
CSC 236:Introduction to the Theory of Computation

Summer 2024

Instructor: Lily

Week 1: Introductions 

and Induction
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You will do well if
you demonstrate thorough 

understanding of the course 
content
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Computer
Science EngineeringMathematics



Logistics

• Lectures: May 8th ~ Aug. 7th (11 total + 2 midterms)
• Tutorials: Starts next week. 8~9 pm after lectures 

Section Room Tutor

5101 BA 2159 Yibin

5102 BA 2139 Soroush

5103 BA 2135 Lawrence

5104 BA B024 Logan

• Office Hours: (tentative) BA 2272, Friday 1~3 pm
• Discussion: Piazza (link available on Quercus)
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Course Description

• Prerequisites: CSC165 or equivalent

• Textbooks:
• Required: David Liu’s notes and Vassos Hadzilacos’ notes (available on Quercus)

• Supplementary: The Nature of Computation (Moore, Mertens), Concrete 
Mathematics (Graham, Knuth, Patashnik), Introduction to Automata Theory, Languages, 
and computation (Hopcroft, Motwani, Ullman)

• Topics Covered:
• Mathematical Proofs
• Discrete Maths (e.g. Combinatorics, Graph Theory)
• Proof-of-correctness
• Finite Automaton
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Schedule Lecture: Week Content

1: May 6 – May 12 Introduction, Review, and Induction

2: May 13 - May 19 Combinatorics: the art of counting

3: May 20 - May 26 Induction with Examples in Combinatorics

4: May 27 - June 2 Induction with Examples in Graph Theory

5: June 3 - June 9 Correctness of Algorithms

6: June 10 - June 16 Recursive Algorithms

June 17 - June 23 Midterm 1 (Lectures 1~4)

June 24 - June 30

7: July 1 - July 7 Master Method: analysis of recursive algorithms

8: July 8 - July 14 Introduction to Formal Languages

July 15 - July 21 Midterm 2 (Lectures 5~7)

9: July 22 - July 28 Equivalence of DFA, NFA, and Regex

10: July 29 - Aug 4 Pumping Lemma and Limitations of Formal Languages

11: Aug 5 - Aug 11 Review and Student's Choice
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Marking Scheme

• Quizzes [11 total (take best 8); 1% each]
• available afternoon before lecture
• 4~5 questions

• Assignments [6 total (take best 4); 8% each]
• 2 warm-up questions (unmarked)
• 2 questions (marked): peer review required
• Late work: 10% deduction per day and at most 3 days 

• Midterms [During June exam week and July 17; 15% each]
• Missed midterm? 30min~1hour oral exam to reassign marks to final

• Final Exam [time TBD; 30%] minimum 40% to pass
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Remark Requests: Fill 
out form (see syllabus)



Review: Asymptotic Analysis
𝑓 ∈ 𝑂 𝑔

∃𝑐, ∃𝑛0, ∀𝑛 ≥ 𝑛0: 𝑓 𝑛 ≤ 𝑐𝑔(𝑛)
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𝑓 ∈ Ω 𝑔
∃𝑐, ∃𝑛0, ∀𝑛 ≥ 𝑛0: 𝑓 𝑛 ≥ 𝑐𝑔(𝑛)

𝑓 ∈ 𝑂 𝑔  and 𝑓 ∈ Ω 𝑔 → 𝑓 ∈ Θ(𝑔)



Review: Simple Induction

Example. Prove 1 + 𝑥 𝑛 ≥ (1 + 𝑛𝑥) for 𝑥 ∈ ℝ≥0 and 𝑛 ∈ ℕ.
1. Predicate: 𝑃(𝑛)

2. Base Case: 𝑃(0) is true

3. Inductive step: 𝑃 0 ∧ ∀𝑘, 𝑃 𝑘 → 𝑃(𝑘 + 1)
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4. Conclusion: ∀𝑛 ∈ ℕ, 𝑃(𝑛) is true. 

