Week 1: Introductions and Induction

CSC 236:Introduction to the Theory of Computation Summer 2024 Instructor: Lily

think carefully about how you are representition your knowledge You will do well if you demonstrate thorough understanding of the course content → math proofs → correctness of algorithms → finite automaton

Logistics

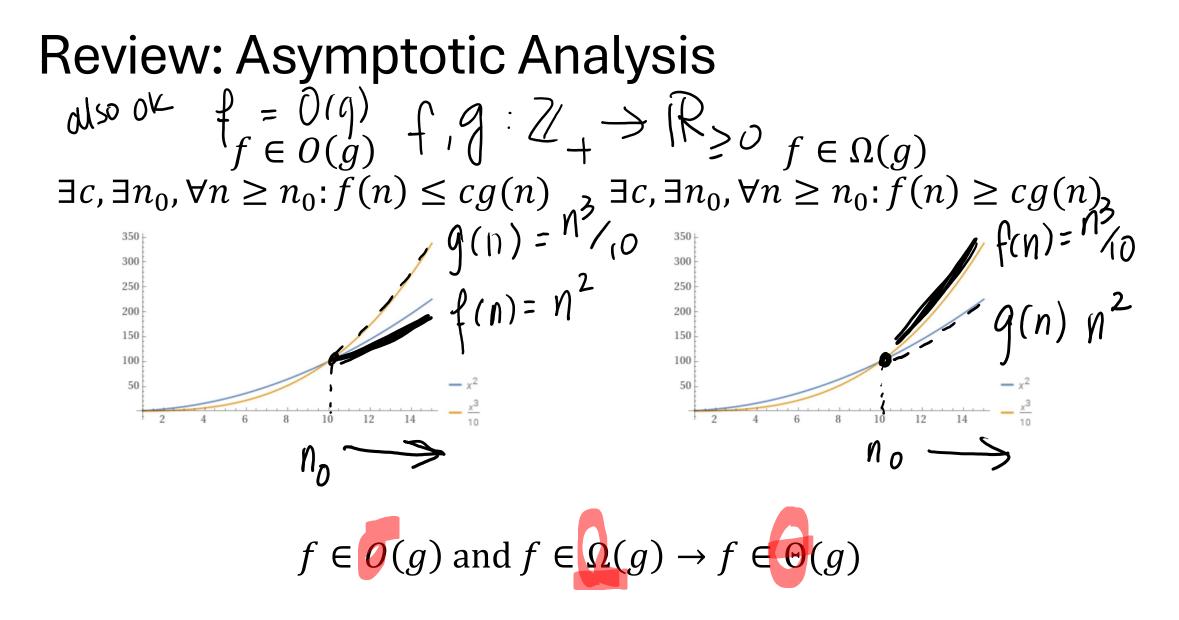
- Lectures: May 8th ~ Aug. 7th (11 total + 2 midterms)
- Tutorials: *Starts next week*. 8~9 pm after lectures

Section	Room	Tutor	
5101	BA 2159	BA 2159 Yibin	
5102	BA 2139 Soroush		
5103	BA 2135 Lawrence		
5104	BA B024	Logan	

- Office Hours: *(tentative)* BA 2272, Friday 1~3 pm
- Discussion: Piazza (link available on Quercus)

Course Description

- Prerequisites: CSC165 or equivalent
- Textbooks:
 - Required: David Liu's notes and Vassos Hadzilacos' notes (available on Quercus)
 - Supplementary: The Nature of Computation (Moore, Mertens), Concrete Mathematics (Graham, Knuth, Patashnik), Introduction to Automata Theory, Languages, and computation (Hopcroft, Motwani, Ullman)
- Topics Covered:
 - Mathematical Proofs
 - Discrete Maths (e.g. Combinatorics, Graph Theory)
 - Proof-of-correctness
 - Finite Automaton


Schedule	Lecture: Week	Content
Scheuule	1: May 6 – May 12	Introduction, Review, and Induction
	2: May 13 - May 19	Combinatorics: the art of counting
Maths Proof	3: May 20 - May 26	Induction with Examples in Combinatorics
Tools and	4: May 27 - June 2	Induction with Examples in Graph Theory
Applications	5: June 3 - June 9	Correctness of Algorithms
Proof-of- correctness	6: June 10 - June 16	Recursive Algorithms
	June 17 - June 23	Midterm 1 (Lectures 1~4)
	June 24 - June 30	
	7: July 1 - July 7	Master Method: analysis of recursive algorithms
	8: July 8 - July 14	Introduction to Formal Languages
Finite Automaton	July 15 - July 21	Midterm 2 (Lectures 5~7)
	9: July 22 - July 28	Equivalence of DFA, NFA, and Regex
	10: July 29 - Aug 4	Pumping Lemma and Limitations of Formal Languages
	11: Aug 5 - Aug 11	Review and Student's Choice

