# Week 9: Equivalence of Regular Expressions, DFA, and NFA

CSC 236:Introduction to the Theory of Computation Summer 2024 Instructor: Lily

## Announcement

- Got suggestion for review topics? Discuss on Piazza!
  - Proof of correctness
  - Structural induction
- Final exam schedule is coming out soon:
  - Number of questions: 8 + bonus
  - Q1 + Q2: T/F, multiple choice, short answer
  - Q3, 4, 5, 6, 7, 8: 20% "I don't know" policy
  - Aid: two-sided A4 sheet
  - Duration: 3 hours
- Tutorials this week: regular expressions practice

## Review

- A language L over an alphabet  $\Sigma$  is a subset of  $\Sigma^*$ .
- **Regular expressions** describes languages. **Regular languages** are sets of strings which can be *represented* by a regular expression.
- Finite automatons are collections of states and transition rules upon those states base on input characters (and  $\epsilon$  in the case of NFA) in  $\Sigma$ .

| DFA                                                                                                                  | NFA                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| <ul> <li>Each state ρ has exactly one transition for each symbol a ∈ Σ</li> <li>ε-transitions not allowed</li> </ul> | <ul> <li>ρ has any number of transitions<br/>on a symbol a ∈ Σ</li> <li>ε-transitions are allowed</li> </ul> |

*Question: DFA vs NFA, which is more powerful?* 

#### **Finite Automaton Correctness**

Consider

 $L = \{w \in \{0,1\}^* : w \text{ has odd number 0s and even number 1s} \}$ 

Construct DFA M such that  $\mathcal{L}(M) = L$ .

Q: How do we know  $\int (M) = L^{?}$ Of 1 0 A. construct disjoint & exhaustive set of state invariants; one for each state of qEQ 0 M= (Q, Z, 8, S, F) ctates chars 1 start accept

transition function &  $S^{*}(q_{0}, W) = S(q_{n-1}, W_{n-1})$ Proving Correctness of DFA  $\begin{bmatrix} W = W_0 \cdots W_{n-1} \end{bmatrix} W_i \in \sum_{i=1}^{n-1} W_$ For DFA  $M = (Q, \Sigma, \delta, s, F)$ , construct *disjoint* and *exhaustive* **state invariant** for each state  $q \in Q$ . intuitive : S\* (qo, W) in state we structural induction on 5.4 are in if start at go and execute s on w. E E 5.\*  $a \in \Sigma^*$  for all  $a \in \mathbb{Z}$ 8(qo, wo) = q1 we  $\mathbb{Z}^{+}$ , then was  $\mathbb{Z}^{+}$  for all  $a \in \mathbb{Z}$ .  $S(q_1, W_1) = q_2$  $S(q_{n-1}, W_{n-1}) =$ Induct on: p\* set of all strings A state

#### Proving Correctness of DFA

For DFA  $M = (Q, \Sigma, \delta, s, F)$ , construct *disjoint* and *exhaustive* **state invariant** for each state  $q \in Q$ .

$$P(W) := \begin{cases} \Re(q_0, W) = \begin{cases} \Re_0 & W \text{ has an even # of 0s and 1} \\ \Re_1 & \cdots & \varphi \text{ oven # of 0s and} \\ \Re_2 & & & \text{ od } \# \text{ of 1s} \\ \Re_2 & & & & \text{ od } \# \text{ of 0s and} \\ \Re_3 & & & & \text{ odd # of 0s and 1s} \end{cases}$$

0

63

### **Proving Correctness of DFA**

do de traine

For DFA  $M = (Q, \Sigma, \delta, s, F)$ , construct *disjoint* and *exhaustive* **state invariant** for each state  $q \in Q$ .

INDUCTIVE STEP, WE I and P(W) the 40 Case G=0, string WO Start STATE IH Start STATE IH 1) and of w 41 q2 the of os and 1s. has an oven # of 18 and an odd # of zenos. W0 **q**<sub>3</sub> WD goes to q2 by DFa

W has an even # of os and is ., \_, \_, even # of os and an odd # of is ... \_ odd # of os and an even # of is ... \_ odd # of os and is.

## Equivalence

Want to show: Regular expression, DFA, and NFAs have the same expressive power.



Application 
$$\mathcal{P}(\underset{\text{languages}}{\text{Regular}})$$
  $\xrightarrow{\text{Regular}}_{\text{Regular}}$   $\xrightarrow{\text{Regular}}_{\text{Languages}}$   $\xrightarrow{\text{Strings}}_{\text{Suppose }L \text{ is a regular language, is the complement of }L, denotes the complement of L, d$ 

Suppose *L* is a regular language, is the *complement* of *L*, denoted  $\overline{L}$ , regular?  $\overline{L} = \{w \in \Sigma^* : w \notin L\}$ .



