CSC236H1Y 20245 Last updated: August 12, 2024

Assignment 6 (SOLUTIONS)

Q1. [10 Points] Construct DFA (mazimum 3 pages)

Consider the marble rolling toy shown in Figure A marble is dropped at A or B. There are
flippers at positions z1, x2, and x3 (indicated by the thick black lines) which fall either to the left
or to the right. Whenever a marble encounters a flipper, it causes the flipper to reverse; the next
marble will take the opposite branch.

A B

T3

C D

Figure 1: Default configuration of the marble rolling toy. Marbles are dropped in one of A or B
and come out at one of C or D.

Model the toy as a DFA M = (Q,%,4, s, F) with alphabet ¥ = {A, B}. Inputs to the DFA are
sequences of As and Bs indicating where the marbles will be dropped. M should accept a string of
As and Bs if the last marble dropped exits the toy through D. Accept the empty string.

An example of the state of the machine after dropping marbles consecutively at A, A, and then B
is shown in Figure

a. Draw your DFA below. You should not need more than sixzteen states.

Solution. Figure |3 shows the DFA which accepts the marble rolling toy language. Note that
each state is labelled by ¢z, 4,2, Which represents the direction the ball will fall if it hits each
of the three flippers. Sometimes it is possible that a sequence of balls will result in the same
state but fall through different exits. In these cases the states are labelled by gz, 2,5 Where
s € {c,d} denotes the different exit that the final ball takes. The start state is qrpr.

[6 Marks] Deduct 0.5 marks for each missing or incorrect state up to a total of 6 marks.

b. Formally prove that your DFA is correct. In your inductive case, you only need to consider
the addition of A to the end of a string w such that P(w) is true for your predicate P.

CSC236H1Y 20245 Last updated: August 12, 2024

(a) Drop first marble at A. (b) Drop second marble at A. (c) Drop third marble at B.

Figure 2: Result of dropping three marbles at A, then A, then B. This corresponds to the three
strings A, AA, and AAB. Your DFA should reject A and AA but accept AAB.

Proof. To prove that M indeed accepts w, we will come up with and prove a state invariant
for each of the eight states. The predicate on a string w € {A, B}* will be

P(w) = 5*(QU,1U) = (Gabcs

for all a,b,c € {L, R} and s € {c,d} if it exists where the final gate state is 1 = a, z2 = b,
x3 = ¢ and the final ball fall through s if present. We note that these eight states are disjoint
and exhaustive as every setting of the flippers are considered and putting a ball in either A
or B will result in the flippers ending up in one of the stated configurations and the ball can
only fall through one of two exists.

We prove P(w) by structural induction with our standard recursive definition of ¥*. In the
base case 0*(qrrr,€) = qrrr and indeed in the initial configuration all balls will fall to the
left of a flipper. Suppose for some string w € ¥*, P(w) is true. We show that P(wA) is also
true (the process for showing P(wB) is true is similar). For wA, we need to consider each of
twelve possible cases for §*(qrrr, wA) (though only eight are unique).

(a) 0*(qrrr,w) = qrrr- By IH, we have that the flipper states are 1 = L, zo = L, and
x3 = L. Note that if we drop another ball into A, then the flippers will be in the state
x1 = R, xo = L, x3 = L, and the ball will exist through C' which is exactly qrrrc.

(b) *(qrrL,w) = qrrLe and 0*(qrrr, wA) = qrrra- By IH, we have that the flipper states
are 1 = R, 9 = L, and x3 = L regardless of where the last ball exited. Note that if we
drop another ball into A, then the flippers will be in the state z1 = L, x0o = L, 3 = R,
and the ball will exist through C which is exactly qrrRe.

(¢) 0*(qrrr,w) = qrrr- By IH, we have that the flipper states are x1 = L, 2o = R, and
x3 = L. Note that if we drop another ball into A, then the flippers will be in the state
1= R, zo = R, x3 = L, and the ball will exist through C' which is exactly qrrrc.

