
CSC236H1Y 20245 Last updated: June 29, 2024

Assignment 3

Q1. [10 Points] Binomial Trees (maximum 2 pages)

Let B be the family of binomial trees. A binomial tree of order k is defined recursively as follows:

• A binomial tree of order zero is a single node, denoted B0, and is in B.

• For all k > 0, a binomial tree of order k consists of two binomial trees of order k− 1 with the
root of one tree connected as a new child of the root of the other and is in B.

See Figure 1 for the first few binomial trees.

Figure 1: The first four binomial trees. The shaded nodes are leaves.

a. Prove that for all k ∈ N, a binomial tree of order k has exactly 2k nodes using structural
induction.

Proof. For Bn, let our predicate P (Bn) be: Bn has 2n nodes. We want to show that P (B) is
true for all B ∈ B. Base case. The predicate is true for B0 which is a single node.

Inductive step. Suppose that P (Bk) is true for some Bk ∈ B. We want to show that P (Bk+1)
is true. Note that the number of nodes in Bk+1, denoted |V (Bk+1)| is equal to 2|V (Bk)|
since Bk+1 is constructed from two copies of Bk. By IH, we have that |V (Bk)| = 2k. Thus
|V (Bk+1)| = 2k+1 as required.

By the principle of structural induction, P (B) is true for all B ∈ B.
[2 Marks] 0.5 for predicate, 0.5 for base case, and 1 for inductive step.

b. Prove that for all integer k ≥ 1, attaching a new leaf to every node in a binary tree of order
k − 1 results in a binomial tree of order k using structural induction.

Proof. First, we will need a helper predicate. For Bk, our predicate P (Bk) is: the root of Bk

has k children and there exists a subtree rooted at a child which is identical to B0, ..., Bk−1.

1

CSC236H1Y 20245 Last updated: June 29, 2024

Base case. When k = 0, this is clearly true for the single node.

Inductive step. Note that Bk+1 is constructed from two copies of Bk with the root of one
being the child of the other. By IH, we have that the root of Bk which is also the root of
Bk+1 has subtrees rooted at each of its k children identical to B0, ..., Bk−1. Since we added
a copy of Bk as the child of this root, it now has subtrees rooted at each of its k+ 1 children
identical to B0, ..., Bk as required.

Next use P (B) to prove the predicate Q(Bk): Bk is identical to Bk−1 with a leaf added to
each node. We prove that Q(Bk) is true for all Bk ∈ B with k ≥ 1. The base case is clearly
true when k = 1. B1 is a root with a single leaf which is one leaf added to the node in B0.

Inductive step. From the truth of P (Bk) and P (Bk+1), we know that Bk has a subtree rooted
at each of its k children identical to each of B0, ..., Bk−1 while Bk+1 has a subtree rooted at
each of its k + 1 children identical to each of B0, ..., Bk. By IH, adding a leaf to every node
in Bi gets us a tree which is identical to Bi+1 for all i = 0, ..., k− 1. Further we add a leaf to
the root of Bk which is identical to B0. It follows that by adding a leaf to every node of Bk,
we obtain a tree identical to Bk+1.

[4 Marks] 1 for predicate, 1 for base case and 2 for inductive step. Generally, if it is not
entirely clear what the predicate is and the proof is confusing because of this, take off a
mark.

c. Prove that for all non-negative integers k and d, a binomial tree of order k has exactly
(
k
d

)
nodes at depth d using structural induction.

If you use any binomial identities not shown in the lecture, you must prove it.

Proof. For Bk, our predicate P (Bk) is: ∀d ∈ N, Bk has exactly
(
k
d

)
nodes at depth d. We will

prove P (B) is true for all B ∈ B using structural induction.

Base case. For B0, this is true as
(
k
d

)
= 0 for all d > 0 and

(
k
0

)
= 1.

Inductive step. Let k ≥ 0. We want to show that P (Bk+1) is true assuming the predicate is
true on the two constituent Bk trees which make up Bk+1. When d = 0, it is still the case
that the number of nodes of depth 0 in Bk+1 is 1, namely the root. For d ≥ 1 the number of
nodes of depth d in Bk+1 is the number of depth d nodes in the copy of Bk whose root is the
root of Bk+1 and the number of nodes of depth d− 1 in the copy of Bk whose root is now the
child of the other root. By IH, we have that for all d, the number of nodes in Bk of depth d
and d− 1 is

(
k
d

)
and

(
k

d−1

)
respectively. It follows that(

k

d

)
+

(
k

d− 1

)
=

k!

d!(k − d)!
+

k!

