
CSC236H1Y 20245 Last updated: July 15, 2024

Assignment 4 (SOLUTIONS)

Q1. [10 Points] Multiplying Upper-Triangular Matrices (maximum 3 pages)

Algorithm 1 multiplyTT(A : UT matrix, B : UT matrix)→ UT matrix

Require: A and B are two upper-triangular matrices.
Ensure: Outputs A ·B.
1: if n = 1 then return A ·B
2: end if
3: M1 ← multiplyTT(A11, B11)
4: M2 ← multiplyTM(A11, B12) +multiplyMT(A12, B22)
5: M3 ← multiplyTT(A22, B22)

6: return

[
M1 M2

0 M3

]

Algorithm 2 multiplyTM(A : UT matrix, B : matrix)→ matrix

Require: A is an upper-triangular matrix and B is a matrix.
Ensure: Outputs A ·B.
1: if n = 1 then return A ·B
2: end if
3: M1 ← multiplyTM(A11, B11) +multiply(A12, B21)
4: M2 ← multiplyTM(A11, B12) +multiply(A12, B22)
5: M3 ← multiplyTM(A22, B21)
6: M4 ← multiplyTM(A22, B22)

7: return

[
M1 M2

M3 M4

]

In class, we saw Karatsuba’s algorithm which was a way to speed up the computation of a · b
for two n-bit integers a and b. In this problem, we analyse an algorithm for multiplying two
upper-triangular1 matrices abbreviated UT matrices. See Algorithm 1. The standard approach for
multiplying two matrices is shown below for two 2× 2 matrices.

A ·B =

[
a1,1 a1,2
a2,1 a2,2

]
·
[
b1,1 b1,2
b2,1 b2,2

]
=

[
a1,1b1,1 + a1,2b2,1 a1,1b1,2 + a1,2b2,2
a2,1b1,1 + a2,2b2,1 a2,1b1,2 + a2,2b2,2

]
For ease of explanation, if the inputs A and B to Algorithm 1, Algorithm 2, and Algorithm 3 have
dimension n × n, then let n be a power of two. In practice, we can always pad the matrix with
rows and columns of all zeros so that this is the case.

Note that the notation A[i : j, ℓ : k] represents the submatrix of A consisting of the rows i to j
inclusive and columns ℓ to k inclusive. For A and B, let A11 = A[1 : n/2, 1 : n/2], A12 = A[1 :

1A square matrix A is upper-triangular if all entries ai,j are equal to zero for i > j (the top left entry of A is a1,1

the bottom right entry is an,n). Here are some upper-triangular matrices:

A1 =
[
5
]

A2 =

[
5 1
0 2

]
A3 =

0 3 1
0 4 0
0 0 0

 .

1



CSC236H1Y 20245 Last updated: July 15, 2024

Algorithm 3 multiplyMT(A : matrix, B : TU matrix)→ matrix

Require: A is a matrix and B is an upper-triangular matrix.
Ensure: Outputs A ·B.
1: if n = 1 then return A ·B
2: end if
3: M1 ← multiplyMT(A11, B11)
4: M2 ← multiply(A11, B12) +multiplyMT(A12, B22)
5: M3 ← multiplyMT(A21, B11)
6: M4 ← multiply(A21, B12) +multiplyMT(A22, B22)

7: return

[
M1 M2

M3 M4

]

n/2, (n/2 + 1) : n], A21 = A[(n/2 + 1) : n, 1 : n/2], and A22 = A[(n/2 + 1) : n, (n/2 + 1) : n]. Bij

are defined similarly for i, j ∈ [2].

The time it takes to multiple two constant dimension matrices is constant time.

a. Suppose that the time it takes to multiply two numbers or add two numbers is O(1). What
is the asymptotic running time of the standard algorithm for multiplying two n by n upper-
triangular matrices?

Solution. Note that every off-diagonal entry below the main diagonal (i.e., entries (i, j) where
i > j) is equal to zero so it suffices to compute every entry on or above the diagonal (i.e.,
entries (i, j) where i ≤ j). There are Θ(n2) such entries. Further, computing each entry takes

O(n) time (take product of n pairs of pairs of numbers then add them) and for n2

4 entries —
namely those in the top right corner — at least n/2 time. It follows that the total running
time is Θ(n3).

