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Question 1. [10 marks] True/false and short answer

True/false. For true/false, circle one of True or False to select it (you may leave it blank for no marks). Each
question in this subsection will be worth 1 mark for a correct answer and −1 mark for an incorrect answer. You
will get no more than five and no fewer than zero marks. Do not guess.

Part (a) [1 mark]

Suppose the time to perform a single digit addition or multiplication is O(1). All algorithms which perform
multiplication on two n digit numbers run in time Ω(n2).

True / False

False. Karatsuba’s algorithm is an example of performing the multiplication faster than O(n2).

Part (b) [1 mark]

In the quicksort algorithm that we discussed in-class, the time it takes to partition a list of length n around a
pivot is Ê(n).

True / False

True. Partition is a linear time algorithm on an input of length n.

Part (c) [1 mark]

Suppose the running time of an algorithm on an input of size n is Ê
(
n2

)
. If I triple the size of the input then the

algorithm will take approximately six times as long to run.

True / False

False. It will take nine times as long to run.

Part (d) [1 mark]

2n+1 ∈ O(2n). True / False

True. 2n+1 = 2 ·2n.

Part (e) [1 mark]

22n ∈ O(2n). True / False

False. 22n = (2n)2. That would be like saying n2 ∈ O(n).
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Short Answer. Solve the following recurrence relations. Put the answer in closed-form, i.e., T(n) = Ê(g(n)) for
g(n) that you determine. No justification required.

For reference, the Master Method states: For constants a ≥ 1 and b > 1, function f (n), and recursive function
T(n) defined on the nonnegative integers by

T(n) =

c n = 1

aT(n/b) + f (n) n > 1

for constant c, then T(n) has the following asymptotic bounds.

• If f (n) = O
(
nlogb a−×

)
for some constant × > 0, then T(n) = Ê

(
nlogb a

)
.

• If f (n) = Ê
(
nlogb a

)
, then T(n) = Ê

(
nlogb a log n

)
.

• If f (n) = Ò
(
nlogb a+×

)
for some constant × > 0, then T(n) = Ê(f (n)).

Part (f) [1 mark]

T(n) = T
(

n
4

)
+ n.

T(n) = Ê(n). The third case applies with a = 1, b = 4 and f (n) = n = Ò
(
nlog4 1

)
.

Part (g) [1 mark]

T(n) = 2T(n/4) + 1.

T(n) = Ê(
√

n). The first case applies with a = 2, b = 4 and f (n) = 1 = O
(
nlog4 2

)
= O

(
n1/2

)
.

Part (h) [1 mark]

T(n) = 2T(n/4) +
√

n

T(n) = Ê(
√

n log n). The second case applies with a = 2, b = 4 and f (n) = n1/2 = O
(
nlog4 2

)
= O

(
n1/2

)
.
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Part (i) [2 marks]

T(n) = T (⌊n/2⌋) + T (⌈n/2⌉) + n.

Effectively T(n) = 2T (⌊n/2⌋) + n which has closed form T(n) = Ê(n log n).
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Question 2. [6 marks] Iterative Algorithm Analysis

Consider Algorithm 1. Ranges are left-inclusive and right-exclusive, e.g., for i = 0..5, i takes values 0,1,2,3,4.

Algorithm 1 f(A : list)
1: for i = 0..(|A| −1) do
2: if A[i] > A[i + 1] then
3: for j = i ..(|A| −1) do
4: if A[j] < A[j + 1] then return False
5: end if
6: end for
7: end if
8: end for
9: return True

Part (a) [2 marks]

State the post-condition of Algorithm 1.

Use at most two sentences (your answer should demonstrate high-level understanding of the algorithm).

Solution. The function f determines whether or not A is weakly uni-modal (i.e., there exists some index i such
that the array is increasing or equal from 0 to i and decreasing or equal from i + 1 to the end of A).

Part (b) [1 mark]

State an input A of length n for which f(A) runs in O(1) time.

Solution. A = [a0,a1,a2, ...,an−1] where a0 = 1, a1 = 0, a2 = 1, and ak = 0 for k ≥ 2.

