Week 10: Finish Equivalence Proof and Limitations

CSC 236:Introduction to the Theory of Computation Summer 2024 Instructor: Lily

Announcement

- Final Exam Time is out! July 19th in EX 200 (7:00~10:00pm)
 - BRING YOUR TCARD! (or other valid forms of ID as listed in the <u>Exam</u> <u>Toolkit</u>). No ID = no entry
 - Students who arrive more than 30 minutes *after* the start of the exam *will not* be able to take the exam
 - You **must score** (40 + 10*(# missed midterms))% to pass
 - True or False question marking update: +1 correct answer, -0.5 incorrect answer (used to be -1 incorrect answer)
- Tutorials this week: proving a language is not regular, Turing Machines, and decidability

Consider the following languages

For each of the following languages determine if it regular or not and try to explain why or why not

- 1. $L_1 = \{0^m 1^n : m, n \in \mathbb{N}\}.$
- 2. For some $k \in \mathbb{N}$, $L_2 = \{0^n 1^n : n \le k\}$.
- 3. $L_3 = \{0^n 1^n : n \in \mathbb{N}\}.$

YES, IS regular. To show 1. $L_1 = \{0^m 1^n : m, n \in \mathbb{N}\}.$ 1 construct finite automation or 2. regex $L_1 = \mathcal{L}(0^*1^*)$ 2. For some $k \in \mathbb{N}$, $L_2 = \{0^n 1^n : n \le k\}$. YES, IS regular. To show $L_2 = \int (R_2) R_3 = E + 0 + 0011 + \cdots +$ 0...01...1 3. $L_3 = \{0^n 1^n : n \in \mathbb{N}\}$. No, not regular. K K

How do we show this?

Proving Non-Regularity

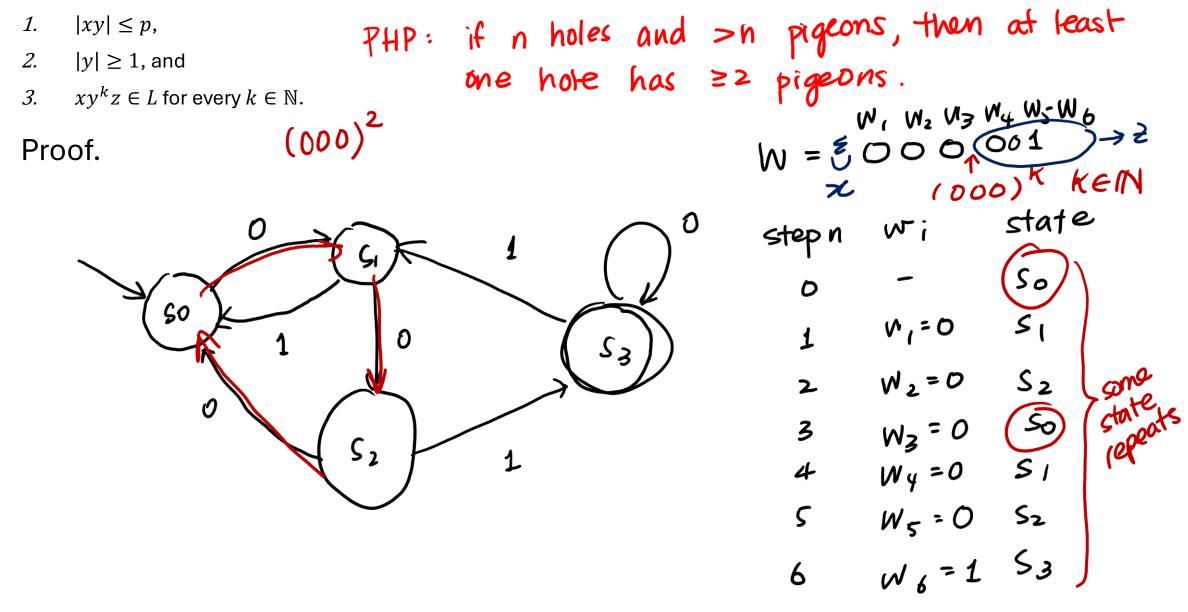
Pumping Lemma

If $L \subset \Sigma^*$ is regular, then there exists a pumping length $p \in \mathbb{N}$ such that for every $w \in L$ of length greater than or equal to p, w = xyz for $x, y, z \in \Sigma^*$ such that:

1. $|xy| \le p$,If there are true, then...READ: string w2. $|y| \ge 1$, andIf there are true, then...can be split into 33. $xy^k z \in L$ for every $k \in \mathbb{N}$.can construct infinite set of other strings such that there strings are eL

Note: the Pumping Lemma is only useful for infinite languages (infinite sets of strings). What about finite languages?

If $L \subset \Sigma^*$ is regular, then there exists a pumping length $p \in \mathbb{N}$ such that for every $w \in L$ of length greater than or equal to p, w = xyz for $x, y, z \in \Sigma^*$ such that:



If $L \subset \Sigma^*$ is regular, then there exists a pumping length $p \in \mathbb{N}$ such that for every $w \in L$ of length greater than or equal to p, w = xyz for $x, y, z \in \Sigma^*$ such that:

- $1. \quad |xy| \le p,$
- $2. |y| \ge 1, \text{ and }$
- 3. $xy^k z \in L$ for every $k \in \mathbb{N}$.

Example.

Show that $L = \{vv: v \in \{0,1\}^*\}$ is not regular. r. suppose L is regular. By pumping lemma let p be its pumping lemma. Let p be its pumping. 2. pick string w= 0°10°1, NOTE: WEL 3. WRITE $W = XYZ = X = 0^{i} Y = 0^{j} Z = 0^{-j-j} 10^{j} 1$ 4 Then $xyz \in L$ $xy^2 = 0'0'0'^2 P^{-i-j} 10^{p} L$ = 0^{P-J}10^P1 ¢L L's NOT regular. contradiction 5.

Now you try!

Show that the following languages are *not* regular.

- 1. $L_1 = \{0^n 1^n : n \in \mathbb{N}\}.$
- *2.* $L_2 = \{0^n : n \text{ is a prime}\}.$

Prove that $L_1 = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular. has some 1. Suppose Li is regular. By the pumping lemma, Li pumping length p 2. pick well: $W = OP_1P$ 3. Determine x, y, z where zv - xyz satisfying $|xy| \le p$ $x = 0^{i}$, $y = 0^{i}$, $z = 0^{p-i-j} 1^{p}$ $|y| \ge 1$ 4. pumping lemma suns $xy^2 z \in L_1$, but $xy^2 z = 0'0'0'-j_1'$ since $\chi y^2 z$ is NOT of the form $O_1^n = O_1^{p+1} 1^p$ ($n \in \mathbb{N}$), this is a contradiction, Li so not regular.

Prove that
$$L_2 = \{0^n : n \text{ is a prime}\}$$
 is not regular.
1. Assume L_2 is regular and p is its pumping length
2. pick $w \in L_2$: $w = 0^q$: q smallest prime number
larger than p .
3. Determine z_1y_1z : $x = 0^1$ $y = 0^1$ $(j \ge 1)$ $z = 0^{-i-j}$
4. pump: consider $w = x_2y_1^{(q+1)}z$. (i) By pumping lemma,
 $w \in L_2$ cancel
(ii) $w = 0$ $0^{j(q+1)} = 0^{j(q+1)}z^{(q+$

Consider
$$L = \{0^n : n \text{ is even}\}$$
.
1. assume L in regular, let p be pumping length.
2. pick we L : $w=0^{2P}$
3. Determine $x, y, z : x = 0^i, y = 0^j (j \ge 1), z = 0^{p-i-j}$
4. pump : (onsider $w = xy^k \ge for k \in \mathbb{N}$.
(i) pumping lemma $w' \in L$
(ii) $w' = 0^i 0^{jk} 0^{2P-i-j} = 0^{2P} + j(k-1)$
Since we cannot pick
j, if $j=2$ then the
string will always be in L
Not a contradiction.

