Week 2: More Induction and Counting

CSC 236:Introduction to the Theory of Computation Summer 2024 Instructor: Lily

Announcements

- Volunteer notetaker for Accessibility Services
- Registered study groups
- Solution to unmarked Q2 updated
- New Office Hours (still in BA 2272):
 - Tuesdays: 4-5pm (NEW! starts May 21)
 - Fridays: 1-2pm (MODIFIED!)
- Assignment Office Hours (BA 2270):
 - Thursday, 1-2pm
 - Friday 2-3pm

Announcements

- Waitlisted students: email us!
 - Q1 and A1 gets average of other quizzes (best 7) and assignments (best 3)

Subject [Waitlist] First Name, Last Name, Student Number, UTORID

- Bonus points: email us!
 - 4+ endorsed answers or corrections on piazza (send us list of links, your name, and student ID) --- processed near the end of the semester

Subject [Bonus] First Name, Last Name, Student Number, UTORID

	dolined on test.	H LL
Question 1	will be out	1 pts
	γ	houses have the same
Consider the following proof 1. In the base case, if there a 2. For a fixed k , assume that 3. Take a group of $k + 1$ hor 4. Similarly, by IH, horses 2, 5. Note that the middle hors 6. Thus all horses are the same	that all horses have the same color. We induction on n , the number of horses. Clure k horses then the statement is vacuously true . If there is one horse it is the set $P(k)$ is true. Show that $P(k + 1)$ is true. sets and label them $1, \ldots, k + 1$. By IH, horses $1, \ldots, k$ are equal. $\ldots, k + 1$ are the same color. les $2, \ldots, k$ must all be the same color which is the color of horse 1 and horse k me color.	hoose every line which is incorrect. same color as itself. +1. H H H H H H H H
□ 4 		
<u>5</u>		
		$H_{2}H_{3}$
3		
6	TUTORIAL 51012	2 may be canceled
2		

Relations

Relations

S=iN'Z' $U \subseteq S$ U has minimum element

Well-Ordering:

A – on a set S is a *total ordering* such that every *non-empty* subset of S has a least element

Well-Ordering Theorem: (Zermelo's Thm)

Every *nonempty* set *S* has a relation < on *S* which is a well ordering.

Well-Ordering Principle:

Every nonempty set of \mathbb{N} has a smallest element.

If not subset of
$$\mathbb{N}$$
, $U \leq \mathbb{Z} \Rightarrow U = \{0, -1, -2, \}$.
If empty, then no least element.

Giusepp Peano Induction implies Well-Ordering Principle 19th WOP Follows from P(n) 4n because (entry Well-Ordering Principle (WOP): Sis non-empty. arithmetics Every *nonempty* subset of \mathbb{N} has a *smallest* element. on M. Induction: (Pro) A VK, (Pro) A. A P(K)) = PEKER) = VNEIN, Prn) if nes then Shasa min element. P(n): base: n=0 if 0 ≠ s p(0) is trivially true (False > true) Expan OES then 0 is min of 5

Well-Ordering

For all $n \in \mathbb{N}$ where n > 1, n has a prime factorization.

Let
$$S \leq IN$$
, $S := \begin{cases} n \in IN, n > 1 : n \\ prime \\ prime \\ factorization \\ sume for contradiction \\ S non-empty, WOP gives
us min $element \\ w \\ of \\ S. Note \\ with \\ a,b < w \\ and \\ a,b > y \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ S \\ s not \\ prime \\ factor \\ a,b \\ e \\ s not \\ s not$$

Fundamentals of Counting

 Applications: telephone numbers, IP addresses, password $\frac{416}{647} \times 3 digits \times 4 digits. \Rightarrow 3 \times 10^7$ security, biology (e.g. sequencing DNA) the TORONTO PHONE NUMBERS : N30 mill. 1 call persecond ~ 60 x 60 x 24 x 437

- Putting items (n) into different slots (m)
- Factorials: $n! = n \cdot (n-1) \cdots 2 \cdot 1$

• Binomial Coefficient:
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

365 1 call/year

Permutation: Order Matters

How many ways can *n* children stand in a line for a picture?