Part (c) [3 marks]

State and justify the asymptotically tight worst-case running time of Algorithm 1.

To show T(n) = Ê(f (n)), you must show (1) T(n) = O(f (n)) by analyzing the algorithm and (2) T(n) = Ò(f (n)) by
giving an instance A of length n for which f(A) runs in time Ò(f (n)).

Solution. We claim that T(n) = Ê
(
n2

)
. For the upper bound, we note that there are two nested for-loops on lines

1 and 3 respectively and each for-loop runs for at most n iterations (where n is the length of A). For the lower
bound. Consider the input A = [n,n −1, ...,1]. Note that the if-statement on line 2 will be true for all i and so the
for-loop on line 3 will run n times. For the first n/2 iterations, the for-loop on line 3 will iterate at least ⌊n/2⌋
times so f(A) will take at least

⌊
n2/4

⌋
= Ò(n2) time in total.
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Question 3. [6 marks] Recursion

Compute a tight upper bound for the closed-form of the following recurrence relation:

T(n) =

c n ≤ 10

T (⌊n/2⌋+ 1) + n n > 10

where c is a constant. Formally prove your closed-form expression is correct.

You may use the Master Method (if it is applicable), but you must show your work.

Solution. T(n) = O (n). Note that the Master Method does not apply here so we will prove the closed form by
induction. Let c′ be a fixed constant that we will define later. Let P(n) be the statement that T(n) ≤ c′n. We want
to show that P(n) is true for all n ∈�.

In the base case, for a ∈ {0, ...,10}, T(a) is a constant.

In the inductive step, for k > 10, suppose that P(0)∧ · · · ∧ P(k −1) is true. Show that P(k) is true. Note that

T(k) = T (⌊k/2⌋+ 1) + k

≤ c′ (⌊k/2⌋+ 1) + k (IH)

≤ c′k + c′ − c′k
2

+ k

≤ c′k

where c′ − c′k
2 + k ≤ 0 since k ≥ 10 and for all c′ ≥ 10. Choose c′ = max(c,10).

By the principle of mathematical induction T(n) is true for all n.
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Question 4. [12 marks] First Non-positive

You are given as input a zero-indexed list A of length n sorted in non-increasing order, i.e., A[0] ≥ A[1] ≥ · · · ≥
A[n −1]. Write an iterative algorithm which outputs the index of the first non-positive entry in A or n if all

entries in A are positive.

For example, on input A1 = [1,0,−1,−2,−3], your algorithm should output 1. On input A2 = [100,98,7,5,3,1],
your algorithm should output 6.

Your algorithm should run in O(log n) time. Correct algorithms which run in O(n) time will get part marks.

Part (a) [4 marks]

Write the pseudo-code of your algorithm here.

Solution. This is just binary search for zero. See Algorithm 2.

Algorithm 2 g(A : list)
1: n = |A|
2: i = 0
3: j = n
4: while i < j do
5: m = (j + i)/2 ▷ integer division
6: if A[m] ≤ 0 then
7: j = m
8: else
9: i = m + 1

10: end if
11: end while
12:

13: if i < n and A[i] ≤ 0 then return i
14: else return n
15: end if

Part (b) [2 marks]

State the variables and loop-invariant you will use in your proof-of-correctness.

Solution. Let At be the interval specified by the indices i and j after the tth iteration of the while-loop. Let mt be
the value of the variable m after the tth iteration of the while-loop. Note that m0 is undefined.

Our loop-invariant will be the predicate P(t) which states: if 0 ≤ t ≤ ⌈log n⌉ and if there exists an index in A which
is non-positive, then this index will be in At .

We show that P(t) is true for all t ∈�.

Part (c) [4 marks]

Prove the correctness of your algorithm.