Marking Scheme

- Quizzes [11 total (take best 8); 1% each]
 - available afternoon before lecture
 - 4~5 questions

Remark Requests: Fill out form (see syllabus)

- Assignments [6 total (take best 4); 8% each]
 - 2 warm-up questions (unmarked)
 - 2 questions (marked): peer review required
 - Late work: 10% deduction per day and at most 3 days
- Midterms [During June exam week and July 17; 15% each]
 - Missed midterm? 30min~1hour oral exam to reassign marks to final
- Final Exam [time TBD; 30%] minimum 40% to pass

Review: Simple Induction

Example. Prove $(1 + x)^n \ge (1 + nx)$ for $x \in \mathbb{R}_{\ge 0}$ and $n \in \mathbb{N}$. 1. Predicate: $P(n) := \text{for } \chi \in \mathbb{R}_{\geq 0}$, $(|+\chi|)^{n} \ge (|+\chi|)^{n}$

In this class induction will be on

discrete sets though this is pot

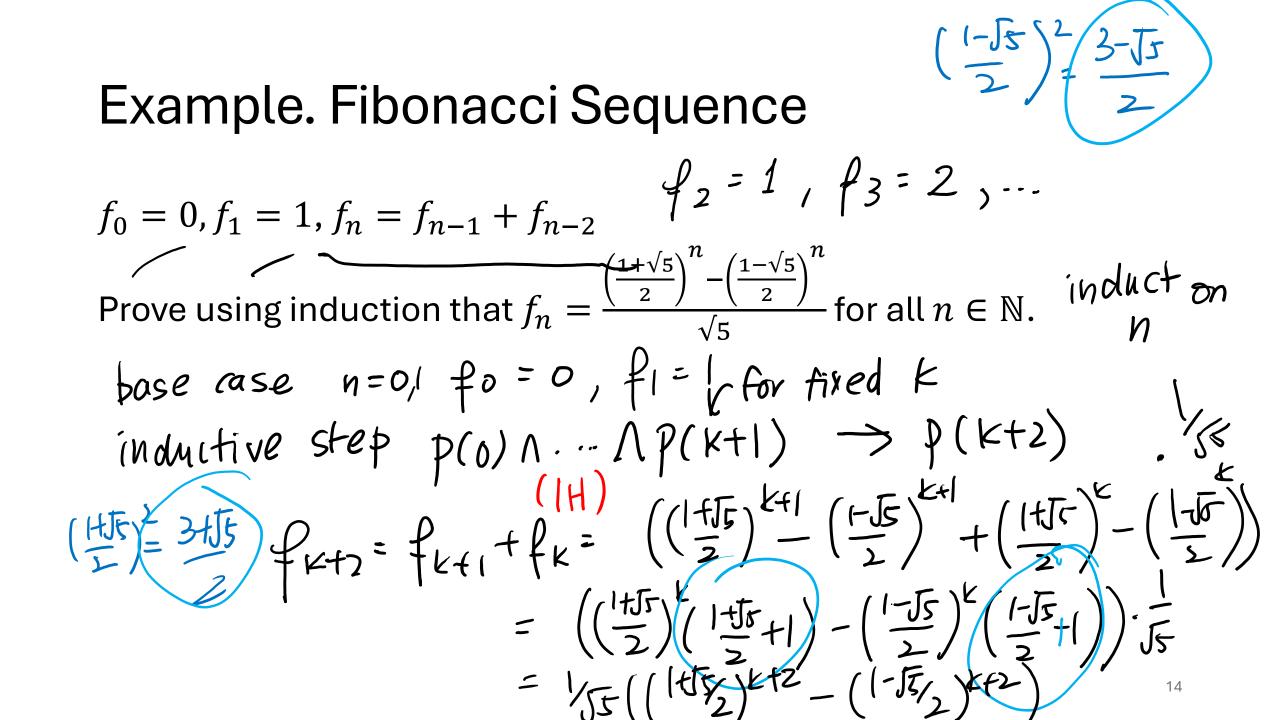
generally true.

- N = 0 $1 = (1 + \chi) = (1 + \eta \chi) = 1$ 2. Base Case: P(0) is true
- 3. Inductive step: $P(0) \land \forall k, P(k) \rightarrow P(k+1)$ assume P(K) is true show P(k+1) $(1+\chi)^{K+1} = (1+\chi)^{K}(1+\chi) \ge (1+\chi)(1+\chi)$ $= (+ (k+1)) \times +$

4. Conclusion: $\forall n \in \mathbb{N}$, P(n) is true.

Now you try!