(d− 1)!(k − d+ 1)!

=
k!

(d− 1)!(k − d)!

(
1

d
+

1

k − d+ 1

)
=

k!

(d− 1)!(k − d)!

(
k + 1

d(k − d+ 1)

)
=

(
k + 1

d

)
Thus, by the principle of structural induction, P (B) is true for all B ∈ B.

[4 Marks] 1 for predicate, 1 for base case and 2 for inductive step.

2

CSC236H1Y 20245 Last updated: June 29, 2024

Q2. [10 Points] Bipartite Graphs (maximum 3 pages)

Let G = (V,E) be a graph with n vertices and m edges. G is bipartite if the vertices V can be
partition into two disjoint parts A and B such that all edges have one end-point in A and the other
in B. More formally, G is bipartite if ∃A,B ⊂ V such that ∀v ∈ V either v ∈ A or v ∈ B and
A ∩B = ∅ and for all (u, v) ∈ E either u ∈ A and v ∈ B or u ∈ B and v ∈ A.

Come up with an algorithm which outputs the partition (A,B) if G is bipartite and
outputs None otherwise. Assume that n ≥ 2 and the input to your algorithm is an adjacency
list i.e. G is a list containing n lists where list i stores the indices of the neighbours of vertex i.
For a list L, the time required to check the length of L (|L|), add an element to the end of L
(L.add(i)), remove and return the element at the end of L (L.pop()) is O(1). The output should
be a pair of sets A and B. Generally, for a set S, the time required to check if an element i is in S
(S.contains(i)), check the length of S (|S|) , add to S (S.add(i)), and remove element i from S if
it exists (S.remove(i)) is O(1).

Your algorithm should run in O(m+ n) time.

a. Prove that G is bipartite if and only if G does not have any odd cycles.

Proof. We show that both directions are true.

Necessary. We show that “G is bipartite” implies “G does not have any odd cycles”. Suppose
for a contra-positive, that G had an odd cycle C. Alternate coloring the nodes of C red and
blue. Since C is odd, there must be two adjacent nodes with the same color. All the red
nodes must be in one part and all the blue nodes must be in the other. It follows that some
edge between adjacent nodes must be in the same part.

Sufficient. Next, show that “G does not have any odd cycles” implies “G is bipartite”.
Assume that G does not have an odd cycle. Similar to the above, we will red-blue color the
nodes of G starting from an arbitrary red node u. The neighbours of u are colored blue, their
neighbors are colored red and so on. If some two adjacent nodes v and w are given the same
color, then we have an odd walk: u ⇝ v → w ⇝ u. By a lemma we saw in-class, if a graph
contains an odd closed walk, then it must also contain an odd cycle. Since G does not have
any odd cycles, it must be the case that no two adjacent nodes are given the same color.
The partition of the vertices by color shows that G is bipartite, i.e., all edges will have one
end-point of each color.

[2 Marks] 1 marks for each direction.

b. Write the pseudo-code of your algorithm in Algorithm 1.

See part d.

c. Proof-of-correctness setup. List the variables use in the proof, and the loop-invariant(s).

Solution. We will define the variables and loop-invariant with the proof in the next section.

See part d.

d. Proof-of-correctness. Prove that your algorithm outputs the desired values.

3

CSC236H1Y 20245 Last updated: June 29, 2024

Algorithm 1 Bipartition(G)

Require: G is a graph with at least two nodes given as an adjacency list.
Ensure: Returns sets A and B such that A ∩B = ∅, ∀i ∈ [n] either i ∈ A or i ∈ B, and for every

edge (u, v) in G, one of u or v is in A and the other is in B.
1: V ← {} ▷ empty set V
2: A← {} ▷ empty set A
3: B ← {} ▷ empty set B
4: C ← [] ▷ empty list C
5: for i ∈ [n] do
6: if i /∈ V then
7: A.add(i)
8: C.append(i)
9: while |C| > 0 do