Combinations: Order Does Not Matter

How many ways can we draw a hand of *m* cards from a deck of *n*? Assume $m \le n$. m=3 n=52

$$\frac{1 \text{ choices } n-1 \text{ choices } \cdots n-m + 1 \text{ choices } K \otimes QV}{= \left[\frac{n!}{m!} \left(\frac{n-m}{m!}\right) + \left(\frac{n}{m}\right) \otimes AV \right] K \otimes AV \right]}$$

Permutation: Order Matters

How many ways can *n* children stand in a line for a picture?

Examples

- How many permutations of the letters ABCDEFG contains the string "ABC"?
- 2. How many possibilities are there for the first, second, and third positions in a horse race with 12 horses?
- 3. A group contains *n* men and *n* women. How many ways are there to arrange theses people in a row if the men and women alternate?

Now You Try!

- 1. How many binary strings contain 3 ones and 5 zeros?
- 2. Prove that $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$ for all positive integer *n*.
- 3. Suppose there are 2*n* people. How many ways can we form a committee of *n* people?
- 4. Prove that $\sum_{k=0}^{n} {n \choose k} {n \choose n-k} = {2n \choose n}$ for all positive integer n.

Q1. How many binary strings contain 3 ones and 5 zeros? # of items 01 $\binom{8}{5}$ contains Q2. Prove that $\sum_{k=0}^{n} (-1)^{k} {n \choose k} = 0$ for all positive integer n. # \$10fs for $(1+\alpha)^n = \sum_{k=1}^n \chi^k \begin{pmatrix} n \\ k \end{pmatrix} \chi = -1.$ does not K=0 ZER

Q3. Suppose there are 2n people. How many ways can we form a (2n) (n) slots committee of *n* people? Q4. Prove that $\sum_{k=0}^{n} {n \choose k} {n \choose n-k} = {2n \choose n}$ for all positive integer n. what does this mean? men $n-k \rightarrow \begin{pmatrix} n \\ n-k \end{pmatrix} \# wavys$ η women $|K \rightarrow (h) \\ + here could be <math>0 \rightarrow n \quad (k) \\ + l of wows \\ so \sum_{k=0}^{n} {h \choose k} \\ + l of wows \\ women \quad of choosingk \\ women \quad 17$ N

Permutation with Replacement

There are *n* children and *m* chores. How many ways are there to assign the children to the chores if each child can do any number of chores? Chore 1 chore 2 chore 3

γŶÌ

n choices n choices n choices

Combination with Replacement $\binom{n+n-1}{m-1} = \binom{n+m-1}{m-1}$ There aro m flower of i There are *m* flavors of ice-cream. How many ways are there to make an ice-cream cone with n balls of ice-cream (order does not matter) ∂M 4 flavors (choc. Straw, Vanilla, mint) B scoops Choc vanilla straw mint $\frac{0|0|00|0}{5'0's_1}$

Example. How many solutions are there to the equation $x_1 + x_2 + x_3 + x_4 + x_4 + x_4 + x_4 + x_5 + x_4 + x_5 + x_4 + x_4 + x_4 + x_5 + x_4 + x_4 + x_5 + x_4 + x_5 + x_4 + x_5 + x_5$ $x_3 = 11$ where $x_1, x_2, x_3 \in \mathbb{N}$. divide up "1's $X_{1} + X_{2} + X_{3} = 11$ different "flavors" = $\begin{pmatrix} 11+3-1 \\ 1 \end{pmatrix}$ $= \begin{pmatrix} 13 \\ 11 \end{pmatrix}$ 20

	Items (n)		
Туре		No Replacement	Replacement
	Permutation	EX. pick top m dogs in dog show among $n (m \le n)$ $n (n-1) \dots (n-m+1) = \frac{n!}{(n-m)!}$	Ex. pick m numbers for lotteng ticket among n n ^m
	Combination	Ex. Pick group of m children from n to form a club $\binom{n}{m}$	Ex. Picking m scoops of icecream from among n flavors (M+n-1 m)

/

Example. Start at (0,0) and end at (s, t). Valid steps: one step up or one step right. How many different paths?

Recap

- Order relations, total ordering, well-ordering
- Induction and the Well-Ordering Principle are equivalent (we only saw induction implies well-ordering principle)
- Permutation (with/without replacement)
- Combination (with/without replacement)
- Lots of Examples

Next time... Discrete Probability, Pigeonhole Principle and Introduction to Graphs.