[1 Mark] Correct asymptotic running time and some reasonable justification.

b. Prove the correctness of Algorithm 1 assuming the correctness of multiply (it takes as input
two n× n matrices A and B and the post-conditions is that it correctly returns A ·B). You
only need to prove one of Algorithm 2 and Algorithm 3 correct, but not both.

Proof. We prove the correctness ofmultiplyMT and then, assuming the correctness ofmultiplyMT
and multiplyTM (the correctness of multiply is given), we prove the correctness of multiplyTT.

Let PMT (n) be the predicate that if A and B are matrices of dimension n × n and satisfies
the preconditions of multiplyMT, then multiplyMT(A,B) will return their product. We show
that PMT (n) is true for all n ∈ N and n ≥ 1 (you could also do this by structural induction).

In the base case multiplyMT clearly outputs the correct answer on line 1.

In the inductive step suppose for some fixed k ≥ 2, PMT (1) ∧ · · · ∧ PMT (k − 1) is true. We
want to show that PMT (k) is true. By IH, we have that M1 = A11 · B11, M3 = A21 · B11,
multiplyMT(A12, B22) returns A12 ·B22 and multiplyMT(A22, B22) returns A22 ·B22. Note that
by block multiplying (you could also do this entry-wise), we have that

A ·B =

[
A11 ·B11 A11 ·B12 +A12 ·B22

A21 ·B12 A21 ·B12 +A22 ·B22

]

2



CSC236H1Y 20245 Last updated: July 15, 2024

as B21 is the all zeros matrix. These are exactly the matrices M1,M2,M3,M4.

Thus, by the principles of mathematical induction PMT (n) is true for all n ∈ N with n ≥ 1.

The proof of the correctness of multiplyTT is very similar. Here we will only touch upon
the highlights, but your solution should be more complete. In particular, if we perform block
multiplication on two triangular matrices, we have that,

A ·B =

[
A11 ·B11 A11 ·B12 +A12 ·B22

0 A22 ·B22

]
where A11 · B12 is an upper triangular matrix multiplying another matrix and A12 · B22 is a
matrix multiplying an upper triangular matrix. We use the inductive hypothesis to guarantee
the correctness of multiplyTT(A11, B11) and multiplyTT(A22, B22) and we use the correctness
of multiplyTM on the product A11, ·B12 and multiplyMT on the product A12 · B22. Together
we have that the returned matrix is indeed A ·B.

[6 Marks] 3 marks for each of two proofs (multiplyMT or multiplyTM and multiplyTT). Among
these, 2 marks for the inductive step.

c. Read about Strassen’s algorithm. Compute the asymptotic running time of Algorithm 1
assuming that multiply on lines 3 and 4 of Algorithm 2 and lines 4 and 5 of Algorithm 3 calls
Strassen’s algorithm.

Solution. First one should note that the time necessary to multiply two n× n matrices with
Strassen’s algorithm, denoted TS(n) is Θ

(
nlog2 7

)
. Then we need to compute the running

time of multiplyMT and multiplyTM. Since they pretty much have the same running times,
we will only compute the running time for the former. First we express the running time of
multiplyMT on two n× n matrices with the recurrence relation

TMT (n) = 4 · TMT

(n
2

)
+ 2TS

(n
2

)
= 4 · TMT

(n
2

)
+ 2Θ

(n
2

)log2 7
.

We will apply the master method to this recurrence relation, with a = 4, b = 2 and f(n) =
cnlog2 7 for some constant c. Note that f(n) = Ω

(
nlogb a+ϵ

)
for ϵ > 0 since there exists a δ > 0

such that log2 4 + δ = log2 7. It follows that TMT (n) = Θ(f(n)).

Finally, we compute the running time of multiplyTT. Note that the recurrence relation for its
running time on two input matrices of dimension n× n is

TTT (n) = 2TTT

(n
2

)
+ TTM

(n
2

)
+ TMT

(n
2

)
= TTT (n) = 2TTT

(n
2

)
+ cnlog2 7

for some constant c (possibly different from before). Again, applying the Master Method,
this case is leaf dominant so we have TTT (n) = Θ

(
nlog2 7

)
.