In this class induction will be on 
discrete sets though this is not 
generally true. 

https://arxiv.org/pdf/1208.0973
https://en.wikipedia.org/wiki/Transfinite_induction


Now you try!

Q1. Use induction to prove that in a set 𝑆 with 𝑛 = |𝑆| elements, 
there are 𝑛(𝑛−1)(𝑛−2)

6
 subsets of size exactly three. 

Q2. Produce an algorithm which outputs all subsets of size exactly 
three. Give its tight asymptotic running time analysis. 
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Q1. Use induction to prove that in a set 𝑆 with 𝑛 = |𝑆| elements, there 
are 𝑛(𝑛−1)(𝑛−2)

6
 subsets of size exactly three. 
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Q2. Produce an algorithm which outputs all subsets of size exactly 
three. Give its tight asymptotic running time analysis. 
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Strong/Complete Induction
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Example. For all 𝑛 ∈ ℕ where 𝑛 > 1, 𝑛 has a prime factorization.
1. Predicate: 𝑃(𝑛)

2. Base Case: 𝑃(0) is true

3. Inductive step: 𝑃 0 ∧ ∀𝑘, (𝑃(0) ∧ 𝑃(1) ∧ ⋯ ∧ 𝑃 𝑘 ) → 𝑃(𝑘 + 1)

4. Conclusion: ∀𝑛 ∈ ℕ, 𝑃(𝑛) is true. 

Simple Induction: 𝑃 0 ∧ ∀𝑘, 𝑃 𝑘 → 𝑃(𝑘 + 1)



Example. Fibonacci Sequence  

𝑓0 = 0, 𝑓1 = 1, 𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2

Prove using induction that 𝑓𝑛 =

1+√5

2

𝑛

−
1−√5

2

𝑛

√5
 for all 𝑛 ∈ ℕ.
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Let 𝑓𝑛 be the 𝑛th Fibonacci number. Prove that 𝑓𝑛 ≤ 7/4 𝑛−1.

Certainly! Let's prove that for all positive integers 𝑛, the 𝑛th Fibonacci number, denoted as 
𝑓𝑛, satisfies the inequality: 𝑓𝑛 ≤ 7/4 𝑛−1.
We'll use mathematical induction to prove this.
Base Case: For 𝑛 = 1, we have 𝑓1 = 1, and 7/4 0 = 1. So, the base case holds.
Inductive Hypothesis: Assume that the inequality holds for some positive integer 𝑘, i.e. 𝑓𝑘 ≤
7/4 𝑘−1

Inductive Step: We need to show that the inequality holds for 𝑘 + 1: 
Starting with the definition of the Fibonacci sequence: 𝑓𝑘+1 = 𝑓𝑘 + 𝑓𝑘−1

By our inductive hypothesis : 𝑓𝑘 ≤ 7/4 𝑘−1 
And since Fibonacci numbers are positive, we can multiply both sides of the inequality by 𝑓𝑘:

𝑓𝑘 ⋅ 𝑓𝑘−1 ≤ 𝑓𝑘 ⋅ 7/4 𝑘−1 
Now, let's use the fact that 𝑓𝑘 = 𝑓𝑘−1 + 𝑓𝑘−2: 

𝑓𝑘+1 = 𝑓𝑘 + 𝑓𝑘−1 ≤ 𝑓𝑘 + 𝑓𝑘 = 2𝑓𝑘  
Combining the inequalities: 2𝑓𝑘 ≤ 2 7/4 𝑘−1. 
Finally, we have: 𝑓𝑘+1 ≤ 2 7/4 𝑘−1 ≤ 7/4 𝑘. This completes the inductive step…



Recap

• Course syllabus
• Recap of prior content

• asymptotic analysis
• Definitions of 𝑂, Ω, Θ notation

• simple induction
• Steps of the process: predicate, base case, inductive step (using IH)

• Strong/complete induction
• Ex. Prime decomposition,  Fibonacci sequence

Next time: theory behind induction and counting
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