RM together as a pair of complementary operations. A new
performance measure (mean±σ of N) has also been proposed
for the multimodal optimization problem. The experimental
results indicated that the crowding technique performed the
best among the other multimodal optimization techniques
tested. It even performed better than the other state-of-
the-art algorithms, although it is just a simple technique.
Such surprising results may also provide some biological im-
plications for scientists. For instance, the importance of the
existences of intermediate sub-conformations could be ex-
amined in the pathways provided by the multimodal opti-
mization techniques.

In the future, AM and RM could be adaptively selected
like mutlimeme algorithm [19], instead of a single thresh-
old. More multimodal optimization techniques could also
be examined.

The source code is released at http://pc89075.cse.cuhk.ed
u.hk:8080/myapp/GECCO2010-PSP-LatticeModels.zip

6. ACKNOWLEDGMENTS
The authors are grateful to anonymous reviewers for their

valuable comments. The authors would also like to thank
Benjamin Ching-Man Tse for his contribution. This re-
search is partially supported by the grants from the Research
Grants Council of the Hong Kong Special Administrative
Region, China (Project Nos. 414107 and 414708).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100

M
e

a
n

 o
f 

N

Crowding Factor

s1 with CGA
s2 with CGA
s3 with CGA
s4 with CGA

s1 with CGA-mixed
s2 with CGA-mixed
s3 with CGA-mixed
s4 with CGA-mixed

(a) s1,s2,s3,s4

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100

M
e

a
n

 o
f 

N

Crowding Factor

s5 with CGA
s6 with CGA
s7 with CGA
s8 with CGA

s5 with CGA-mixed
s6 with CGA-mixed
s7 with CGA-mixed
s8 with CGA-mixed

(b) s5,s6,s7,s8

Figure 4: Sensitivity Analysis of Crowding Factor

7. REFERENCES

[1] S. Aluru. Handbook of Computational Molecular
Biology (Chapman & All/Crc Computer and
Information Science Series). Chapman & Hall/CRC,
2005.

[2] C. B. Anfinsen. Principles that Govern the Folding of
Protein Chains. Science, 181(4096):223–230, 1973.

[3] D. Baker. A surprising simplicity to protein folding.
Nature, 405(6782):39–42, May 2000.

[4] D. Baker and A. Sali. Protein Structure Prediction



and Structural Genomics. Science, 294(5540):93–96,
2001.

[5] B. Berger and T. Leighton. Protein folding in the
hydrophobic-hydrophilic (hp) is np-complete. In
RECOMB ’98: Proceedings of the second annual
international conference on Computational molecular
biology, pages 30–39, New York, NY, USA, 1998.
ACM.

[6] R. Bitello and H. S. Lopes. A differential evolution
approach for protein folding. In Computational
Intelligence and Bioinformatics and Computational
Biology, 2006. CIBCB ’06. 2006 IEEE Symposium on,
pages 1–5, Toronto, Ont.

”
Sept. 2006.

[7] C. Cotta. Protein structure prediction using
evolutionary algorithms hybridized with backtracking.
In IWANN ’03: Proceedings of the 7th International
Work-Conference on Artificial and Natural Neural
Networks, pages 321–328, Berlin, Heidelberg, 2003.
Springer-Verlag.

[8] G. A. Cox, T. V. Mortimer-Jones, R. P. Taylor, and
R. L. Johnston. Development and optimisation of a
novel genetic algorithm for studying model protein
folding. Theoretical Chemistry Accounts: Theory,
Computation, and Modeling, 112(3):163–178, 2004.

[9] V. Cutello, G. Nicosia, M. Pavone, and J. Timmis. An
immune algorithm for protein structure prediction on
lattice models. IEEE Transactions on Evolutionary
Computation, 11(1):101–117, Feb. 2007.

[10] K. A. Dill. Theory for the folding and stability of
globular proteins. Biochemistry, 24(6):1501–1509,
March 1985.

[11] Y. Duan and P. A. Kollman. Computational protein
folding: from lattice to all-atom. IBM Syst. J.,
40(2):297–309, 2001.

[12] S. D. Flores and J. Smith. Study of fitness landscapes
for the HP model of protein structure prediction. In
Evolutionary Computation, 2003. CEC ’03. The 2003
Congress on, volume 4, pages 2338–2345, Dec. 2003.

