
CSC 236:Introduction to the Theory of Computation

Summer 2024

Instructor: Lily

Week 4: Graph Theory and 

Structural Induction

1



Announcement

• Peer review (5 points)
• [1 point] Complete all your assigned reviews
• [1 point] For each review accuracy of marking (for now: if you give mark 𝑎, 

and the TA gives mark 𝑡
• 𝑎 − 𝑡 ≤ 1: full marks
• 𝑎 − 𝑡 ∈ (1, 2]: −0.75

• 𝑎 − 𝑡 ∈ (2, 3]: −0.5

• 𝑎 − 𝑡 ∈ (3,4]: −0.25

• 𝑎 − 𝑡 > 4: no marks

• A2 Q1 (a) now unmarked, A2 Q1 (d) question modified, A2 Q2 (a)-
(c) hints modified, Q2 (d) removed. 

2



Trees

• Root
• Binary tree
• Height

3



Recursively Defined Sets

4

• ℕ

• Sequence of balanced brackets

• Binary trees



Structural Induction

Prove: every non-empty binary tree has one more node than edge.

5



6

Recursively define set 𝑆 ⊆ ℕ × ℕ.
• 0,0 ∈ 𝑆
• If (𝑎, 𝑏) ∈ 𝑆, then both 𝑎 + 1, 𝑏 + 1 ∈ 𝑆 and 𝑎 + 3, 𝑏 ∈ 𝑆
Define 𝑆′ = { 𝑥, 𝑦 ∈ ℕ × ℕ: (𝑥 ≥ 𝑦) ∧ (3|𝑥 − 𝑦)}. Prove that 𝑆 = 𝑆′.



Now You Try!

1. Give a recursive definition over the alphabet +, −, , ∪ ℕ of 
well-formed expressions involving addition and subtraction on 
the natural numbers.

2. A ternary tree can have at most three children. Prove using 
structural induction, that for every 𝑛 ≥ 1, every non-empty 
ternary tree of height 𝑛 has at most (3𝑛 − 1)/2 nodes.

7



8

Q1. Give a recursive definition over the alphabet +, −, , ∪ ℕ of well-formed 
expressions involving addition and subtraction on the natural numbers.



9

Q2. A ternary tree can have at most three children. Prove using structural 
induction, that for every 𝑛 ≥ 1, every non-empty ternary tree of height 𝑛 has at 
most (3𝑛 − 1)/2 nodes.



Minimum Spanning Tree (MST)

10

• Weighted graph: 𝐺 = (𝑉, 𝐸) and 
weight function 𝑤: 𝐸 → ℝ

• Spanning tree: subgraph 𝑇 =
(𝑉′, 𝐸′) where 𝑉′ ⊆ 𝑉 and 𝐸′ ⊆
𝐸 which is a tree

• Weight of subgraph 𝑇:
 𝑤 𝑇 = σ𝑒∈𝐸′ 𝑤(𝑒)

• MST: for connected weighted 
graph 𝐺, spanning tree 𝑇 with 
minimum weight 

a
b

c

d

e

f

g

h i

j



Prim’s Algorithm

11

def mst_prim(V, E, w)-> list[edges]:

  # Pre: G = (V,E) connected

  # Post: output MST

1  T = []

2  visited = {a}

3  while visited != V:

4    (u,v) = min weight edge

5    T = T.append((u,v))

6    visited.add(v)

7  return T 

a
b

c

d

e

f

g

h i

j

5
1

2
2

3
4

2
2

2

67

6

1

8



Program Correctness (Iterative)

12

• Preconditions: properties of the input
• Postconditions: properties of the output

Program Correctness. Let 𝑓 be a function with a set of 
preconditions and post conditions. Then 𝑓 is correct (with respect 
to the pre- and postconditions) if for every input 𝐼 to 𝑓, if 𝐼 satisfies 
the preconditions, then 𝑓(𝐼) terminates and all the postconditions 
hold after termination.



Correctness of Prim’s Algorithm

13

def mst_prim(V, E, w)-> list[edges]:

  # Pre: G = (V,E) connect

  # Post: output MST

1  T = []

2  visited = {a}

3  while visited != V:

4    (u,v) = min weight edge

5    T = T.append((u,v))

6    visited.add(v)

7  return T 



Asymptotic Analysis

14

def mst_prim(V, E, w)-> list[edges]:

  # Pre: G = (V,E) connect

  # Post: output MST

1  T = []

2  visited = {a}

3  while visited != V:

4    (u,v) = min weight edge

5    T = T.append((u,v))

6    visited.add(v)

7  return T 



15



Recap

• Graph terminology: trees
• Structural induction

• Recursive definition

• Introduction to proof-of-correctness
• More thorough asymptotic analysis recap

Next time… many more examples of proofs-of-correctness

16


	Slide 1
	Slide 2: Announcement
	Slide 3: Trees
	Slide 4: Recursively Defined Sets
	Slide 5: Structural Induction
	Slide 6
	Slide 7: Now You Try!
	Slide 8
	Slide 9
	Slide 10: Minimum Spanning Tree (MST)
	Slide 11: Prim’s Algorithm
	Slide 12: Program Correctness (Iterative)
	Slide 13: Correctness of Prim’s Algorithm
	Slide 14: Asymptotic Analysis
	Slide 15
	Slide 16: Recap