Solution. Our proof is by induction on t. In the base case t = 0 (i.e., before the while-loop on line 4). Initially,
A0 = A so if A contains a non-positive element then, A0 will certainly contain it as well.
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Suppose for the inductive step we fix some t ∈ {0, ...,⌈log n⌉ −1} and have that P(0)∧ · · · ∧ P(t) is true. We will
show that P(t + 1) is true. If A contains a non-positive element, then by the inductive hypothesis, At will contain
this entry. mt+1 is the mid-point of the interval At and we have that mt+1 ∈ {i , ..., j −1}. If A[m] ≤ 0, then we know
that the first index which is non-positive is at some index i , ...,m since A is non-increasing. Thus if we update
j = m, At+1 will still contain the smallest non-positive index. Conversely, if A[m] > 0 then the first index which is
non-positive is at some index m + 1, ..., j and our update, i = m + 1 on line 9, will ensure that it falls within At+1.

By the principle of Mathematical Induction, P(t) is true for all t ∈�.

i ≤ n and if A does not contain any non-positive elements, then A[i] > 0 for all i ∈ {0, ...,n−1} and so the algorithm
will return n as required.

Part (d) [2 marks]

State and justify the asymptotic running time of your algorithm.

Solution. Binary search runs in Ê(log n). At every iteration of the while-loop we half the size of At by updating
one of i or j to be mt on line 7 or line 9.
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Question 5. [12 marks] Power of Three

A natural number n is a power of three if there exists a natural number x such that n = 3x .

Write a recursive algorithm which takes as input a natural number n and returns true if n is a power of

three and false otherwise. Assume that simple arithmetic operations (addition, subtraction, multiplication,
division, and modulus) between n and a constant takes O(1) time. You do not have access to complex arithmetic
operations such as logarithms, exponentiation, etc.

For example, your algorithm should return true on input 27 since 27 = 33 and return false on input 0 as there
does not exist a natural number x such that 3x = 0.

Make your algorithm as fast as possible, but you do not have to justify that it is the fastest.

Part (a) [4 marks]

Write the pseudo-code of your algorithm here.

Solution. See Algorithm 3. The algorithm takes as input a natural number n and outputs true or false depending
on whether or not n is a power of three.

Algorithm 3 h(n : �)
1: if n = 1 then return True
2: else if n = 0 or (n mod 3) , 0 then return False
3: end if
4: return h(n/3) ▷ integer division

Part (b) [5 marks]

Prove the correctness of your algorithm.

Solution. It’s possible to prove correctness using standard induction on n or structural induction. We will do the
latter.

The base case is covered by the first three lines of the algorithm. If n = 1 then it is a power of three as 1 = 30.
Conversely, if n = 0 or n is not a multiple of three, then n is not a power of three.

In the inductive step. Suppose that the recursive call return the correct result on n/3 by the inductive hypothesis.
We will show that it returns the correct result on n. Since line 2 already took care of the case where n is not a
multiple of three, it must be the case that n is a multiple of three. If h(n/3) returns true, then n/3 = 3k for some
k ∈�. It follows that n = 3k+1 so the algorithm correctly returns true as well. If h(n/3) returns false, then n/3
is equal to zero or is not a multiple of three. It follows that n is not a power of three and the algorithm again
returns the correct result.

Part (c) [3 marks]

State and justify the asymptotic running time of your algorithm.

Solution. Let T(n) be the running time of the algorithm. Note that we can define the following recurrence
relation for constants c1 and c2:

T(n) =

c1 n = 1

T(n/3) + c2 n > 1
.

To see this, note that we have one recursive call on an input one third the size on line 4. Further there is some
O(1) work done outside the recursive call in the first three lines as well as to compute n/3 in line 4. By the
Master Method, we know that the asymptotic running time of this recurrence relation is T(n) = Ê(log n).
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Bonus. [2 marks] More Complex Recurrence Relation

Give the asymptotically tight closed-form expression for the recurrence relation:

T(n) =

c n = 1

3T(
√

n) + log n n > 1

where c is a constant. Show your work.

You should only try this problem if you have solved the five previous problems and checked that your solution
for them is correct. That would be a better use of your time.

T(n) = Ê
(
(log n)log2 3

)
using the substitution 2m = n and applying the master method.

Total Marks = 46