10: k ← C.pop()
11: if ¬V.contains(k) then
12: if k ∈ A then ▷ add neighbours of a node in A to B
13: for j ∈ G[k] do
14: if j ∈ A then return None
15: end if
16: B.add(j)
17: C.append(j)
18: end for
19: else if k ∈ B then ▷ add neighbours of a node in B to A
20: for j ∈ G[k] do
21: if j ∈ B then return None
22: end if
23: A.add(j)
24: C.append(j)
25: end for
26: end if
27: V.add(k)
28: end if
29: end while
30: end if
31: end for
32: return A,B

4

CSC236H1Y 20245 Last updated: June 29, 2024

Proof. There are two nested loops in the algorithm. The for-loop which begins on line 5
and the while-loop which begins on lines 9. The outer for-loop picks a node in a connected
component1 to two-coloring and the while-loop performs the actual two-coloring. V represents
the set of nodes which have been processed, i.e., it and all its neighbours have been colored.
For my solution the while-loop is more important so I will prove it formally. For the for-loop,
we observe that it iterates over all nodes so ensures that every node will eventually be in V .
Either the if-statement of line 6 is true, and the node is already in V , or it is false, and the
node will be added to V on line 27 because it is added to and then removed from C.

It suffices to consider the case where the graph is connected. First we make the following
observation (∗): a node will be in A or B when it is popped from C on line 10. The first
time we pop a node from C there is only one element i added in line 8. i is added to A on
line 7. Consider some x must be added to C in some later iteration on line 17 or 24. In order
for either of those lines to execute so must lines 16 and 23.

Let our variables be Vt, At, Bt, and Ct which represent the sets V , A, and B and the list C
after the tth iteration of the while-loop. Our loop-invariants will be Q(t): At and Bt represent
all nodes colored red and blue in the frontier of Vt (i.e., every node in At ∪ Bt is in Vt or
adjacent to a node in Vt and every node adjacent to some node in Vt is in At∪Bt), Ct represent
edges from Vt to their neighbours (at least one end-point of such an edge is in Ct), and the
nodes in Vt are given a valid two-coloring (i.e., for adjacent nodes in V , they will be given
different colors). Since V will eventually contain all the nodes, either the final two-coloring
is valid or the process will fail somewhere in the middle and return None.

We prove Q(t) by induction. In the base case V0, A0, B0, C0 are all empty so the claim is
trivially true. In the inductive step suppose that Q(0)∧ · · ·Q(s) is true and we want to prove
that Q(s+1) is true assume that Cs is non-empty. Let xs+1 be the node popped on line 10. If
xs+1 ∈ Vs then Q(s+1) is true, instead, suppose xs+1 /∈ Vs and gets added to V in the s+1th

iteration. By IH and (∗) we know that xs+1 is in the frontier As ∪ Bs. One of the for-loops
on line 13 or 20 will add all of xs+1’s neighbours to A ∪ B so As+1 ∪ Bs+1 will contain the
new frontier. Like-wise the edges with one end-point xs+1 will be represented by the other
end-point added to Cs in lines 17 and 24. Vs was a valid coloring by IH and will continue to
be a valid coloring after adding xs+1 as otherwise line 14 or line 21 returns None.

[6 Marks] The pseudo-code and proof of correctness should be graded simultaneously. If the
algorithm is not correct then the submission can get no more than 2 marks (depending on
how severe the error is). Otherwise it is 2 marks for the predicate, 1 marks for defining the
appropriate variables, and 3 marks for the rest of the proof (1 mark base case and 2 marks
inductive step).

e. Running time. Evaluate the running time of your algorithm and justify your answer.

Solution. We consider each connected component separately. For a connected component,
the running time is proportional to the maximum length of C. To bound the length, we
bound the maximum number of times a node k can appear in C. We claim that the bound
is O(1 + deg(k)) times where deg(k) is the degree of k. This is because, k can only be added
to C in line 8 or one of lines 17 or 24. The former case can happen at most once per node.
The latter case can happen as many times as k has neighbours. Over all nodes, this bound
is O (n+

∑
v deg(v)) = O (n+m).

1This is a maximal (i.e., the largest possible) subset of the vertices which are connected.

5

CSC236H1Y 20245 Last updated: June 29, 2024

[2 Marks] Justification is the main part. If the running time is not O(n + m), then the
submission must also correctly evaluate the running time.

6

