Week 9: Equivalence of
Regular Expressions,
DFA, and NFA

CSC 236:Introduction to the Theory of Computation
Summer 2024

Instructor: Lily



Announcement

* Got suggestion for review topics? Discuss on Piazza!
* Proof of correctness
e Structural induction

* Final exam schedule is coming out soon:
* Number of questions: 8 + bonus
* Q1+ Q2: T/F, multiple choice, short answer
* Q3,4,5,6,7,8:20% “l don’t know” policy
* Aid: two-sided A4 sheet
* Duration: 3 hours

* Tutorials this week: regular expressions practice



Review

* Alanguage L over an alphabet X is a subset of X".

* Regular expressions describes languages. Regular languages are sets
of strings which can be represented by a regular expression.

* Finite automatons are collections of states and transition rules upon
those states base on input characters (and € in the case of NFA) in .

* Each state p has exactly one * p has any number of transitions
transition for each symbola € X onasymbola € X
* e-transitions not allowed * e-transitions are allowed

Question: DFA vs NFA, which is more powerful?



Finite Automaton Correctness

Consider
L = {w € {0,1}": w has odd number 0s and even number 1s}

Construct DFA M such that L(M) = L.
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Proving Correctness of DFA —
e (o)
N~

ForDFAM = (Q, %, 9, s, F), construct disjoint and exhaustive-state
invariant for each state q € (.
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Proving Correctness of DFA —
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ForDFAM = (Q, %, 9, s, F), construct disjoint and exhaustive ate
invariant for each state q € (.
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Equivalence

Want to show: Regular expression, DFA, and NFAs have the same
expressive power.
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Suppose L is a regular language, is the complement of L, denoted
L,regular? L={w e X":w & L}.
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Application

Suppose L is a regular language, is the reversal of L, denoted
Rev(L), regular? Rev(L) = {(w)R € Z*:w € L}.
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Now you try!

1. Let L be alanguage on the alphabetX = {0, ...,n — 1} of size n.
Let sy, ..., s,_1 be string. Let L(sy, ..., S,—1) is the replacement
language, where every instance of i is replaced with s;. Is
L(sg, ..., Sp—1) regular?

2. Consider the language
L, = {w € {0,1}": second last letter of w is 0}.

Construct a finite automaton for L; and prove it is correct.

3. Consider the language we saw in the previous lecture
L, ={0"1™:m,n = 0,m + n is odd}.

Show that the finite automaton for L, is correct.
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2. Consider the language L
L, = {w € {0,1}*: second last letter of w is B.

Construct a finite automaton for L; and prove it is correct.
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2. Consider the language L

L, = {w € {0,1}*: second last letter of w is /.

Construct a finite automaton for L; and prove it is correct.
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3. Consider the language we saw in the previous lecture
L, ={0"1"™:m,n = 0,m + n is odd}.
Show that the finite automaton for L, is correct.
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3. Consider the language we saw in the previous lecture
L, ={0"1"™:m,n = 0,m + n is odd}.
Show that the finite automaton for L, is correct.
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