
CSC 236:Introduction to the Theory of Computation

Summer 2024

Instructor: Lily

Week 7: Recursive 

Algorithm Analysis

1



Announcement

• Email note: please include your UTORID
• A3 peer reviews extended to Thursday (maybe the last one)
• A4 due date extended to July 11th

• Midterm 1 results end of this week or start of next
• Still finishing up oral exams; solutions out at the end of the week

• Midterm 2: 6:00~8:00pm EX 100 (July 17)
• Covers proof-of-correctness material (weeks 4~7, assignments 3 and 4)
• Same structure as midterm 1 (5 questions), one sided aid sheet

• Tutorials cover examples. This week: run-time analysis
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Quick Sort (Worst Case)
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def partition(A, i, j):

  # Pre: i, j indices of A (i <= j)

  # Post: index p so that A[k] < A[p] for

  # k = i, …, p-1 and A[l] > A[p] for 

  # l = p+1, …, j

  p = i

  pivot = A[j-1]

  for k in range(i, j-1):

    if pivot > A[k]:

      swap(A, p, k)

      p += 1

  swap(A, p, j-1)

  return p

def quicksort(A, i, j):

  # Pre: list A. i, j indices

  # Post: A is sorted

  if j-i <= 1:

    return 

  p = partition(A, i, j)

  quicksort(A, i, p) 

  quicksort(A, p+1, j)

𝑇 𝑛 = Θ 𝑛 + 𝑇 𝑛 − 1 + 𝑇(1)



Substitution Method
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𝑇 𝑛 = Θ 𝑛 + 𝑇 𝑛 − 1 + 𝑇(1)



Substitution Method
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𝑇 𝑛 = Θ 𝑛 + 𝑇 𝑛 − 1 + 𝑇(1)



Pitfalls
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𝑇 𝑛 = 𝑛 + 2 ⋅ 𝑇
𝑛
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Pitfalls
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𝑇 𝑛 = 𝑛 + 2 ⋅ 𝑇
𝑛
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Quick Sort (Expected Case)
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def partition(A, i, j):

  # Pre: i, j indices of A (i <= j)

  # Post: index p so that A[k] < A[p] for

  # k = i, …, p-1 and A[l] > A[p] for 

  # l = p+1, …, j

  p = i

  pivot = A[j-1]

  for k in range(i, j-1):

    if pivot > A[k]:

      swap(A, p, k)

      p += 1

  swap(A, p, j-1)

  return p

𝑇 𝑛 = Θ 𝑛 + 2 ⋅ 𝑇
𝑛
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def quicksort(A, i, j):

  # Pre: list A. i, j indices

  # Post: A is sorted

  if j-i <= 1:

    return 

  p = partition(A, i, j)

  quicksort(A, i, p) 

  quicksort(A, p+1, j)



Recurrence Tree Method
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𝑇 𝑛 = Θ 𝑛 + 2 ⋅ 𝑇
𝑛
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Master Method
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Recurrence relation of the form: 𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)

Case 1. (Root Heavy) If 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  where 𝜖 > 0, then 

𝑇 𝑛 = Θ(𝑓 𝑛 )

Case 2. (Leaf Heavy) If 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖  where 𝜖 > 0, then 

𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

Case 3. (Balanced) If 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛



Root Heavy
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𝑇 𝑛 = 3𝑇
𝑛

4
+ 𝑛log 𝑛

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎) 
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛



Root Heavy
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𝑇 𝑛 = 3𝑇
𝑛

4
+ 𝑛log 𝑛

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎) 
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛



Leaf Heavy
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𝑇 𝑛 = 9𝑇
𝑛

3
+ 𝑛

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎) 
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛



Leaf Heavy
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𝑇 𝑛 = 9𝑇
𝑛

3
+ 𝑛

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎) 
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛



Balanced
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𝑇 𝑛 = 𝑇
2𝑛

3
+ 1

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎) 
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛



Balanced
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𝑇 𝑛 = 𝑇
2𝑛

3
+ 1

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎) 
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛



How about…
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𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛log 𝑛?

(Root Heavy) 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

(Leaf Heavy) 𝑓 𝑛 = O 𝑛log𝑏 𝑎−𝜖  where 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎) 
(Balanced) 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛
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def karatsuba(a, b):

   # Pre: a and b are natural 

number with at most n digits

   # Post: returns a*b

if |a| == 1 and |b| == 1:

  return a*b

a1, a2 = a[0..n/2], a[n/2..n]

b1, b2 = b[0..n/2], b[n/2..n]

p1 = karatsuba(a1, b1)

p2 = karatsuba(a1+a2, b1+b2)

p3 = karatsuba(a2, b2)

return p1*10^{n} + (p2-p1-

p3)*10^{n/2} + p3

Now you try!
1. Recall Karatsuba’s algorithm from 

last lecture. Use the Master 
Method to find its asymptotic 
running time.

2. Use the Master Method to 
compute the closed form for the 
following recurrence relations:
a) 𝑇 𝑛 = 8𝑇

𝑛

4
+ 𝑛2 log 𝑛 

b) 𝑇 𝑛 = 3𝑇
𝑛

9
+ √𝑛

c) 𝑇 𝑛 = 36𝑇
𝑛

6
+ 𝑛1.5



Q1. Recall Karatsuba’s algorithm from last lecture. Use the Master Method to find its 
asymptotic running time.
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def karatsuba(a, b):

   # Pre: a and b are natural 

number with at most n digits

   # Post: returns a*b

if |a| == 1 and |b| == 1:

  return a*b

a1, a2 = a[0..n/2], a[n/2..n]

b1, b2 = b[0..n/2], b[n/2..n]

p1 = karatsuba(a1, b1)

p2 = karatsuba(a1+a2, b1+b2)

p3 = karatsuba(a2, b2)

return p1*10^{n} + (p2-p1-

p3)*10^{n/2} + p3



Q2. Use the Master Method to compute the closed form for following:

a) 𝑇 𝑛 = 8𝑇
𝑛

4
+ 𝑛2 log 𝑛 

b) 𝑇 𝑛 = 3𝑇
𝑛

9
+ √𝑛

c) 𝑇 𝑛 = 36𝑇
𝑛

6
+ 𝑛1.5

 

20



How about…
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𝑇 𝑛 = 2𝑇 𝑛 + log 𝑛?



How about…
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𝑇 𝑛 = 2𝑇 𝑛/2 + 17 + 𝑛?



Recap

• Substitution method
• Recurrence tree method (guess closed form)
• Master method + examples
• Karatsuba multiplication
• Quick Sort best and worst case

Next time… finite automaton
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