General problem format

Given a language L, you will be asked: is L regular?

- 1. Make a decision: regular or not regular.
- 2. If regular: proof of regularity.
 - Produce a finite automaton or regular expression which accept the given language
 - Prove correctness of finite automaton (if asked)
- 3. If not regular: proof of non-regularity.
 - Assume *L* is regular and apply pumping lemma

Regular Languages can't count.

Not Tieve: every NFA in a DFA ×
Teve: every NFA in a DFA ×
Teve: every NFA has a
DFA M such that
Given a NFA
$$M_N = (Q_N, \Sigma, \delta_N, S_N, F_N)$$
, construct a DFA $M_D = \mathcal{L}(N) - \mathcal{L}(M)$
 $(Q_D, \Sigma, \delta_D, S_D, F_D)$ such that $\mathcal{L}(M_N) = \mathcal{L}(M_D)$.
 $\delta_D : Q \times \Sigma \rightarrow Q$ $\delta_N : Q \times (\Sigma \cup i \varepsilon_i) \rightarrow \mathcal{P}(Q)$
 $\delta_D : Q \times \Sigma \rightarrow Q$ $\delta_N : Q \times (\Sigma \cup i \varepsilon_i) \rightarrow \mathcal{P}(Q)$
Given M_N , construct M_D : (by defining different sine for
 $forms$) $f(Q)$,
 Σ is going to be the same of states.

NFA to DFA

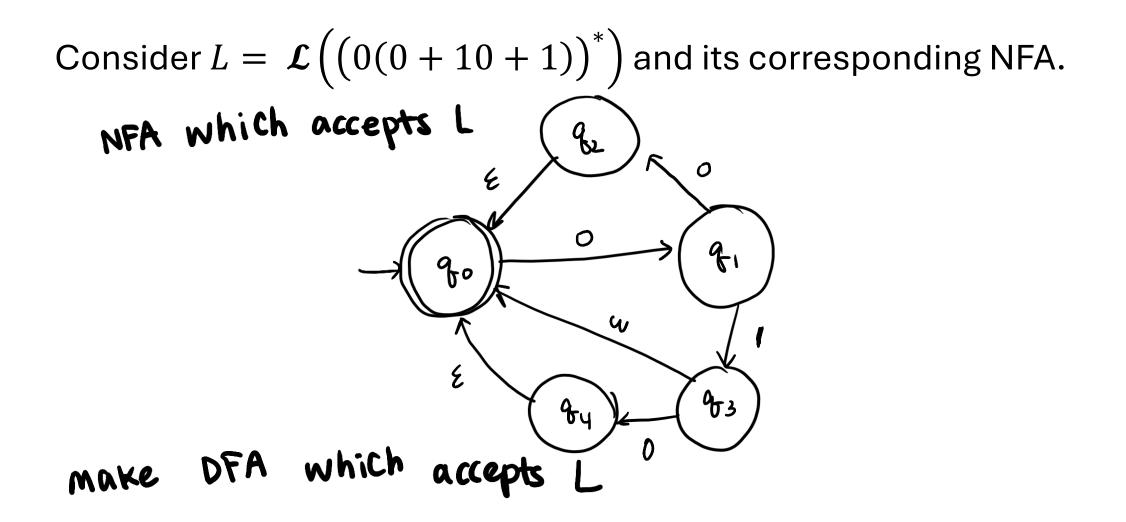
$$q_{1/q_{2}...q_{N}} \exists \in [n]$$

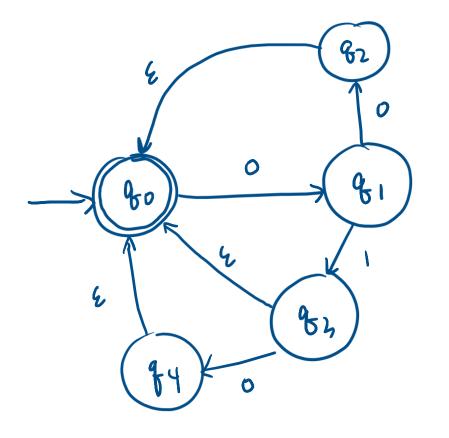
Given a NFA $M_{N} = (Q_{N}, \Sigma, \delta_{N}, s_{N}, F_{N})$, construct a DFA $M_{D} = (Q_{D}, \Sigma, \delta_{D}, s_{D}, F_{D})$ such that $\mathcal{L}(M_{N}) = \mathcal{L}(M_{D})$.
 $Q_{D} := all subsets of Q_{N} , i.e. $\mathcal{P}(Q_{N})$
 $s_{D} := \varepsilon (S_{N})$
Pread : "epsilon-closure" of SN
means : start at SN and repeatedly
take ε -transitions
 $F_{D} := all q_{T} \in \mathcal{P}(Q_{N})$ such that $F_{N} \cap \exists \neq p$
i.e. q_{T} represents some state which was an
accepting state in the NFA.$

NFA to DFA

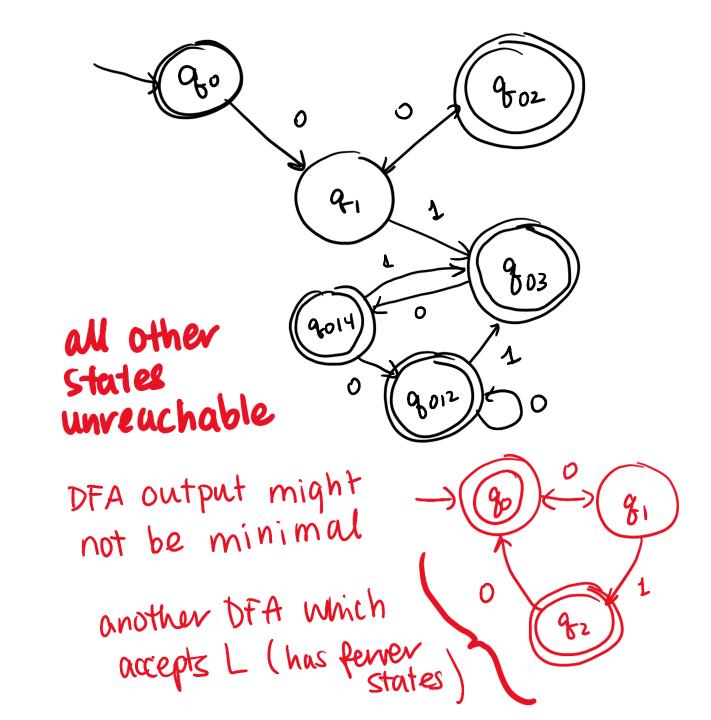
$$J = \varepsilon \begin{pmatrix} U & S_N(q_{i,a}) \\ i \in I \\ S_D & \vdots \\ S_D & (q_{I,a}) = q_J \\ first transition on a then take any ε -transitions avail.
represents the ε -closure of all states in I transitioning on a (i.e, start at any such state, take any ε -transition, a, then any ε -transition.$$

NFA to DFA Example





 one state for each subset of {0,1,2,3,4}
 accepting state if contains state representing 0
 start state is any state reachable using E-transitions.



Recap

- DFAs, NFAs, and regular expressions have the same expressive power (we showed the first two are equivalent, you will show the last is equivalent to the first two)
- Pumping lemma: used to show that a language is not regular
- Regular languages cannot count

Next time... review!