(d) 9*(grrr,w) = qrrre and 0*(qrrr, wA) = qrrra- By IH, we have that the flipper states
are 1 = L, z9 = L, and x3 = R regardless of where the last ball exited. Note that if we
drop another ball into A, then the flippers will be in the state x1 = R, xo = L, 3 = R,
and the ball will exist through C which is exactly qrrRec-

(e) 0*(qrrr,w) = qrrr- By IH, we have that the flipper states are 1 = L, 2o = R, and
x3 = R. Note that if we drop another ball into A, then the flippers will be in the state
1= R, z9 = R, x3 = R, and the ball will exist through C' which is exactly qrrrg.

CSC236H1Y 20245 Last updated: August 12, 2024

Figure 3: DFA which accepts strings of As and Bs where the last ball dropped falls through D.

(f) 6*(qrrL,w) = qrrre and 0*(qrrr, wA) = qrrra- By IH, we have that the flipper states
are x1 = R, xo = L, and z3 = R regardless of where the last ball exited. Note that if we
drop another ball into A, then the flippers will be in the state x1 = L, 29 = L, 23 = L,
and the ball will exist through D which is exactly qrrr.

(g) 0*(qrLr,w) = qrrLe and 0*(qrrr, wA) = qrrrq- By TH, we have that the flipper states
are r1 = R, 9 = R, and x3 = L regardless of where the last ball exited. Note that if we
drop another ball into A, then the flippers will be in the state 1 = L, x5 = r, 23 = R,
and the ball will exist through C which is exactly qr,rpg.

(h) *(qrrr,w) = qrrr. By IH, we have that the flipper states are 21 = R, o2 = R, and
x3 = R. Note that if we drop another ball into A, then the flippers will be in the state
x1 =L, xo = R, x3 = L, and the ball will exist through D which is exactly qrrr .

We could also do the same for wB, but it is a bit tedious so we won’t write it out explicitly.
By Structural induction, P(w) is true for all w € ¥* and our DFA indeed accepts the language
of the flipper toy.]

[4 Marks] 0.5 marks for each type of case listed above.

Q2. [10 Points] Regex Implies NFA (mazimum 8 pages not counting the diagrams for Regex
to NFA)

In the following question we will complete the proof of the equivalence of regular expressions
(Regex), deterministic finite automaton (DFA), and non-deterministic finite automaton (NFA). In
class, we showed that DFAs have the same expressive power as NFAs. In this problem, we will first
turn a DFA M into a regex R such that the language accepted by M, denoted L£(M), is equivalent
to the language represented by R, denoted L(R), i.e., we want to find a regular expression R which

CSC236H1Y 20245 Last updated: August 12, 2024

is equivalent to M. Then we will show that a regex R can be transformed into a NFA N such that
L(R) = L(N), i.e., we want to find an NFA N which is equivalent to R.

DFA—Regex We will walk through the state removal method. The goal is to remove states until there
are only two remaining, the start state and a single accepting state with a single transition
between them. We do this by replacing single character transitions with regular expressions.

(a) Let R be a regex and suppose the DFA M is as shown in Figure 4. Find a regex which

is equivalent to M.
e .

Figure 4: DFA M.

Solution. M is equivalent to R.

(b) Suppose instead that M has many more states and let a part of M be shown on the left
of Figure)] We want to eliminate state ¢;11 so that M looks like the right of Figure
afterwards. Find a regex to put on the transition ¢; — ¢;1o using Ry, Ro, and R3 so

R,
()

Figure 5: Part of DFA M. Find the regex which fits in ?.

that we can eliminate ¢;1.
Solution. The regular expression we should put on the transition g; — ¢;+2 is R1(R2)* Rs.

(c) Consider a part of M shown on left of Figure @ We want to collate all transitions
between states g; and g;j41 so that M looks like the right of Figure |§| afterwards. Each
R; is a regex. Find a regex to put on the single transition ¢; — ¢;41 using Ry, ..., and

Figure 6: Part of DFA M. Find the regex which fits in 7.

Ry so that we can eliminate all other transitions.
Solution. The regular expression on the transition q; — ;11 is Ry + -+ + Ry.