[13] D. E. Goldberg and J. Richardson. Genetic algorithms
with sharing for multimodal function optimization. In
Proceedings of the Second International Conference on
Genetic algorithms and their application, pages 41–49,
Hillsdale, NJ, USA, 1987. L. Erlbaum Associates Inc.

[14] L. Holm and C. Sander. Protein structure comparison
by alignment of distance matrices. J. Mol. Biol.,
233:123–138, Sep 1993.

[15] T. Hoque, M. Chetty, and L. S. Dooley. A guided
genetic algorithm for protein folding prediction using
3d hydrophobic-hydrophilic model. In Evolutionary
Computation, 2006. CEC 2006. IEEE Congress on,
pages 2339–2346, Vancouver, BC

”
2006.

[16] T. R. Jahn and S. E. Radford. Folding versus
aggregation: polypeptide conformations on competing
pathways. Arch. Biochem. Biophys., 469:100–117, Jan
2008.

[17] K. A. D. Jong. An analysis of the behavior of a class
of genetic adaptive systems. PhD thesis, University of
Michigan, Ann Arbor, MI, USA, 1975.

[18] K. A. D. Jong. Evolutionary Computation. A Unified
Approach. MIT Press, Cambridge, MA, USA, 2006.

[19] N. Krasnogor, B. Blackburnem, J. Hirst, and
E. Burke. Multimeme algorithms for protein structure

prediction. In 7th International Conference Parallel
Problem Solving from Nature, volume 2439 of Springer
Lecture Notes in Computer Science, pages 769–778,
Granada, Spain, September 2002. PPSN, Springer
Berlin / Heidelberg. ISBN 3-540-44139-5.

[20] N. Krasnogor, W. Hart, J. Smith, and D. Pelta.
Protein structure prediction with evolutionary
algorithms. In International Genetic and Evolutionary
Computation Conference (GECCO99), pages
1569–1601. Morgan Kaufmann, 1999.

[21] C. Levinthal. Are there pathways for protein folding?
J. Chem. Phys., 65:44–45, 1968.

[22] H. Li, R. Helling, C. Tang, and N. Wingreen.
Emergence of Preferred Structures in a Simple Model
of Protein Folding. Science, 273(5275):666–669, 1996.

[23] J. P. Li, M. E. Balazs, G. T. Parks, and P. J.
Clarkson. A species conserving genetic algorithm for
multimodal function optimization. Evol. Comput.,
10(3):207–234, 2002.

[24] H. S. Lopes. Evolutionary algorithms for the protein
folding problem: A review and current trends.
Computational Intelligence in Biomedicine and
Bioinformatics, pages 297–315, 2008.

[25] S. W. Mahfoud. Simple analytical models of genetic
algorithms for multimodal function optimization. In
Proceedings of the 5th International Conference on
Genetic Algorithms, page 643, San Francisco, CA,
USA, 1993. Morgan Kaufmann Publishers Inc.

[26] A. L. Patton, W. F. Punch, III, and E. D. Goodman.
A standard ga approach to native protein
conformation prediction. In Proceedings of the 6th
International Conference on Genetic Algorithms,
pages 574–581, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc.

[27] R. Santana, P. Larranaga, and J. A. Lozano. Protein
folding in simplified models with estimation of
distribution algorithms. IEEE Transactions on
Evolutionary Computation, 12(4):418–438, Aug. 2008.

[28] A. Shmygelska and H. Hoos. An ant colony
optimisation algorithm for the 2d and 3d hydrophobic
polar protein folding problem. BMC Bioinformatics,
6(1):30, 2005.

[29] R. Unger and J. Moult. Genetic algorithm for 3d
protein folding simulations. In Proceedings of the 5th
International Conference on Genetic Algorithms,
pages 581–588, San Francisco, CA, USA, 1993.
Morgan Kaufmann Publishers Inc.

[30] R. Unger and J. Moult. Genetic algorithms for protein
folding simulations. J. Mol. Biol., 231:75–81, May
1993.

[31] K.-C. Wong, K.-S. Leung, and M.-H. Wong. An
evolutionary algorithm with species-specific explosion
for multimodal optimization. In GECCO ’09:
Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 923–930, New
York, NY, USA, 2009. ACM.

[32] K.-C. Wong, K.-S. Leung, and M.-H. Wong. Effect of
spatial locality on an evolutionary algorithm for
multimodal optimization. In EvoApplications 2010,
Part I, LNCS 6024. Springer-Verlag, 2010.