## Application

Suppose L is a regular language, is the reversal of L, denoted Rev(L), regular? Rev(L) = { $(w)^R \in \Sigma^*$ :  $w \in L$ }. if  $W = W_0 - \cdots W_{n-1}$  then Since L regular language, (w)<sup>R</sup> = Wn-1 ... Wo DFA which accepts L NFA M' which accepts Rev(L). M G.

## Now you try!

- 1. Let *L* be a language on the alphabet  $\Sigma = \{0, ..., n 1\}$  of size *n*. Let  $s_1, ..., s_{n-1}$  be string. Let  $L(s_0, ..., s_{n-1})$  is the *replacement* language, where every instance of *i* is replaced with  $s_i$ . Is  $L(s_0, ..., s_{n-1})$  regular?
- 2. Consider the language

 $L_1 = \{w \in \{0,1\}^* : \text{second last letter of } w \text{ is } 0\}.$ 

Construct a finite automaton for  $L_1$  and prove it is correct.

3. Consider the language we saw in the previous lecture  $L_2 = \{0^n 1^m : m, n \ge 0, m + n \text{ is odd}\}.$ 

Show that the finite automaton for  $L_2$  is correct.

1. Let L be a language on the alphabet 
$$\Sigma = \{0, ..., n-1\}$$
 of size n. Let  
 $s_0, ..., s_{n-1}$  be string? Let  $L(s_0, ..., s_{n-1})$  is the replacement  
language, where every instance of i is replaced with  $s_i$ . Is  
 $D(L(G), ..., s_{n-1})$  regular?  
 $\Sigma = \{0, 1, 23\}$   $L = \{0, 1, 1, 22\}$   $O(L(G), NAL STRING)$   
 $\Sigma = \{0, 1, 23\}$   $L = \{0, 1, 1, 22\}$   $O(L(G), 10, 22)$   
 $L(0, 1, 10, 22)$   $= \{(0, 1), (10, 10, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10, 12), (10,$ 

2. Consider the language  $I = \{u, \sigma, (0, 1)\}$ 

 $L_1 = \{w \in \{0,1\}^*: \text{ second last letter of } w \text{ is } \mathfrak{K}\}.$ 

Construct a finite automaton for  $L_1$  and prove it is correct.



$$P(w) := S'(qo, w)$$
  
 $q_{00}$  last two chars of w is 00  
 $q_{10}$  or is 0 or is 0  
 $q_{11}$  or is 1  
 $q_{11}$  or is 1

2. Consider the language

 $L_1 = \{ w \in \{0,1\}^* : \text{ second last letter of } w \text{ is } \}.$ Construct a finite automaton for  $L_1$  and prove it is correct. Base case :  $\varepsilon$ , 0, 1 statisfy state invariants. Inductive STEP: suppose  $|w| \ge 1$  and P(w) is There

Inductive step is soft  
case we 
$$S^*(q_{00}, w)$$
 IH GIVES then  
 $g_{00} \rightarrow at char 0 \text{ or } 00 \text{ WI ends up}$   
in  $\widehat{Q}_{01}$  and  
 $ast two charof$   
 $\widehat{Q}_{10}$   
 $\widehat{Q}_{10}$   
 $\widehat{Q}_{11} \rightarrow ast two chars We end in$   
of up is  $11$ .  $\widehat{Q}_{12}$ .  $Ok$   
 $Since (ast two)$ 

1

chars still 12.

3. Consider the language we saw in the previous lecture  $L_2 = \{0^n 1^m : m, n \ge 0, m + n \text{ is odd}\}.$ 

Show that the finite automaton for  $L_2$  is correct.



3. Consider the language we saw in the previous lecture  $L_2 = \{0^n 1^m : m, n \ge 0, m + n \text{ is odd}\}.$ Show that the finite automaton for  $L_2$  is correct. proof by structural induction on 5th Base Case : E has the form Ok for keven (description of start state 90 Inductive step: suppose we Zit where P(w) is the. (onsider WD and W1: odd WO: S\*(qo,W) IH gives 5\*(q0, W0)  $q_1$  where  $w_0 = \begin{pmatrix} k+1 \end{pmatrix}$ w=0<sup>k</sup> where k is even go where wo = 0 40 w=0<sup>K</sup> where k is odd q. where K+1 ins even garbage since of 100 is not in the language W=0<sup>k</sup>1<sup>l</sup> where K+l is 052 odd and 1>1 W= 0k je where k+l is (same as previous) even and l = 1