
CSC 236:Introduction to the Theory of Computation

Summer 2024

Instructor: Lily

Week 5: Proof-of-

Correctness

1

Announcements

• A2 due tomorrow (Thursday June 6) EoD
• Midterm logistics available on the course website

• June 19th 7:00~9:00pm in the exam center (currently EX 200). Check A&S
website for location before exam as it might change.

• You can bring a one-sided aid sheet.
• There will be 5 questions (possibly with multiple parts) and one bonus.
• Covers material from weeks 1~4 (up to but not including today)
• Please email us asap if you cannot attend to schedule make-up oral

exam. These need to take place before we release solutions.

2

Prim’s Algorithm

def mst_prim(V, E, w)-> list[edges]:

 # Pre: G = (V,E) connected

 # Post: output MST

1 T = []

2 visited = {a}

3 while visited != V:

4 (u,v) = min weight edge

5 T = T.append((u,v))

6 visited.add(v)

7 return T

a
b

c

d

e

f

g

h i

j

5
1

2
2

3
4

2
2

2

67

6

1

8

3

Program Correctness (Iterative)

Precondition. Properties of the input.
Postconditions. Properties of the output

Program Correctness. Let 𝑓 be a function with a set of
preconditions and post conditions. Then 𝑓 is correct (with respect
to the pre- and postconditions) if for every input 𝐼 to 𝑓, if 𝐼 satisfies
the preconditions, then 𝑓(𝐼) terminates and all the postconditions
hold after termination.

4

Termination. Guarantees that the loop terminates.

Loop Invariant. Guarantees that during the execution of the
algorithm you are making progress towards goal

Structure

1. Find the appropriate post-condition (if not given).
2. If there are loops in your algorithm, give an appropriate loop

invariant (LI) for the loop and prove your loop invariant.
3. Use your LI and the loop exit condition to prove partial

correctness.
4. Define an appropriate loop measure to prove termination of the

loop.
5. (*) Running time analysis.

5

6

Multiply

def mult(a, b):

 # Pre: a and b are natural number

 # Post: returns a*b

1 m = 0

2 count = 0

3 while count < b:

4 m += a

5 count += 1

6 return m

7

Average – Correctness

def average(A):

 # Pre: A is a non-empty list of numbers

 # Post: Returns the average of all numbers in A

 total = 0

 i = 0

 while i < len(A):

 total += A[i]

 i += 1

 return total / len(A)

8

Average – Termination

def average(A):

 # Pre: A is a non-empty list of numbers

 # Post: Returns the average of all numbers in A

 total = 0

 i = 0

 while i < len(A):

 total += A[i]

 i += 1

 return total / len(A)

9

Average – Run-time

def average(A):

 # Pre: A is a non-empty list of numbers

 # Post: Returns the average of all numbers in A

1 total = 0

2 i = 0

3 while i < len(A):

4 total += A[i]

5 i += 1

6 return total / len(A)

10

Now your turn! Selection Sort

def selection_sort(A):

 # Pre: A is a non-empty list of integers

 n = len(A)

 i = 0

 for i in range(n):

 min_index = i

 for j in range(i+1, n):

 if A[j] < A[min_index]:

 min_index = j

 swap(A[i], A[min_index])

 return

11

Selection Sort – Correctness

def selection_sort(A):

 # Pre: A is a non-empty list of integers

 n = len(A)

 i = 0

 for i in range(n):

 min_index = i

 for j in range(i+1, n):

 if A[j] < A[min_index]:

 min_index = j

 swap(A[i], A[min_index])

 return

12

Selection Sort – Termination/ Run Time

def selection_sort(A):

 # Pre: A is a non-empty list of integers

 n = len(A)

 i = 0

 for i in range(n):

 min_index = i

 for j in range(i+1, n):

 if A[j] < A[min_index]:

 min_index = j

 swap(A[i], A[min_index])

 return

13

Insertion Sort

def insertion_sort(A):

 # Pre: A is a non-empty list of integers

 n = len(A)

 i = 0

 while i < n:

 j = i

 while j > 0 and A[j-1] > A[j]:

 swap(A[j], A[j-1])

 i += 1

 return

Prim’s Algorithm

def mst_prim(V, E, w)-> list[edges]:

 # Pre: G = (V,E) connected

 # Post: output MST

1 T = []

2 visited = {a}

3 while visited != V:

4 (u,v) = min weight edge

5 T = T.append((u,v))

6 visited.add(v)

7 return T

14

a
b

c

d

e

f

g

h i

j

5
1

2
2

3
4

2
2

2

67

6

1

8

Prim’s Algorithm – Correctness

15

def mst_prim(V, E, w)-> list[edges]:

 # Pre: G = (V,E) connected

 # Post: output MST

1 T = []

2 visited = {a}

3 while visited != V:

4 (u,v) = min weight edge

5 T = T.append((u,v))

6 visited.add(v)

7 return T

16

def mst_prim(V, E, w)-> list[edges]:

 # Pre: G = (V,E) connected

 # Post: output MST

1 T = []

2 visited = {a}

3 while visited != V:

4 (u,v) = min weight edge

5 T = T.append((u,v))

6 visited.add(v)

7 return T

Prim’s Algorithm – Termination/ Run Time

Recap

• Overview of proof-of-correctness steps
• Seen some examples for simple algorithms
• Seen harder examples in sorting
• Proved correctness of Prim’s Algorithm

Next time… recursive algorithm and proving that they are correct

17

	Slide 1
	Slide 2: Announcements
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Recap

