Week 8: Regular
Languages and Finite
Automaton

CSC 236:Introduction to the Theory of Computation
Summer 2024

Instructor: Lily

Announcement

« Midterm 2: 6:00~8:00pm EX 100 (July 17)
* Bonus Question (midterm 2). Course material (up to and including W7)
* Missed Exam? Submit request by July 22 (documents by July 25)

* Structure for finite automaton section:
* Week 8: DFA, NFA, and regular expressions

* Week 9: Proof of correctness of finite automatons, equivalence of DFA-
NFA-regular expressions

* Week 10: Limitations of regular languages, pumping lemma
* Tutorials this week: more examples of DFAs and NFAs

Regular Languages

General Definitions of Languages

An alphabet X is a finite set of symbols.

English Boolean Hexadecimal

Alphabet

General Definitions of Languages

An alphabet X is a finite set of symbols.

English Boolean Hexadecimal

Alphabet | {A .. 7} {0,1} {0,...., F}

General Definitions of Languages

An alphabet X is a finite set of symbols.

A string w over X is a finite sequence of symbols from . The empty
string is denoted e.

English Boolean Hexadecimal

Alphabet | {A .. 7} {0,1} {0,...., F}

String

General Definitions of Languages

An alphabet X is a finite set of symbols.

A string w over X is a finite sequence of symbols from . The empty
string is denoted e.

English Boolean Hexadecimal

Alphabet | {A .. 7} {0,1} {0,...., F}

String BANANA 01011001 FFFF00

General Definitions of Languages

An alphabet X is a finite set of symbols.

A string w over X is a finite sequence of symbols from . The empty
string is denoted e.

The length of w is the number of characters it contains.

English Boolean Hexadecimal
Alphabet | {A, .., 7} {0,1} {0,...,F}
String BANANA 01011001 FFFFOO0

(Length)

General Definitions of Languages

An alphabet X is a finite set of symbols.

A string w over X is a finite sequence of symbols from . The empty
string is denoted e.

The length of w is the number of characters it contains.

English Boolean Hexadecimal
Alphabet | {A, .., 7} {0,1} {0,...,F}
String BANANA (6) 01011001 (8) | FFFFO0O (6)

(Length)

General Definitions of Languages

An alphabet X is a finite set of symbols.

A string w over X is a finite sequence of symbols from . The empty
string is denoted e.

The length of w is the number of characters it contains.

A language L over Y is a subset of ¥*. (} is the empty language.

English Boolean Hexadecimal
Alphabet | {A, .., 7} {0,1} {0,...,F}
String BANANA (6) 01011001 (8) | FFFFOO (6)
(Length)
Language

General Definitions of Languages

An alphabet X is a finite set of symbols.

A string w over X is a finite sequence of symbols from . The empty
string is denoted e.

The length of w is the number of characters it contains.

A language L over Y is a subset of ¥*. (} is the empty language.

English Boolean Hexadecimal
Alphabet | {A, .., 7} {0,1} {0,..., F}
String BANANA (6) 01011001 (8) | FFFFOO (6)
(Length)
Language | all words {0,1}* {ceX*:|c|=6}

Operations on Languages

e Union: Let / and J be languages over the alphabet ¥, then the
language
luJ={xeX":xelorxel}

e Concatenation: Let / and J be as the above, then the language

lodJ={xyeX*:xel,yeJ}

Operations on Languages

e Union: Let / and J be languages over the alphabet ¥, then the
language
luJ={xeX":xelorxel}

e Concatenation: Let / and J be as the above, then the language

lodJ={xyeX*:xel,yeJ}

e Exponentiation: Let / be as above, then for any k € N

Operations on Languages

e Union: Let / and J be languages over the alphabet ¥, then the
language
luJ={xeX":xelorxel}

e Concatenation: Let / and J be as the above, then the language

lodJ={xyeX*:xel,yeJ}

e Exponentiation: Let / be as above, then for any k € N

Question: what is L°7?

Operations on Languages

e Union: Let / and J be languages over the alphabet ¥, then the
language
luJ={xeX":xelorxel}

e Concatenation: Let / and J be as the above, then the language

lodJ={xyeX*:xel,yeJ}

e Exponentiation: Let / be as above, then for any k € N

Question: what is L°? Answer: {e}.

Operations on Languages

e Union: Let / and J be languages over the alphabet ¥, then the

language 1:§wéfo,):
luJ={xeX":xelorxel}

W= 0:--0
e Concatenation: Let / and J be as the above, then the language ,
ne
loJ={xyeX:xel,yelJ} fN5

9= Twego, 13t

e Exponentiation: Let / be as above, then for any k € N Wsg.-ce

néEmN
K=Jo--.0l 3
H,—/ *.
bs JVl: iwev. o
Question: what is L°? Answer: {e}. w: Q-0 on
e Kleene Star: Let / be as above, then we ‘h 4
I® = {x € X*:xcl*forany k € N} h cm}

Regular Languages

Regular Language

A regular language over an alphabet ¥ is defined recursively as:

Regular Languages

Regular Language

A regular language over an alphabet ¥ is defined recursively as:

e (), the empty set, is a regular language.

e {c}, the language consisting of an empty string, is a regular
language.

e For any character, a.k.a symbol, a € ¥, {a} is a regular language.

