Week 4: Graph Theory and Structural Induction

CSC 236: Introduction to the Theory of Computation Summer 2024 Instructor: Lily

CSC236-2024-05@ CS.

Announcement

toronto.edu

- Peer review (5 points)
 - [1 point] Complete all your assigned reviews
 - [1 point] For each review accuracy of marking (for now: if you give mark *a*, and the TA gives mark *t*
 - $|a t| \le 1$: full marks
 - $|a t| \in (1, 2]$: -0.75
 - $|a t| \in (2, 3]: +0.5$
 - $|a t| \in (3,4]$: +0.25
 - |a t| > 4: no marks
- A2 Q1 (a) now unmarked, A2 Q1 (d) question modified, A2 Q2 (a)-(c) hints modified, Q2 (d) removed.

Recursively Defined Sets apphabet ?1,t} smallest satisful N € ⇒ atbelt Hth . . . $-a, b \in \mathbb{N}$ WN War Sequence of balanced brackets HIEN EN alphabet = $\xi(,)$ NO YES • Binary trees B EE S abes if a, EB if $B_1, B_2 \in \mathcal{B}$ $\hat{=}$ $(\alpha) \in S$ if QES ヨ ʹΒͺ 6

K-ang tree = max number of children is K **Structural Induction** to show for all trees, replicate anywement for K-any tree. Prove: every non-empty binary tree has one more node than edge. There P(T): for binding thee T, T has one more kis node them edge. * vertices of T # edges of T max deg |V(T)| = 1, |E(T)| = 0Base case: let T = . (ii) j (i) Inductive step: if $T_1, T_2 \in \beta$ (i) $|V(T)| = |+n_1+n_2$ $|E(T)| = 2t(n_1-1)t(n_1-1)$ $(IH) |V(T_i)| = N_i |E(T_i)| = N_i$ $(ii) |V(T)| = |+N_1 = n_1 + N_2$ $|V(T_2)| = n_2 |E(T_2)| = n_2 - 1$ $|E(T)| = |+(n_i-1) = n_i$

Recursively define set $S \subseteq \mathbb{N} \times \mathbb{N}$.

•
$$(0,0) \in S$$

• If $(a,b) \in S$, then both $(a + 1, b + 1) \in S$ and $(a + 3, b) \in S$
Define $S' = \{(x,y) \in \mathbb{N} \times \mathbb{N}: (x \ge y) \land (3|x - y)\}$. Prove that $S = S' \Rightarrow S \in S'$
(1) $P(x,y) : if (x,y) \in S$, then $z \ge y \land 3|x - y$
Base case: $(0,0) \in S$, $0 \ge 0 \land 3|0 - 0 \lor \Rightarrow (0,0) \in S'$
Inductive step: $(a,b) \in S$ WTS $(a+1,b+1)$ and $(a+3,b) \in S'$
BY IH $a \ge b$ and $\exists (a-b) \Rightarrow a+1 \ge b+1$ and $\exists (a+1)-(b+1)$
 $\Rightarrow a+3 \Rightarrow b$ and $\exists (a+3) - b$
(2) $P(n) : \forall (x,y) \in S', x+y=n$ then $(x,y) \in S$ (Base case. $n=0 \Rightarrow x=y=0$)
Let $K \ge 0$, $P(0) \land \dots \land P(K)$ is true, WTS $P(z+1) : \overline{x+y-k+1} [\Rightarrow (0,0) \in S$
(i) if $y=0$, since $z+y=x=k+1\ge 1$ and $\exists (z-y \Rightarrow 3) \downarrow u$ have $z\ge 3$ so $\overline{x-3} \ge 0$
By IH we have $(\overline{x-3}, y) \in S$ so this implies $(\overline{x-3})+3, y) = (x,y) \in S$
(ii) if $y=0$, since $z\ge y$ so $x \ge 0$ and $x-1$, $y-1\ge 0$. By $(H (x-1,y-1)) \in S$
so by recursive def of S , $((x-1)+1, (y-1)+1) = (x,y) \in S$.

Now You Try!

- 1. Give a recursive definition over the alphabet $\{+, -, (,)\} \cup \mathbb{N}$ of *well-formed* expressions involving addition and subtraction on the natural numbers.
- 2. A ternary tree can have at most three children. Prove using structural induction, that for every $n \ge 1$, every non-empty ternary tree of height n has at most $(3^n 1)/2$ nodes.

Q1. Give a recursive definition over the alphabet $\{+, -, (,)\} \cup \mathbb{N}$ of *well-formed* expressions involving addition and subtraction on the natural numbers.

i
$$N \in S$$
 ii $a, b \in S \Rightarrow (a+b) \in S, (a-b) \in S$
use ii
 $N^{S} \left(\left((1+0) - (1+6) \right) + 2 \right) \qquad 1+0+3$
 $USE i$
 $USE i$

 $h(T) = h(T_{1})/T_{1}$ Q2. A ternary tree can have at most three children. Prove using structural 2 induction, that for every $m \geq 1$, every non-empty ternary tree of height n has at allin most $(3^{n+1} - 1)/2$ nodes. N20 reamine def of ternary thee: T_1, T_2, T_3 of height n has $\leq (3^{n+1})_{12}$ nodes. Base case = T= 1 5 height E' consider 12h(T1)+1

Minimum Spanning Tree (MST)

- Weighted graph: G = (V, E) and weight function $w: E \to \mathbb{R}$
- Spanning tree: subgraph T = (V', E') where $V' \subseteq V$ and $E' \subseteq E$ which is a tree
 - Weight of subgraph *T*:

 $w(T) = \sum_{e \in E'} w(e)$

• MST: for connected weighted graph *G*, spanning tree *T* with minimum weight

Prim's Algorithm

def mst prim(V, E, w) -> list[edges]: # Pre: G = (V, E) connected # Post: output MST 1 T = []visited = {a} & arbitrary 2 (u)while visited != V: 3 (u,v) = min weight edge Vevisited 4 VEV\U 5 T = T.append((u, v))6 visited.add(v) 7 return T

Program Correctness (Iterative)

- Preconditions: properties of the input
- Postconditions: properties of the output

Program Correctness. Let f be a function with a set of preconditions and post conditions. Then f is *correct* (with respect to the pre- and postconditions) if for every input I to f, if I satisfies the preconditions, then f(I) terminates and all the postconditions hold after termination.

Correctness of Prim's Algorithm

```
def mst_prim(V, E, w)-> list[edges]:
```

- # Pre: G = (V,E) connect
- # Post: output MST
- 1 T = []
- 2 visited = $\{a\}$
- 3 while visited != V:
- 4 (u,v) = min weight edge
- 5 T = T.append((u, v))
- 6 visited.add(v)
- 7 return T

Asymptotic Analysis

```
def mst_prim(V, E, w)-> list[edges]:
    # Pre: G = (V,E) connect
    # Post: output MST
1 T = []
2 visited = {a}
3 while visited != V:
4 (u,v) = min weight edge
5 T = T.append((u,v))
```

- 6 visited.add(v)
- 7 return T

Recap

- Graph terminology: trees
- Structural induction
 - Recursive definition
- Introduction to proof-of-correctness
- More thorough asymptotic analysis recap

Next time... many more examples of proofs-of-correctness