
CSC 236:Introduction to the Theory of Computation

Summer 2024

Instructor: Lily

Week 7: Recursive

Algorithm Analysis

1

Announcement

• Email note: please include your UTORID
• A3 peer reviews extended to Thursday (maybe the last one)
• A4 due date extended to July 11th

• Midterm 1 results end of this week or start of next
• Still finishing up oral exams; solutions out at the end of the week

• Midterm 2: 6:00~8:00pm EX 100 (July 17)
• Covers proof-of-correctness material (weeks 4~7, assignments 3 and 4)
• Same structure as midterm 1 (5 questions), one sided aid sheet

• Tutorials cover examples. This week: run-time analysis

2

Quick Sort (Worst Case)

3

def partition(A, i, j):

 # Pre: i, j indices of A (i <= j)

 # Post: index p so that A[k] < A[p] for

 # k = i, …, p-1 and A[l] > A[p] for

 # l = p+1, …, j

 p = i

 pivot = A[j-1]

 for k in range(i, j-1):

 if pivot > A[k]:

 swap(A, p, k)

 p += 1

 swap(A, p, j-1)

 return p

def quicksort(A, i, j):

 # Pre: list A. i, j indices

 # Post: A is sorted

 if j-i <= 1:

 return

 p = partition(A, i, j)

 quicksort(A, i, p)

 quicksort(A, p+1, j)

𝑇 𝑛 = Θ 𝑛 + 𝑇 𝑛 − 1 + 𝑇(1)

Substitution Method

4

𝑇 𝑛 = Θ 𝑛 + 𝑇 𝑛 − 1 + 𝑇(1)

Substitution Method

5

𝑇 𝑛 = Θ 𝑛 + 𝑇 𝑛 − 1 + 𝑇(1)

Pitfalls

6

𝑇 𝑛 = 𝑛 + 2 ⋅ 𝑇
𝑛

2

Pitfalls

7

𝑇 𝑛 = 𝑛 + 2 ⋅ 𝑇
𝑛

2

Quick Sort (Expected Case)

8

def partition(A, i, j):

 # Pre: i, j indices of A (i <= j)

 # Post: index p so that A[k] < A[p] for

 # k = i, …, p-1 and A[l] > A[p] for

 # l = p+1, …, j

 p = i

 pivot = A[j-1]

 for k in range(i, j-1):

 if pivot > A[k]:

 swap(A, p, k)

 p += 1

 swap(A, p, j-1)

 return p

𝑇 𝑛 = Θ 𝑛 + 2 ⋅ 𝑇
𝑛

2

def quicksort(A, i, j):

 # Pre: list A. i, j indices

 # Post: A is sorted

 if j-i <= 1:

 return

 p = partition(A, i, j)

 quicksort(A, i, p)

 quicksort(A, p+1, j)

Recurrence Tree Method

9

𝑇 𝑛 = Θ 𝑛 + 2 ⋅ 𝑇
𝑛

2

Master Method

10

Recurrence relation of the form: 𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)

Case 1. (Root Heavy) If 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖 where 𝜖 > 0, then

𝑇 𝑛 = Θ(𝑓 𝑛)

Case 2. (Leaf Heavy) If 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖 where 𝜖 > 0, then

𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

Case 3. (Balanced) If 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛

Root Heavy

11

𝑇 𝑛 = 3𝑇
𝑛

4
+ 𝑛log 𝑛

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛)

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛

Root Heavy

12

𝑇 𝑛 = 3𝑇
𝑛

4
+ 𝑛log 𝑛

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛)

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛

Leaf Heavy

13

𝑇 𝑛 = 9𝑇
𝑛

3
+ 𝑛

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛)

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛

Leaf Heavy

14

𝑇 𝑛 = 9𝑇
𝑛

3
+ 𝑛

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛)

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛

Balanced

15

𝑇 𝑛 = 𝑇
2𝑛

3
+ 1

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛)

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛

Balanced

16

𝑇 𝑛 = 𝑇
2𝑛

3
+ 1

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛)

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛

How about…

17

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛log 𝑛?

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛)

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖 where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛

18

def karatsuba(a, b):

 # Pre: a and b are natural

number with at most n digits

 # Post: returns a*b

if |a| == 1 and |b| == 1:

 return a*b

a1, a2 = a[0..n/2], a[n/2..n]

b1, b2 = b[0..n/2], b[n/2..n]

p1 = karatsuba(a1, b1)

p2 = karatsuba(a1+a2, b1+b2)

p3 = karatsuba(a2, b2)

return p1*10^{n} + (p2-p1-

p3)*10^{n/2} + p3

Now you try!
1. Recall Karatsuba’s algorithm from

last lecture. Use the Master
Method to find its asymptotic
running time.

2. Use the Master Method to
compute the closed form for the
following recurrence relations:
a) 𝑇 𝑛 = 8𝑇

𝑛

4
+ 𝑛2 log 𝑛

b) 𝑇 𝑛 = 3𝑇
𝑛

9
+ √𝑛

c) 𝑇 𝑛 = 36𝑇
𝑛

6
+ 𝑛1.5

Q1. Recall Karatsuba’s algorithm from last lecture. Use the Master Method to find its
asymptotic running time.

19

def karatsuba(a, b):

 # Pre: a and b are natural

number with at most n digits

 # Post: returns a*b

if |a| == 1 and |b| == 1:

 return a*b

a1, a2 = a[0..n/2], a[n/2..n]

b1, b2 = b[0..n/2], b[n/2..n]

p1 = karatsuba(a1, b1)

p2 = karatsuba(a1+a2, b1+b2)

p3 = karatsuba(a2, b2)

return p1*10^{n} + (p2-p1-

p3)*10^{n/2} + p3

Q2. Use the Master Method to compute the closed form for following:

a) 𝑇 𝑛 = 8𝑇
𝑛

4
+ 𝑛2 log 𝑛

b) 𝑇 𝑛 = 3𝑇
𝑛

9
+ √𝑛

c) 𝑇 𝑛 = 36𝑇
𝑛

6
+ 𝑛1.5

20

How about…

21

𝑇 𝑛 = 2𝑇 𝑛 + log 𝑛?

How about…

22

𝑇 𝑛 = 2𝑇 𝑛/2 + 17 + 𝑛?

Recap

• Substitution method
• Recurrence tree method (guess closed form)
• Master method + examples
• Karatsuba multiplication
• Quick Sort best and worst case

Next time… finite automaton

23

	Slide 1
	Slide 2: Announcement
	Slide 3: Quick Sort (Worst Case)
	Slide 4: Substitution Method
	Slide 5: Substitution Method
	Slide 6: Pitfalls
	Slide 7: Pitfalls
	Slide 8: Quick Sort (Expected Case)
	Slide 9: Recurrence Tree Method
	Slide 10: Master Method
	Slide 11: Root Heavy
	Slide 12: Root Heavy
	Slide 13: Leaf Heavy
	Slide 14: Leaf Heavy
	Slide 15: Balanced
	Slide 16: Balanced
	Slide 17: How about…
	Slide 18: Now you try!
	Slide 19
	Slide 20
	Slide 21: How about…
	Slide 22: How about…
	Slide 23: Recap