[3 Marks] One mark for stating the running time of Strassen’s algorithm. One mark for
computing the running time of multiplyMT or multiplyTM. One mark for computing the
asymptotic running time of multiplyTT.

Q2. [10 Points] Candy Claw Machine (maximum 3 pages)

You are playing a crane game to win as many tasty candies as possible. There are n candies in a
row on a conveyor belt and you assigned a value vi ∈ R to the candy at position i (note the value

3

https://en.wikipedia.org/wiki/Strassen_algorithm


CSC236H1Y 20245 Last updated: July 15, 2024

can be negative). At each time unit the conveyor belt will move to the left by one candy. You can
lower the claw at time t and retract the claw at time s where 0 ≤ t ≤ s ≤ n (when t = s = n, you
will not get any candies). You can only lower and raise the claw once.

You collect all candies at positions t through s inclusive (e.g. if t = 0 and s = n − 1 then you
collect all the candies). The value of the candies you collect is

∑s
i=t vi. Come up with a recursive

algorithm to determine when you should lower and raise the claw to collect the most valuable
candies. If there are multiple time intervals obtaining the maximum value, you can output any.

Your algorithm should run in O(n) time. If it runs in O(n log n) and you can prove this, you will
get part marks.

As an example, suppose that you have the candies on the conveyor belt have the following values:

[1, 2,−9, 3, 3, 1,−2, 1]

Then the most valuable candies can be obtained by lowering the claw at time 3 (picking up the
first three value candy) and raising it at time 5 (picking up the one value candy). The total value
of this collection is 7.

If all the candies have negative value, as is the case for this conveyor belt:

[−1,−4,−2,−2,−3],

you can lower and raise the claw at time 5 to collect no candies.

a. Write the pseudo-code in Algorithm 4.

As many of you have noticed, this is precisely the maximum sum sub-array problem. Algo-
rithm 4 take as input the original list and the interval [i, j] that we are considering. Instead
of returning a list, we will return a structure with several parameters called a decorated list.
Let a decorated list be a structure with the following parameters:

(a) L: the associated list

(b) tℓ and tr: the left and right indices of the maximum sum sub-array of L

(c) p: index of the end-point of the maximum prefix 2 of L

(d) s: index of the end-point of the maximum suffix 3 of L

(e) vt, vp, vs, vm: the value of the sum of the entries in the maximum sub-array, prefix,
suffix, and the sum of all the entries in L respectively.

We access the parameters with dot-notation, e.g., on decorated list A, to access the associated
list we write A.L. The pseudo-code is shown in Algorithm 4. To find the answer to the entire
array A of length n, we call Claw(A, 0, n − 1) to obtain A. If A.vt < 0, then we return the
indices (n, n) (i.e., pick up no candies), otherwise we return (A.tℓ,A.tr).
[4 Marks] The algorithm should be recursive (lose two marks if it is not) and run in time
O(n) (lose two marks if is runs in O(n log n)). Give no marks if it runs in time ω(n log n).

2A prefix of a list A = [a0, ..., an−1] is any contiguous sub-array starting from a0, e.g., [a0, ..., a4] is a prefix of A
which ends at index 4.

3A suffix of a list A = [a0, ..., an−1] is any contiguous sub-array ending at an−1, e.g., [a4, ..., an−1] is a suffix of A
which ends at index 4.

4



CSC236H1Y 20245 Last updated: July 15, 2024

Algorithm 4 Claw(A, i, j)

Require: List A and indices i ≤ j.
Ensure: Decorated list A with associated list A[i, j] and all correct values for A[i, j] filled in.
1: A.L← A[i, j] ▷ only pointers to end-points of the interval need to be preserved
2: if j = i then ▷ base case when A[i, j] is a single entry
3: A.vm ← A[i]
4: if A[i] < 0 then
5: A.tℓ,A.tr,A.p,A.s← (n, n, i+ 1, i− 1) ▷ indices of the empty set w.r.t. A[i, i]
6: A.vt,A.vs,A.vp ← (0, 0, 0) ▷ value of the empty set
7: else
8: A.tℓ,A.tr,A.p,A.s← (i, i, i, i)
9: A.vt,A.vs,A.vp ← (A[i], A[i], A[i])

