Week 9: Equivalence of Regular Expressions, DFA, and NFA

CSC 236:Introduction to the Theory of Computation Summer 2024 Instructor: Lily

Announcement

- Got suggestion for review topics? Discuss on Piazza!
 - Proof of correctness
 - Structural induction
- Final exam schedule is coming out soon:
 - Number of questions: 8 + bonus
 - Q1 + Q2: T/F, multiple choice, short answer
 - Q3, 4, 5, 6, 7, 8: 20% "I don't know" policy
 - Aid: two-sided A4 sheet
 - Duration: 3 hours
- Tutorials this week: regular expressions practice

Review

- A language L over an alphabet Σ is a subset of Σ^* .
- **Regular expressions** describes languages. **Regular languages** are sets of strings which can be *represented* by a regular expression.
- Finite automatons are collections of states and transition rules upon those states base on input characters (and ϵ in the case of NFA) in Σ .

DFA	NFA
 Each state ρ has exactly one transition for each symbol a ∈ Σ ε-transitions not allowed 	 <i>ρ</i> has any number of transitions on a symbol <i>a</i> ∈ Σ <i>ϵ</i>-transitions <i>are</i> allowed

Question: DFA vs NFA, which is more powerful?

Finite Automaton Correctness

Consider

 $L = \{w \in \{0,1\}^* : w \text{ has odd number 0s and even number 1s} \}$ Construct DFA *M* such that $\mathcal{L}(M) = L$.

Proving Correctness of DFA

For DFA $M = (Q, \Sigma, \delta, s, F)$, construct *disjoint* and *exhaustive* **state invariant** for each state $q \in Q$.

Proving Correctness of DFA

For DFA $M = (Q, \Sigma, \delta, s, F)$, construct *disjoint* and *exhaustive* **state invariant** for each state $q \in Q$.

Equivalence

Want to show: Regular expression, DFA, and NFAs have the same expressive power.

Application

Suppose *L* is a regular language, is the *complement* of *L*, denoted \overline{L} , regular? $\overline{L} = \{w \in \Sigma^* : w \notin L\}$.

Application

Suppose *L* is a regular language, is the *reversal* of *L*, denoted Rev(*L*), regular? Rev(*L*) = { $(w)^R \in \Sigma^* : w \in L$ }.

Now you try!

- 1. Let *L* be a language on the alphabet $\Sigma = \{0, ..., n 1\}$ of size *n*. Let $s_1, ..., s_{n-1}$ be string. Let $L(s_0, ..., s_{n-1})$ is the *replacement* language, where every instance of *i* is replaced with s_i . Is $L(s_0, ..., s_{n-1})$ regular?
- 2. Consider the language

 $L_1 = \{w \in \{0,1\}^* : \text{second last letter of } w \text{ is } 0\}.$

Construct a finite automaton for L_1 and prove it is correct.

3. Consider the language we saw in the previous lecture $L_2 = \{0^n 1^m : m, n \ge 0, m + n \text{ is odd}\}.$

Show that the finite automaton for L_2 is correct.

1. Let *L* be a language on the alphabet $\Sigma = \{0, ..., n - 1\}$ of size *n*. Let $s_1, ..., s_{n-1}$ be string. Let $L(s_0, ..., s_{n-1})$ is the *replacement language*, where every instance of *i* is replaced with s_i . Is $L(s_0, ..., s_{n-1})$ regular?

2. Consider the language

 $L_1 = \{w \in \{0,1\}^*: \text{ second last letter of } w \text{ is } 0\}.$

Construct a finite automaton for L_1 and prove it is correct.

2. Consider the language

 $L_1 = \{w \in \{0,1\}^*: \text{ second last letter of } w \text{ is } 0\}.$

Construct a finite automaton for L_1 and prove it is correct.

3. Consider the language we saw in the previous lecture $L_2 = \{0^n 1^m : m, n \ge 0, m + n \text{ is odd}\}.$ Show that the finite automaton for L_2 is correct. 3. Consider the language we saw in the previous lecture $L_2 = \{0^n 1^m : m, n \ge 0, m + n \text{ is odd}\}.$ Show that the finite automaton for L_2 is correct.

NFA to DFA

Given a NFA $M_N = (Q_N, \Sigma, \delta_N, s_N, F_N)$, construct a DFA $M_D = (Q_D, \Sigma, \delta_D, s_D, F_D)$ such that $\mathcal{L}(M_N) = \mathcal{L}(M_D)$.

NFA to DFA Example

Consider $L = \mathcal{L}((0(0+10+1))^*)$ and its corresponding NFA.

NFA to DFA

Given a NFA $M_N = (Q_N, \Sigma, \delta_N, s_N, F_N)$, construct a DFA $M_D = (Q_D, \Sigma, \delta_D, s_D, F_D)$ such that $\mathcal{L}(M_N) = \mathcal{L}(M_D)$.

NFA to DFA

General problem format

Given a language *L*, you will be asked: is *L* regular?

- 1. Make a decision: regular or not regular.
- 2. If regular: proof of regularity.
 - Produce a finite automaton which accepts a language
 - Prove correctness of finite automaton
- 3. If not regular: proof of non-regularity.

???

Recap

- Proved the correctness of finite automaton using *state invariants* for each state (remember these must be *disjoint* and *exhaustive*).
- Showed that DFA, NFA, and regular expression have the same expressive power (some work left to be done --- left to homework)
 - Reduce NFA to DFA by adding more states; each state represents a subset of states in the NFA (remember: If there are finitely many states then it's okay)
 - Regular languages are those which are accepted by finite automatons

Next time... limitation of finite automatons