Week 1: Introductions and Induction

CSC 236:Introduction to the Theory of Computation Summer 2024 Instructor: Lily You will do well if you demonstrate thorough understanding of the course content

Logistics

- Lectures: May 8th ~ Aug. 7th (11 total + 2 midterms)
- Tutorials: *Starts next week*. 8~9 pm after lectures

Section	Room	Tutor
5101	BA 2159	Yibin
5102	BA 2139	Soroush
5103	BA 2135 Lawrence	
5104	BA B024	Logan

- Office Hours: *(tentative)* BA 2272, Friday 1~3 pm
- Discussion: Piazza (link available on Quercus)

Course Description

- Prerequisites: CSC165 or equivalent
- Textbooks:
 - Required: David Liu's notes and Vassos Hadzilacos' notes (available on Quercus)
 - Supplementary: The Nature of Computation (Moore, Mertens), Concrete Mathematics (Graham, Knuth, Patashnik), Introduction to Automata Theory, Languages, and computation (Hopcroft, Motwani, Ullman)
- Topics Covered:
 - Mathematical Proofs
 - Discrete Maths (e.g. Combinatorics, Graph Theory)
 - Proof-of-correctness
 - Finite Automaton

Sabadula	Lecture: Week	Content
Scheudle	1: May 6 – May 12	Introduction, Review, and Induction
	2: May 13 - May 19	Combinatorics: the art of counting
Maths Proof	3: May 20 - May 26	Induction with Examples in Combinatorics
Tools and Applications	4: May 27 - June 2	Induction with Examples in Graph Theory
	5: June 3 - June 9	Correctness of Algorithms
Proof-of- correctness	6: June 10 - June 16	Recursive Algorithms
	June 17 - June 23	Midterm 1 (Lectures 1~4)
	June 24 - June 30	
	7: July 1 - July 7	Master Method: analysis of recursive algorithms
	8: July 8 - July 14	Introduction to Formal Languages
	July 15 - July 21	Midterm 2 (Lectures 5~7)
Finite Automaton	9: July 22 - July 28	Equivalence of DFA, NFA, and Regex
	10: July 29 - Aug 4	Pumping Lemma and Limitations of Formal Languages
	11: Aug 5 - Aug 11	Review and Student's Choice

Marking Scheme

- Quizzes [11 total (take best 8); 1% each]
 - available afternoon *before* lecture
 - 4~5 questions

Remark Requests: Fill out form (see syllabus)

- Assignments [6 total (take best 4); 8% each]
 - 2 warm-up questions (unmarked)
 - 2 questions (marked): peer review required
 - Late work: 10% deduction per day and *at most 3 days*
- Midterms [During June exam week and July 17; 15% each]
 - Missed midterm? 30min~1hour oral exam to reassign marks to final
- Final Exam [time TBD; 30%] *minimum 40% to pass*

Review: Asymptotic Analysis

 $f \in O(g)$ and $f \in \Omega(g) \to f \in \Theta(g)$

Review: Simple Induction

In this class induction will be on discrete sets though this is <u>not</u> <u>generally</u> true.

Example. Prove $(1 + x)^n \ge (1 + nx)$ for $x \in \mathbb{R}_{\ge 0}$ and $n \in \mathbb{N}$.

- 1. Predicate: P(n)
- 2. Base Case: P(0) is true
- 3. Inductive step: $P(0) \land \forall k, P(k) \rightarrow P(k+1)$

4. Conclusion: $\forall n \in \mathbb{N}$, P(n) is true.

Now you try!

Q1. Use *induction* to prove that in a set S with n = |S| elements, there are $\frac{n(n-1)(n-2)}{6}$ subsets of size exactly three.

Q2. Produce an algorithm which outputs all subsets of size exactly three. Give its tight asymptotic running time analysis.

Q1. Use induction to prove that in a set *S* with n = |S| elements, there are $\frac{n(n-1)(n-2)}{6}$ subsets of size exactly three.

Q2. Produce an algorithm which outputs all subsets of size exactly. Give its tight asymptotic running time analysis.

Strong/Complete Induction

- Example. For all $n \in \mathbb{N}$ where n > 1, n has a prime factorization.
- 1. Predicate: P(n)
- 2. Base Case: P(0) is true
- 3. Inductive step: $P(0) \land \forall k, (P(0) \land P(1) \land \dots \land P(k)) \rightarrow P(k+1)$ Simple Induction: $P(0) \land \forall k, P(k) \rightarrow P(k+1)$

4. Conclusion: $\forall n \in \mathbb{N}$, P(n) is true.

Example. Fibonacci Sequence

$$f_0 = 0, f_1 = 1, f_n = f_{n-1} + f_{n-2}$$

Prove using induction that $f_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}$ for all $n \in \mathbb{N}$.

Let f_n be the *n*th Fibonacci number. Prove that $f_n \leq (7/4)^{n-1}$.

Certainly! Let's prove that for all positive integers n, the nth Fibonacci number, denoted as f_n , satisfies the inequality: $f_n \leq (7/4)^{n-1}$. We'll use mathematical induction to prove this. **Base Case**: For n = 1, we have $f_1 = 1$, and $(7/4)^0 = 1$. So, the base case holds. **Inductive Hypothesis:** Assume that the inequality holds for some positive integer k, i.e. $f_k \leq 1$ $(7/4)^{k-1}$ **Inductive Step**: We need to show that the inequality holds for k + 1: Starting with the definition of the Fibonacci sequence: $f_{k+1} = f_k + f_{k-1}$ By our inductive hypothesis : $f_k \leq (7/4)^{k-1}$ And since Fibonacci numbers are positive, we can multiply both sides of the inequality by f_k : $f_k \cdot f_{k-1} \le f_k \cdot (7/4)^{k-1}$ Now, let's use the fact that $f_k = f_{k-1} + f_{k-2}$: $f_{k+1} = f_k + f_{k-1} \le f_k + f_k = 2f_k$ Combining the inequalities: $2f_k \leq 2(7/4)^{k-1}$. Finally, we have: $f_{k+1} \leq 2(7/4)^{k-1} \leq (7/4)^k$. This completes the inductive step...

Recap

- Course syllabus
- Recap of prior content
 - asymptotic analysis
 - Definitions of O, Ω, Θ notation
 - simple induction
 - Steps of the process: predicate, base case, inductive step (using IH)
- Strong/complete induction
 - Ex. Prime decomposition, Fibonacci sequence

Next time: theory behind induction and counting