CSC236H1Y 20245 Last updated: August 12, 2024

(d) Using the previous parts, prove the predicate P(n) := every DFA with n states has an
equivalent regex. Inducting on the number of states. For n, fix some DFA M with n
states and show that there exists a regex which is equivalent to M.

Hint: You may want to add a dummy start state and a dummy accept state with e-
transitions to the start state and from the accepting states respectively.

Proof. Let M be our DFA. We add a dummy start state s with an e-transition to the
start state of M. Further, we add a dummy state which will be the only accepting state
and perform an e-transition from every accepting state of M to this dummy accept state.
Let M’ be the finite automaton after the transformation. Note that, for M’, there are
no transitions into the start state, no transitions out of the accepting state, and no loops
on either the start or accepting states.

Now we will prove the following predicate for M’ by induction on the number of states
of M’, n. Note that in the base case, there will be two states: the dummy start and
accepting states. P(n) states if M’ has n states then, there exists a regular expression
R which is equivalent to M’. In the base case, there are only two states with a transi-
tion between them. There is a regular expression on the transition function R. M’ is
equivalent to R.

Suppose in the inductive step, that for some fixed k > 2, we have that P(2) A--- A P(k)
is true. We want to show that P(k+ 1) is true. Suppose M’ is a finite automaton of the
form previously described. M’ has an internal node u, i.e., not a starting or accepting
state. We will eliminate u and replace the transitions to and from w so that the language
accepted by M’ remains unchanged. First, let I be the set of states with a transition
into v and O be the set of states we can reach by a transition from uw. We will add
the following transitions for every pair of v € I and w € O: suppose 0*(v, R1) = u,
0*(u, Ry) = w, and there u has a self-loop with the regular expression R3 then we will
add the transition 6*(v, R1(Rj5)R2) = w. After this transformation, there may be pairs
of nodes with multiple transition 77, ..., T}, from one to the other. We replace these with
a single transition on the regular expression 11 + - - - + T;,,. After removing u, we have
a finite automaton with k states. By IH, it has an equivalent regular expression.

By the principle of mathematical induction, P(n) is true for Vn with n > 2. O
[5 Marks] Two marks for part (d). One mark each for each of parts (a), (b), and (c).

Regex—NFA Recall that regexs are defined recursively on the set of characters 3. For each part of the
recursive definition of regexs, we construct an equivalent NFA. A diagram is enough; you do
not have to prove the correctness of the NFA.

(a) Draw an NF A which is equivalent to the regular expression ().

Solution. See Figure[7]

Figure 7: NFA for regex 0.

(b) Draw an NF A which is equivalent to the regular expression e.
Solution. See Figure

CSC236H1Y 20245 Last updated: August 12, 2024

()

Figure 8: NFA for regex e.

For a fixed a € X, draw an N F' A which is equivalent to the regular expression a.

Solution. See Figure [0
O

Figure 9: NFA for regex a for a € X.

Suppose we have two regular expressions R; and Ry with corresponding DFAs M; and
Ms. Use My and Ms to construct an NFA which is equivalent to Ry + Rs.

Solution. Suppose M has start state gop and accepting states qy,,...,qy,, and Ms has
start state pp and accepting states py, , ..., pg,. We create a dummy start state s with an
e-transition to gg and pg. See Figure

Suppose we have two regular expressions R; and Ry with corresponding DFAs M; and
Ms. Use M7 and Ms to construct an NFA which is equivalent to Ry Rs.

Solution. With notation from the previous part, we add an e-transition from each gy, to
po as shown in Figure

Suppose we have a regular expression R with corresponding DFA M. Use M to construct
an NFA which is equivalent to R*.

Solution. For every accepting state gy, we add an e-transition back to the starting state.
See Figure

[5 Marks] Parts (a) and (b) should be grouped together for one mark. All the remaining parts
should be one mark each.

CSC236H1Y 20245 Last updated: August 12, 2024

Ry

@)

Ry

Figure 10: NFA for regex R1 + Rs.

R1 R2

‘
‘

Figure 11: NFA for regex Ry R».

CSC236H1Y 20245 Last updated: August 12, 2024

Figure 12: NFA for regex R*.

