Week 2: More Induction
and Counting

CSC 236:Introduction to the Theory of Computation
Summer 2024

Instructor: Lily



Announcements

* Volunteer notetaker for Accessibility Services
* Registered study groups
* Solution to unmarked Q2 updated

* New Office Hours (still in BA 2272):
* Tuesdays: 4-5pm (NEW! - starts May 21)
* Fridays: 1-2pm (MODIFIED!)

* Assignment Office Hours (BA 2270):
* Thursday, 1-2pm
* Friday 2-3pm



Announcements

* Waitlisted students: email us!
* Q1 and A1 gets average of other quizzes (best 7) and assignments (best 3)

Subject [Waitlist] First Name, Last Name, Student Number, UTORID

* Bonus points: email us!

* 4+ endorsed answers or corrections on piazza (send us list of links, your
name, and student ID) --- processed near the end of the semester

Subject = [Bonus] First Name, Last Name, Student Number, UTORID
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Consider the following proof that afl horses have the same color. We induction on 1, the number of horses. Choose every line which is incorrect. dor

Question 1 \N\\\ b@

1. In the base case, if there argmeorses then the statement is vacuously true .If there is one horse it is the same cmlc&;@\
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2. For a fixed k, assume that 5 true. Show that P(k + 1) is true.
3. Take a group of k + 1 horsesand label them 1,...,k + 1. By IH, horses 1, . .., k are equal.

4. N\imilarly, by IH, horses 2, . .., k + 1 are the same color. ‘-( F\
5, Mote that the middle horses 2, . . . , k must al| be the same color which is the color of horse 1 and horse k + 1. ( 3 \\
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Relations
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Well-Ordering: C=MN £ Uec S U hus minimum hement

A—-onasetSisatotal ordering such that every non-empty subset
of S has a least element

Well-Ordering Theorem: ( 2p(melo’s Thvn>
Every nonempty set S has a relation < on S which is a well ordering.

+ DonT Lamma = Axiom 0{2 Choice

Well-Ordering Principle:
o

Every nonempty set of N has a smallest element.
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Induction implies Well-Ordering Principle % o
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Well-Ordering

Foralln € Nwheren > 1, n has a prime factorization.
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Fundamentals of Counting

* Applications: telephone numbers, IP addresses, password

security, biology (e.g. sequencing DNA) 3 ¢
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* Putting items (n) into different slots (m)
* Factorials:n!l=n-(n—1)---2-1

n!
k!(n—k)!
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» Binomial Coefficient: () =
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Permutation: Order Matters

How many ways can n children stand in a line for a picture?

n choicg  n-1 choices o 2 choicq CMOin-:% V\\.
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Combinations: Order Does Not Matter

How many ways can we draw a hand of m cards from a deck of n?
Assume m < n. m=23 n=g2
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Permutation: Order Matters

How many ways can n children stand in a line for a picture?

Combinations: Order Does Not Matter

n n n—
S @ m+(”‘1)_xw N

) ymav)
— " O\ Nnme
(%) - -+ (1%3¢) i S\/  linaav ey )
wit choxe L¢ thoose all %S
cho0S 2 for all bd sne

ol 4

13



Examples

1. How many permutations of the
letters ABCDEFG contains the string
“ABC”?

2. How many possibilities are there for
the first, second, and third positions
In a horse race with 12 horses?

3. Agroup containsn menandn
women. How many ways are there to
arrange theses people in arow if the
men and women alternate?
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Now You Try!

1.

2.

How many binary strings contain 3 ones and 5 zeros?

Prove that Z’,}zo(—l)k(’;) = 0 for all positive integer n.

Suppose there are 2n people. How many ways can we form a

committee of n people?

Prove that Y_o(7)(. ™ ) = (°1") for all positive integer n.
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Q1. How many binary strings contain 3 ones and 5 zeros?
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Q2. Prove that Xi_o(—1)*(%) = 0 for all positive integern. = sfm%ﬁf
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Q3. Suppose there are 2n people. How many ways can we form a

committee of n people? — temS
(2n>
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Permutation with Replacement

There are n children and m chores. How many ways are there to
assign the children to the chores if each child can do any number of

f?
chores? ehove 4 choe2  chove

N Cchoices n hoiceS nc['\biC%
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%wwml case
Combination with Replacementﬁcfwv _ (nﬂm-()

C hoose ¢ " m-1
There are m flavors of ice-cream. How many ways are there to make\,
an ice-cream cone with n balls of ice-cream (order does not matter)@’\“‘égp
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Example. How many solutions are there to the equation x; + x, +
x3 = 11 where x4, x5, x3 € N.
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ltems (n)

Type

No Replacement

Replacement
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Example. Start at (0,0) and end at (s, t). Valid steps: one step up or
one step right. How many different paths?

(s,t)

(0,0)
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Recap

* Order relations, total ordering, well-ordering

* Induction and the Well-Ordering Principle are equivalent (we only
saw induction implies well-ordering principle)

* Permutation (with/without replacement)
* Combination (with/without replacement)
* Lots of Examples

Next time... Discrete Probability, Pigeonhole Principle and
Introduction to Graphs.
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