
CSC236H1Y Summer 2024

Lecture 1: Well-Ordering Principle
Date: May 16, 2024

TAs: The text in red is for your eyes only. This the suggested tutorial structure: First go over the definitions
and Section 1.1 on the board. Then go through the first part of Section 1.2. Write down the questions and
give the students some time to solve them before going over the solutions. Suggested times below.

1.1 Well-Ordering Principle is Equivalent to Induction

This should take about 20 minutes.

Well-Ordering A — on a set S is a total ordering (there is a relationship between every pair of
elements) such that every non-empty subset of S has a least element.

Well-Ordering Principle. Every nonempty set of N has a smallest element.

You want the two above definitions somewhere that is visible at all times.

Induction. For a predicate P (n) on n ∈ N,

(P (0) ∧ ∀k, (P (0) ∧ P (1) ∧ · · · ∧ P (k)) =⇒ P (k + 1)) =⇒ ∀n ∈ N, P (n).

In-class we showed that Induction implies the Well-Ordering Principle. It turns out that the two are equiv-
alent. To show this, we prove that that the Well-Ordering Principle implies Induction.

Claim 1.1 The Well-Ordering Principle implies Induction.

Proof: Suppose that P (0) is true and we have the implication ∀k, (P (0)∧P (1)∧ · · · ∧P (k)) =⇒ P (k+1).
Let S ⊆ N be defined as the set S := {s ∈ N : ¬P (s)}. For the sake of contradiction, assume S is non-empty.
Then, by the Well-Ordering Principle, S has a smallest element, say z. Note that z ̸= 0 since we are given
P (0). Further, since z is the smallest element in S, it must follow that P (0), ..., P (z − 1) must all be true.
Recall that we have the implication ∀k, (P (0) ∧ · · · ∧ P (k)) =⇒ P (k + 1). Substitute z − 1 in for k. Thus
P (z) must be true. This is a contradiction and S must be empty.

1.2 Problem Solving

The Well-Ordering Principle (WOP) is a useful problem-solving tool in its own right. The general template
to prove “∀n ∈ N, P (n)” using WOP is as follows.

1. Define a set S of counterexamples to P being true i.e.

S := {n ∈ N : ¬P (n)}.

2. Assume for a contradiction that S is non-empty.
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3. By WOP, there must be a smallest element k ∈ S.

4. Reach a contradiction — this will typically involve showing that P (k) is actually true or by showing
that there exists another member of S which is even smaller than k. This requires some creativity.

5. Conclude that S must be empty and no counterexample can exist.

Now, write the problems on the board and give the students 20 minutes to solve them. Present the solutions
in the last 10 minutes. