
CSC 236:Introduction to the Theory of Computation

Summer 2024
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Week 8: Regular 

Languages and Finite 

Automaton



Announcement

• Midterm 2: 6:00~8:00pm EX 100 (July 17)

• Bonus Question (midterm 2). Course material (up to and including W7)

• Missed Exam? Submit request by July 22 (documents by July 25)

• Structure for finite automaton section:

• Week 8: DFA, NFA, and regular expressions

• Week 9: Proof of correctness of finite automatons, equivalence of DFA-

NFA-regular expressions

• Week 10: Limitations of regular languages, pumping lemma

• Tutorials this week: more examples of DFAs and NFAs
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Regular Languages



General Definitions of Languages

An alphabet Σ is a finite set of symbols.

A string w over Σ is a finite sequence of symbols from Σ. The empty

string is denoted ε.

The length of w is the number of characters it contains.

A language L over Σ is a subset of Σ∗. ∅ is the empty language.

English Boolean Hexadecimal

Alphabet

{A, ..,Z} {0, 1} {0, ...,F}

String

(Length)

BANANA (6) 01011001 (8) FFFF00 (6)

Language all words {0, 1}∗ {c ∈ Σ∗ : |c | = 6}
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Operations on Languages

• Union: Let I and J be languages over the alphabet Σ, then the

language

I ∪ J = {x ∈ Σ∗ : x ∈ I or x ∈ J}.

• Concatenation: Let I and J be as the above, then the language

I ◦ J = {xy ∈ Σ∗ : x ∈ I , y ∈ J}

• Exponentiation: Let I be as above, then for any k ∈ N

I k = I ◦ · · · ◦ I︸ ︷︷ ︸
k

Question: what is L0? Answer: {ε}.
• Kleene Star: Let I be as above, then

I� = {x ∈ Σ∗ : x ∈ I k for any k ∈ N}
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Regular Languages

Regular Language

A regular language over an alphabet Σ is defined recursively as:

• ∅, the empty set, is a regular language.

• {ε}, the language consisting of an empty string, is a regular

language.

• For any character, a.k.a symbol, a ∈ Σ, {a} is a regular language.

• (Closure of Regular Languages.) If I and J are regular languages,

then so are I ∪ J, I ◦ J, and I�.

Example.

1. Σ∗ (take the Kleene Star of {a ∈ Σ}).

2. Over the Boolean alphabet Σ = {0, 1}, the language

L = {w ∈ Σ : w = ε or w = 01 · · · 01}.
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Regular Expressions



Overview

Consider the following language L:

L = {w ∈ {0, 1}∗ : w starts with 0 or 1,

followed by any number of ones,

and ends with a 0}

What we want is a template of the form:

(0 or 1) and then (any number of 1) and then 0

... or even more succinctly still

(0 + 1)1∗0
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Regular Expressions

Let R and S be regular expressions. Then valid operations include:

R + S : formally known as alternation, but can be read as or. Analogous to

the ∪ operation on languages.

RS : formally known as concatenation. Analogous to the ◦ operation.

R∗: formally known as repetition. Analogous to the � operation.

Regular Expression

A regular expression over an alphabet Σ is defined recursively. ∅, ε, and

a ∈ Σ are regular expressions. If R and S are regular expression over Σ,

then so are (R + S), (RS), and R∗.

Regular expression R represents the language L(R) (in the previous

example L = L ((0 + 1)1∗0)).
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Finite Automaton



Deterministic Finite Automaton (DFA)

Definition

A Deterministic Finite (State) Automaton (DFA) M is the quintuple

M = (Q,Σ, δ, s,F ) where

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ : Q ×Σ→ Q is the transition function. In essence δ encodes the

transition from state to state. Given the current state q and an

input symbol a, δ(q, a) = p is the state where you end up.

• s is the start or initial state.

• F ⊂ Q is the set of accepting states.

DFA M accepts the language L(M).
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DFA Example

Consider the following DFA M = (Q, {0, 1}, δ, s,F ) where:

• Q = {q0, q1, q2, q3}.
• s = q0.

• F = {q3}.

State 0 1

q0 q0 q1
q1 q1 q2
q2 q2 q3
q3 q3 q3

Table 1: Transition table for δ.

Question: What strings does M accept?

Direct your attention to the board.

Answer: All strings which contain 111 as a substring.
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Design a DFA which accepts the following languages

1. 𝐿1 = 𝑤 ∈ 0,1 ∗: 𝑤 starts with 0 and ends with 1 .

2. 𝐿2 = 𝑤 ∈ 0,1 ∗: 𝑤 contains an odd number of 1 .

3. 𝐿3 = 0𝑛1𝑚: 𝑚, 𝑛 ∈ ℕ, 𝑚 + 𝑛 is even .

Now you try!



𝐿1 = 𝑤 ∈ 0,1 ∗: 𝑤 starts with 0 and ends with 1 .



𝐿2 = 𝑤 ∈ 0,1 ∗: 𝑤 contains an odd number of 1 .



𝐿3 = 0𝑛1𝑚: 𝑚, 𝑛 ∈ ℕ, 𝑚 + 𝑛 is even .



Intuition

First some intuition for what an automaton is: consider Manufactoria.

Figure 1: Putting robots in their place!
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http://pleasingfungus.com/Manufactoria/


Non-Deterministic Finite Automaton (NFA)

A Non-Deterministic Finite Automaton (NDFA or NFA) is similar to a

DFA, but allows for non-determinism.

NFA

An NFA is a quintuple M = (Q,Σ, δ, s,F ) where

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ : Q × {Σ ∪ {ε}} → P(Q) is the transition function where P(Q)

is the power set of Q (the set of all subsets of Q). That is to say: δ

outputs a set of states instead of a single state.

• s is the start or initial state.

• F ⊂ Q is the set of accepting states.
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NFA Example

We want to construct an NDFA M which accepts language:

L = {w ∈ {0, 1}∗ : w contains an even number of 0s or exactly two 1s}.

Direct your attention to the board.

Challenge: Try to come up with a DFA which accepts L.
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