Regular Languages

Regular Language

A regular language over an alphabet ¥ is defined recursively as:

e (), the empty set, is a regular language.

e {c}, the language consisting of an empty string, is a regular
language.

e For any character, a.k.a symbol, a € ¥, {a} is a regular language.

o (Closure of Regular Languages.) If | and J are regular languages,
then so are /U J, [o J, and /®.

Regular Languages

Regular Language

A regular language over an alphabet ¥ is defined recursively as:

e (), the empty set, is a regular language.

e {c}, the language consisting of an empty string, is a regular
language.

e For any character, a.k.a symbol, a € ¥, {a} is a regular language.

o (Closure of Regular Languages.) If | and J are regular languages,
then so are /U J, [o J, and /®.

Example.

1. X* (take the Kleene Star of {a € X}).
2. Over the Boolean alphabet ¥ = {0, 1}, the language

L={weX:w=eorw=01---01}.

Regular Expressions

Consider the following language L:

L={w e {0,1}" : w starts with 0 or 1,
followed by any number of ones,

and ends with a 0}

Consider the following language L:

L={w e {0,1}" : w starts with 0 or 1,
followed by any number of ones,

and ends with a 0}
What we want is a template of the form:

(0 or 1) and then (any number of 1) and then 0

Consider the following language L:

L={w e {0,1}" : w starts with 0 or 1,
followed by any number of ones,

and ends with a 0}
What we want is a template of the form:
(0 or 1) and then (any number of 1) and then 0
.. or even more succinctly still

(0+1)1%0

Regular Expressions

Let R and S be regular expressions. Then valid operations include:
R + S: formally known as alternation, but can be read as or. Analogous to
the U operation on languages.
RS: formally known as concatenation. Analogous to the o operation.

R*: formally known as repetition. Analogous to the ® operation.

Regular Expressions

Let R and S be regular expressions. Then valid operations include:

R + S: formally known as alternation, but can be read as or. Analogous to
the U operation on languages.
RS: formally known as concatenation. Analogous to the o operation.

R*: formally known as repetition. Analogous to the ® operation.

Regular Expression

A regular expression over an alphabet ¥ is defined recursively. §), ¢, and
a € ¥ are regular expressions. If R and S are regular expression over ¥,
then so are (R+ S), (RS), and R*.

Regular Expressions

Let R and S be regular expressions. Then valid operations include:

R + S: formally known as alternation, but can be read as or. Analogous to
the U operation on languages.
RS: formally known as concatenation. Analogous to the o operation.

R*: formally known as repetition. Analogous to the ® operation.

Regular Expression

A regular expression over an alphabet ¥ is defined recursively. §), ¢, and
a € ¥ are regular expressions. If R and S are regular expression over ¥,
then so are (R + S), (RS), and R*.

Regular expression R represents the language L£(R) (in the previous
example L = £((0 + 1)1*0)).

Finite Automaton

Deterministic Finite Automaton (DFA)

Definition
A Deterministic Finite (State) Automaton (DFA) M is the quintuple
M=(Q,X%,d,s, F) where

e @ is a finite set of states.

Deterministic Finite Automaton (DFA)

Definition
A Deterministic Finite (State) Automaton (DFA) M is the quintuple
M=(Q,X%,d,s, F) where

e Q is a finite set of states.

e Y is a finite alphabet.

Deterministic Finite Automaton (DFA)

Definition
A Deterministic Finite (State) Automaton (DFA) M is the quintuple
M=(Q,X%,d,s, F) where

e @ is a finite set of states.

e Y is a finite alphabet.

e): QXX — Q@ is the transition function. In essence J encodes the
transition from state to state. Given the current state g and an
input symbol a, d(q, a) = p is the state where you end up.

Deterministic Finite Automaton (DFA)

Definition
A Deterministic Finite (State) Automaton (DFA) M is the quintuple
M=(Q,X%,d,s, F) where

e @ is a finite set of states.

e Y is a finite alphabet.

0: QXX — Q is the transition function. In essence § encodes the
transition from state to state. Given the current state g and an
input symbol a, d(q, a) = p is the state where you end up.

S is the start or initial state.

Deterministic Finite Automaton (DFA)

Definition
A Deterministic Finite (State) Automaton (DFA) M is the quintuple
M=(Q,X%,d,s, F) where

e @ is a finite set of states.

e Y is a finite alphabet.

0: QXX — Q is the transition function. In essence § encodes the
transition from state to state. Given the current state g and an
input symbol a, d(q, a) = p is the state where you end up.

S is the start or initial state.

F C Q@ is the set of accepting states.

Deterministic Finite Automaton (DFA)

Definition
A Deterministic Finite (State) Automaton (DFA) M is the quintuple
M=(Q,X%,d,s, F) where

e @ is a finite set of states.

e Y is a finite alphabet.

0: QXX — Q is the transition function. In essence § encodes the
transition from state to state. Given the current state g and an
input symbol a, d(q, a) = p is the state where you end up.

S is the start or initial state.

F C Q@ is the set of accepting states.

DFA M accepts the language L£(M).

DFA Example

Consider the following DFA M = (Q, {0,1},4, s, F) where:

State | 0 | 1

do do | q1

* Q=1{q0, 91,92, g} G| G| g
® s=qp. 2 | R
o F={g}. a3 a3 | 93

Table 1: Transition table for ¢.

10

DFA Example

Consider the following DFA M = (Q, {0,1},4, s, F) where:

State | 0 | 1
qo do | q1
* @=1{q0,91,92,93}. g | g | o
® 5= qp. q2 g2 | q3
o F= {q3} g3 g3 | q3
Table 1: Transition table for §.
¢= obi

Question: What strings does M accept? - 00

0 0, occcb\fd‘agm

1224
S)_ = oo\
not aceopt ed
A

L 4
0T =y 9, . accapts shangs with
DFAfa: oz?‘sa"s.'q 10

Now you try!

Design a DFA which accepts the following languages
1. L, = {w € {0,1}": w starts with 0 and ends with 1}.
2. L, = {w € {0,1}*: w contains an odd number of 1}.
3. Lz ={0™"1™:m,n € N,m + nis even}.

L =wE€ l (o)
1 { {
0,1}*
:w sta
rt
s with 0
and
end
S Wi
ith
1}
‘b

L, = {w € {0,1}*: w contains an odd number of 1}.

L; ={0"1™:m,n € N,m + nis even}.

Intuition

First some intuition for what an automaton is: consider Manufactoria.

Robolamp! Parts Placed: 8; Best: 8

6
e N o W il | @
1 2 3
‘ i .é c
ACCEPT: if
there are 9

three or [~
more blues!

Click or drag to delete components!

Figure 1: Putting robots in their place!

http://pleasingfungus.com/Manufactoria/

Non-Deterministic Finite Automaton (NFA)

A Non-Deterministic Finite Automaton (NDFA or NFA) is similar to a
DFA, but allows for non-determinism.

11

Non-Deterministic Finite Automaton (NFA)

A Non-Deterministic Finite Automaton (NDFA or NFA) is similar to a
DFA, but allows for non-determinism.

NFA
An NFA is a quintuple M = (Q, X, 4, s, F) where

e Q@ is a finite set of states.
e 3 is a finite alphabet.
d:Q x{XU{e}} = P(Q) is the transition function where P(Q)

is the power set of Q (the set of all subsets of Q). That is to say: §
outputs a set of states instead of a single state.

s is the start or initial state.

e F C Q is the set of accepting states.

11

NFA Example

We want to construct an NDFA M which accepts language:

L={w € {0,1}" : w contains an even number of Os or exactly two 1s}.

12

construct NFA M which accepls :

slwWeE 0,1 *‘. Y

.”l“‘i’ 10 43%: o contouns an

¢,s 0011010 A &Mngmmq Os or
A

RecAP:

bot 2 (2*“"'
1. Lewquage L : over Mf"‘“ “qsm)
- onimgc + composed of ceZ I

-y ; eZT"

- ofse wina (U), comt (0], Klame 7y e
2 Reqer oHewemon (+ cmcar(-) , ropetition (-

L

3. TINITE AWToWSToNS : DFA , NFA B__Q
z

esth e g6 oo b as
s -trancition Nor allewed &-Tontim «

	c477c19d6da8717d202456a99b2c444595421c1b24ea49ee7de385cb6079ab57.pdf
	 CSC236 Lecture 10 – Regular Languages – Regular Expressions – Finite Automaton
	Regular Languages

	 CSC236 Lecture 10 – Regular Languages – Regular Expressions – Finite Automaton
	Regular Expressions
	Finite Automaton

	 CSC236 Lecture 10 – Regular Languages – Regular Expressions – Finite Automaton
	Slide 3: Now you try!

	Slide 4
	Slide 5
	Slide 6

	c477c19d6da8717d202456a99b2c444595421c1b24ea49ee7de385cb6079ab57.pdf
	 CSC236 Lecture 10 – Regular Languages – Regular Expressions – Finite Automaton
	 CSC236 Lecture 10 – Regular Languages – Regular Expressions – Finite Automaton
	Slide 7
	Slide 8