Q1. Use *induction* to prove that in a set S with n = |S| elements, there are $\frac{n(n-1)(n-2)}{6}$ subsets of size exactly three.


Q2. Produce an algorithm which outputs all subsets of size exactly three. Give its tight asymptotic running time analysis.

Q1. Use induction to prove that in a set S with
$$n = |S|$$
 elements, there
are $\frac{n(n-1)(n-2)}{6}$ subsets of size exactly three. $S = \{1,2,5,4\}$ $\{1,2,3\} = \{1,3,2\}$
 $P(n) := a$ set S with n elements has exactly $\frac{n(n-1)(n-2)}{6}$
base case: $n = 0, 1, 2$ $\frac{n(n-1)(n-2)}{6} = 0$
inductive step: suppose $P(k)$ is the . Show $P(k+1)$ is the
 $(k \ge 2)$ (1H)
KNOW $|S| \ge 1$, say $a \in S$ (WDS) $S | \{a\}$ has $\frac{F(k-1)(k-2)(1)}{6}$
set of size 3 containing a : $\frac{F(k-1)(k-1)(2)}{6}$
 $F(k-1)(\frac{k-2}{6} + \frac{k}{2}) = \frac{F(k-1)(k+1)}{6}$

Q2. Produce an algorithm which outputs all subsets of size exactly three. Give its tight asymptotic running time analysis. $UB = O(N^3)$ def find (S:set) lines 23,4 each $1 \dots result = [7]$ 2...for i in range(n): 2...for i in range(n): 3...for j in range (i+1, n): nested) 24. por k in range (j+1, n): 5...return vesult 5...return vesult Mun in at most o(n) iterations (and $LB : Q(N^3), S = \{1, ..., n\}$ $Q(n^3)$ on S. $\rightarrow \exists T(n) = \Theta(n^3)$

Strong/Complete Induction

$$n = p_{1} \text{ is pine}$$
Example. For all $n \in \mathbb{N}$ where $n > 1$, n has a prime factorization.
1. Predicate: $P(n) := n$ has prime factorization.
2. Base Case: $P(0)$ is true $n=2$ is prime
3. Inductive step: $P(0) \land \forall k, (P(0) \land P(1) \land \dots \land P(k)) \rightarrow P(k+1)$
fix integer k , assume philotion $P(k(1))$ truck, $W(1) \Rightarrow P(k+1)$
fix integer k , assume philotion $P(k(1))$ truck, $W(1) \Rightarrow P(k+1)$
fix integer k , assume philotion $P(k(1))$ truck, $W(1) \Rightarrow P(k+1)$
fix integer k , assume philotion $P(k(1))$ truck, $W(1) \Rightarrow P(k+1)$
fix integer k , assume philotion $P(k(1))$ truck, $W(1) \Rightarrow P(k+1)$
fix integer k , assume prime prime $\sqrt{p} = 3a \cdot k + 1/a$ in
4. Conclusion: $\forall n \in \mathbb{N}, P(n)$ is true. (2) is composite integer
 $a \in \frac{k+1}{a} = k + 1/a = 9i \cdots 9i$

Let f_n be the *n*th Fibonacci number. Prove that $f_n \leq (7/4)^{n-1}$.

Certainly! Let's prove that for all positive integers n, the nth Fibonacci number, denoted as f_n , satisfies the inequality: $f_n \leq (7/4)^{n-1}$.

We'll use mathematical induction to prove this.

NC N

Base Case: For n = 1, we have $f_1 = 1$, and $(7/4)^0 = 1$. So, the base case holds.

Inductive Hypothesis: Assume that the inequality holds for some positive integer k, i.e. $f_k \leq (7/4)^{k-1}$

Inductive Step: We need to show that the inequality holds for k + 1: Starting with the definition of the Fibonacci sequence: $f_{k+1} = f_k + f_{k-1}$ By our inductive hypothesis : $f_k \le (7/4)^{k-1}$

And since Fibonacci numbers are positive, we can multiply both sides of the inequality by f_k :

Recap

- Course syllabus
- Recap of prior content
 - asymptotic analysis
 - Definitions of O, Ω , Θ notation
 - simple induction
 - Steps of the process: predicate, base case, inductive step (using IH)
- Strong/complete induction
 - Ex. Prime decomposition, Fibonacci sequence

Next time: theory behind induction and counting