Week 8: Regular Languages and Finite Automaton

CSC 236: Introduction to the Theory of Computation

Summer 2024

Instructor: Lily

Announcement

- Midterm 2: 6:00~8:00pm EX 100 (July 17)
 - Bonus Question (midterm 2). Course material (up to and including W7)
 - Missed Exam? Submit request by July 22 (documents by July 25)
- Structure for finite automaton section:
 - Week 8: DFA, NFA, and regular expressions
 - Week 9: Proof of correctness of finite automatons, equivalence of DFA-NFA-regular expressions
 - Week 10: Limitations of regular languages, pumping lemma
- Tutorials this week: more examples of DFAs and NFAs

Regular Languages

An **alphabet** Σ is a finite set of symbols.

	English	Boolean	Hexadecimal
Alphabet			

An **alphabet** Σ is a finite set of symbols.

	English	Boolean	Hexadecimal
Alphabet	$\{A,, Z\}$	$\{0,1\}$	{0,, <i>F</i> }

An **alphabet** Σ is a finite set of symbols.

A string *w* over Σ is a finite sequence of symbols from Σ . The empty string is denoted ϵ .

	English	Boolean	Hexadecimal
Alphabet	$\{A,, Z\}$	$\{0,1\}$	{0,, <i>F</i> }
String			

An **alphabet** Σ is a finite set of symbols.

A string *w* over Σ is a finite sequence of symbols from Σ . The empty string is denoted ϵ .

English	Boolean	Hexadecimal
$\{A,, Z\}$	$\{0,1\}$	{0,, <i>F</i> }
BANANA	01011001	FFFF00
	English {A,,Z} BANANA	English Boolean {A,,Z} {0,1} BANANA 01011001

An **alphabet** Σ is a finite set of symbols.

A string *w* over Σ is a finite sequence of symbols from Σ . The empty string is denoted ϵ .

The **length** of *w* is the number of characters it contains.

English	Boolean	Hexadecimal
$\{A,, Z\}$	$\{0,1\}$	{0,, <i>F</i> }
BANANA	01011001	FFFF00
	English {A,,Z} BANANA	English Boolean {A,,Z} {0,1} BANANA 01011001

An **alphabet** Σ is a finite set of symbols.

A string *w* over Σ is a finite sequence of symbols from Σ . The empty string is denoted ϵ .

The **length** of *w* is the number of characters it contains.

	English	Boolean	Hexadecimal
Alphabet	$\{A,, Z\}$	$\{0,1\}$	{0,, <i>F</i> }
String (Length)	BANANA (6)	01011001 (8)	FFFF00 (6)
(Length)			

An **alphabet** Σ is a finite set of symbols.

A string *w* over Σ is a finite sequence of symbols from Σ . The empty string is denoted ϵ .

The **length** of *w* is the number of characters it contains.

A **language** *L* over Σ is a subset of Σ^* . \emptyset is the empty language.

	English	Boolean	Hexadecimal
Alphabet	$\{A,, Z\}$	{0,1}	{0,, <i>F</i> }
String (Length)	BANANA (6)	01011001 (8)	FFFF00 (6)
Language			

An **alphabet** Σ is a finite set of symbols.

A string *w* over Σ is a finite sequence of symbols from Σ . The empty string is denoted ϵ .

The **length** of *w* is the number of characters it contains.

A **language** L over Σ is a subset of Σ^* . \emptyset is the empty language.

	English	Boolean	Hexadecimal
Alphabet	$\{A,, Z\}$	{0,1}	{0,, <i>F</i> }
String (Length)	BANANA (6)	01011001 (8)	FFFF00 (6)
Language	all words	$\{0,1\}^*$	$\{c\in\Sigma^*: c =6\}$

• **Union**: Let *I* and *J* be languages over the alphabet Σ, then the language

$$I \cup J = \{x \in \Sigma^* : x \in I \text{ or } x \in J\}.$$

• **Concatenation**: Let *I* and *J* be as the above, then the language

$$I \circ J = \{xy \in \Sigma^* : x \in I, y \in J\}$$

• Union: Let *I* and *J* be languages over the alphabet Σ, then the language

$$I \cup J = \{x \in \Sigma^* : x \in I \text{ or } x \in J\}.$$

• **Concatenation**: Let *I* and *J* be as the above, then the language

$$I \circ J = \{xy \in \Sigma^* : x \in I, y \in J\}$$

• **Exponentiation**: Let *I* be as above, then for any $k \in \mathbb{N}$

$$I^k = \underbrace{I \circ \cdots \circ I}_k$$

• Union: Let *I* and *J* be languages over the alphabet Σ, then the language

$$I \cup J = \{x \in \Sigma^* : x \in I \text{ or } x \in J\}.$$

• **Concatenation**: Let *I* and *J* be as the above, then the language

$$I \circ J = \{xy \in \Sigma^* : x \in I, y \in J\}$$

• **Exponentiation**: Let *I* be as above, then for any $k \in \mathbb{N}$

$$I^k = \underbrace{I \circ \cdots \circ I}_k$$

Question: what is L^0 ?

• Union: Let *I* and *J* be languages over the alphabet Σ, then the language

$$I \cup J = \{x \in \Sigma^* : x \in I \text{ or } x \in J\}.$$

• Concatenation: Let I and J be as the above, then the language

$$I \circ J = \{xy \in \Sigma^* : x \in I, y \in J\}$$

• **Exponentiation**: Let *I* be as above, then for any $k \in \mathbb{N}$

$$I^k = \underbrace{I \circ \cdots \circ I}_k$$

Question: what is L^0 ? Answer: $\{\epsilon\}$.

Union: Let I and J be languages over the alphabet Σ, then the language
 I : [WE [0,1]:

$$I \cup J = \{x \in \Sigma^* : x \in I \text{ or } x \in J\}.$$

• Concatenation: Let I and J be as the above, then the language

$$I \circ J = \{xy \in \Sigma^* : x \in I, y \in J\}$$

$$J = \{w \in \{0, 1\}^*:$$

• Exponentiation: Let / be as above, then for any $k \in \mathbb{N}$ $W = 1 \cdots e$ $n \in \mathbb{N}[3]$

Duestion: what is
$$L^0$$
? Answer: $\{\epsilon\}$.
IVJ: $\{w \in \{0, 1\}^{*}: w = 0 \dots 0 \text{ or } 0 \text$

$$I^{\circledast} = \{x \in \Sigma^* : x \in I^k ext{ for any } k \in \mathbb{N}\}$$

Regular Languages

Regular Language

A regular language over an alphabet Σ is defined recursively as:

Regular Languages

Regular Language

A regular language over an alphabet Σ is defined recursively as:

- \emptyset , the empty set, is a regular language.
- $\{\epsilon\}$, the language consisting of an empty string, is a regular language.
- For any character, a.k.a symbol, $a \in \Sigma$, $\{a\}$ is a regular language.

Regular Language

A regular language over an alphabet Σ is defined recursively as:

- \emptyset , the empty set, is a regular language.
- $\{\epsilon\}$, the language consisting of an empty string, is a regular language.
- For any character, a.k.a symbol, $a \in \Sigma$, $\{a\}$ is a regular language.
- (Closure of Regular Languages.) If I and J are regular languages, then so are I ∪ J, I ∘ J, and I[®].

Regular Language

A regular language over an alphabet Σ is defined recursively as:

- \emptyset , the empty set, is a regular language.
- $\{\epsilon\}$, the language consisting of an empty string, is a regular language.
- For any character, a.k.a symbol, $a \in \Sigma$, $\{a\}$ is a regular language.
- (Closure of Regular Languages.) If I and J are regular languages, then so are I ∪ J, I ∘ J, and I[®].

Example.

- 1. Σ^* (take the Kleene Star of $\{a \in \Sigma\}$).
- 2. Over the Boolean alphabet $\Sigma=\{0,1\},$ the language

$$L = \{ w \in \Sigma : w = \epsilon \text{ or } w = 01 \cdots 01 \}.$$

Regular Expressions

Consider the following language L:

```
L = \{w \in \{0,1\}^* : w \text{ starts with 0 or 1}, followed by any number of ones, and ends with a 0}
```

Consider the following language L:

 $L = \{w \in \{0,1\}^* : w \text{ starts with } 0 \text{ or } 1,$ followed by any number of ones, and ends with a 0}

What we want is a *template* of the form:

(0 or 1) and then (any number of 1) and then 0

Consider the following language L:

 $L = \{w \in \{0,1\}^* : w \text{ starts with } 0 \text{ or } 1,$ followed by any number of ones, and ends with a 0}

What we want is a *template* of the form:

(0 or 1) and then (any number of 1) and then 0

... or even more succinctly still

 $(0+1)1^*0$

Regular Expressions

Let R and S be regular expressions. Then valid operations include:

- R + S: formally known as **alternation**, but can be read as *or*. Analogous to the \cup operation on languages.
 - RS: formally known as **concatenation**. Analogous to the \circ operation.
 - R^* : formally known as **repetition**. Analogous to the \circledast operation.

Let R and S be regular expressions. Then valid operations include:

- R + S: formally known as **alternation**, but can be read as *or*. Analogous to the \cup operation on languages.
 - RS: formally known as **concatenation**. Analogous to the \circ operation.
 - R^* : formally known as **repetition**. Analogous to the \circledast operation.

Regular Expression

A regular expression over an alphabet Σ is defined recursively. \emptyset , ϵ , and $a \in \Sigma$ are regular expressions. If R and S are regular expression over Σ , then so are (R + S), (RS), and R^* .

Let R and S be regular expressions. Then valid operations include:

- R + S: formally known as **alternation**, but can be read as *or*. Analogous to the \cup operation on languages.
 - RS: formally known as concatenation. Analogous to the \circ operation.
 - R^* : formally known as **repetition**. Analogous to the \circledast operation.

Regular Expression

A regular expression over an alphabet Σ is defined recursively. \emptyset , ϵ , and $a \in \Sigma$ are regular expressions. If R and S are regular expression over Σ , then so are (R + S), (RS), and R^* .

Regular expression *R* represents the language $\mathcal{L}(R)$ (in the previous example $L = \mathcal{L}((0+1)1^*0)$).

Finite Automaton

Deterministic Finite Automaton (DFA)

Definition

A Deterministic Finite (State) Automaton (DFA) M is the quintuple $M = (Q, \Sigma, \delta, s, F)$ where

• *Q* is a *finite set* of **states**.

Deterministic Finite Automaton (DFA)

Definition

- Q is a *finite set* of **states**.
- Σ is a finite **alphabet**.

Deterministic Finite Automaton (DFA)

Definition

- Q is a *finite set* of **states**.
- Σ is a finite **alphabet**.
- δ: Q × Σ → Q is the transition function. In essence δ encodes the transition from state to state. Given the current state q and an input symbol a, δ(q, a) = p is the state where you end up.

Definition

- Q is a *finite set* of **states**.
- Σ is a finite **alphabet**.
- δ: Q × Σ → Q is the transition function. In essence δ encodes the transition from state to state. Given the current state q and an input symbol a, δ(q, a) = p is the state where you end up.
- s is the start or initial state.

Definition

- Q is a *finite set* of **states**.
- Σ is a finite **alphabet**.
- δ : Q × Σ → Q is the transition function. In essence δ encodes the transition from state to state. Given the current state q and an input symbol a, δ(q, a) = p is the state where you end up.
- s is the start or initial state.
- $F \subset Q$ is the *set* of **accepting states**.

Definition

A Deterministic Finite (State) Automaton (DFA) M is the quintuple $M = (Q, \Sigma, \delta, s, F)$ where

- Q is a *finite set* of **states**.
- Σ is a finite **alphabet**.
- δ: Q × Σ → Q is the transition function. In essence δ encodes the transition from state to state. Given the current state q and an input symbol a, δ(q, a) = p is the state where you end up.
- s is the start or initial state.
- $F \subset Q$ is the *set* of **accepting states**.

DFA *M* accepts the language $\mathcal{L}(M)$.

DFA Example

Consider the following DFA $M = (Q, \{0, 1\}, \delta, s, F)$ where:

•
$$Q = \{q_0, q_1, q_2, q_3\}.$$

- $s = q_0$.
- $F = \{q_3\}.$

State	0	1
q_0	q_0	q_1
q_1	q_1	q 2
q_2	q_2	q_3
q_3	q 3	q 3

Table 1: Transition table for δ .

DFA Example

Consider the following DFA $M = (Q, \{0, 1\}, \delta, s, F)$ where:

•
$$Q = \{q_0, q_1, q_2, q_3\}.$$

•
$$s = q_0$$
.

•
$$F = \{q_3\}.$$

State	0	1
q_0	q_0	q_1
q_1	q_1	q 2
q_2	q_2	q 3
q 3	q 3	<i>q</i> 3

Table 1: Transition table for δ .

Now you try!

Design a DFA which accepts the following languages 1. $L_1 = \{w \in \{0,1\}^* : w \text{ starts with } 0 \text{ and ends with } 1\}.$ 2. $L_2 = \{w \in \{0,1\}^* : w \text{ contains an odd number of } 1\}.$ 3. $L_3 = \{0^n 1^m : m, n \in \mathbb{N}, m + n \text{ is even}\}.$

 $L_2 = \{w \in \{0,1\}^* : w \text{ contains an odd number of } 1\}.$

Intuition

First some intuition for what an automaton is: consider *Manufactoria*.

Figure 1: Putting robots in their place!

A Non-Deterministic Finite Automaton (NDFA or NFA) is similar to a DFA, but allows for *non-determinism*.

A Non-Deterministic Finite Automaton (NDFA or NFA) is similar to a DFA, but allows for *non-determinism*.

NFA

An NFA is a quintuple $M = (Q, \Sigma, \delta, s, F)$ where

- Q is a *finite set* of **states**.
- Σ is a finite **alphabet**.
- δ: Q × {Σ ∪ {ε}} → P(Q) is the transition function where P(Q) is the *power set* of Q (the set of all subsets of Q). That is to say: δ outputs a set of states instead of a single state.
- s is the start or initial state.
- $F \subset Q$ is the *set* of **accepting states**.

We want to construct an NDFA M which accepts language:

 $L = \{w \in \{0,1\}^* : w \text{ contains an even number of 0s or exactly two 1s}\}.$