10: end if
11: return A
12: end if
13: m← (j + i)/2
14: B ← Claw(A, i,m) ▷ recurse on the left half of A[i, j]
15: C ← Claw(A,m+ 1, j) ▷ recurse on the right half of A[i, j]
16: A.vm ← B.vm + C.vm
17: A.vt ← max (B.vt, C.vt,B.vs + C.vp)
18: if A.vt = B.vt then ▷ fix the index of the sub-array in A[i, j] with maximum sum
19: A.tℓ,A.tr ← (B.tℓ,B.tr)
20: else if A.vt = C.vt then
21: A.tℓ,A.tr ← (C.tℓ, C.tr)
22: else
23: A.tℓ,A.tr ← (B.s, C.p)
24: end if
25: A.vp ← max (B.vp,B.vm + C.vp)
26: if A.vp = B.vp then ▷ fix the index for the prefix of A[i, j]
27: A.p← B.p
28: else
29: A.p← C.p
30: end if
31: A.vs ← max (C.vs,B.vs + C.vm)
32: if A.vs = C.vs then ▷ fix the index of the suffix of A[i, j]
33: A.s← C.s
34: else
35: A.s← B.s
36: end if
37: return A

5



CSC236H1Y 20245 Last updated: July 15, 2024

b. Prove the correctness of your algorithm. Remember to state the post-condition.

Proof. The post-condition is stated in the pseudo-code, so we will proceed to the proof.

Our recursively defined set will be all singleton elements A[i] for i = 0, ..., n− 1 and, for two
sub-arrays sub-arrays A[i, j], A[j, k] ⊆ A, A[i, k] is also in our set.

Our predicate will be P (A[i, j]): the decorated list A → Claw(A, i, j) have filled parameters
which satisfy their definition for A[i, j], i.e., A.vt stores the maximum value of any sub-array
in A[i, j], (A.tℓ,A.tr) is the left and right indices of a sub-array which achieves A.vt, and so
on for all the other parameters.

In the base case where i = j, we have that the outputs on lines 2 to 12 are correct by
inspection.

In the inductive step, suppose we have that we have P (A[i,m]) ∧ P (A[m + 1, j]) are true,
we want to show that P (A[i, j]) is true. By IH, we have that B → Claw(A, i,m) and C →
Claw(A,m+ 1, j) are decorated lists which satisfy their post-condition. Let us consider each
parameter of A in-turn.

L By definition A is associated with sub-array A[i, j].

vm Since B.vm and C.vm are the sums of the left and right halfs of A[i, j] respectively,
A.vm = B.vm + C.vm.

vp, p The value of the prefix of A[i, j] with the largest sum is either a prefix of A[i,m] or a
prefix containing all of A[i,m] and the maximum prefix of A[m+1, j]. The index of this
interval can be assigned accordingly.

vs, s The value of the suffix of A[i, j] with the largest sum is either a suffix of A[m+ 1, j] or
a suffix containing all of A[m + 1, j] and the maximum suffix of A[i,m]. The index of
this interval can be assigned accordingly.

vt, tℓ, tr Very similar to the above. The sub-array with the maximum sum is either entirely in
A[i,m], entirely in A[m+ 1, j], or is composed of the maximum suffix of A[i,m] the the
maximum suffix of A[m+ 1, j]. Indices can be assigned accordingly.

It follows by structural induction that P (A[i, j]) is true for every sub-array of A, and in-
particular, A[0, n− 1] = A.

[4 Marks] Grade the proof-of-correctness independent of the running time of the algorithm.
As long as the solution properly analyzes the given pseudo-code it can get full marks.

c. Evaluate the running time of your algorithm and justify your answer.

Solution. The asymptotic running time of our algorithm is Θ(n). To see this we will justify
that the running time of our algorithm is defined by the recurrence relation

T (n) = 2T
(n
2

)
+ c

for some constant c. Note that the base case and initial setup (lines 2 to 13) take constant
time. Then, there are two recursive calls to Claw on inputs half the size which satisfy the
pre-conditions (lines 14 and 15). The remainder of the algorithm also runs in constant time
as we are simply accessing values that we have previously stored.

By the Master Method, we see that T (n) = Θ(n).

[2 Marks] One point for the correct asymptotic run time for the pseudo-code. One point for
the justification.

6


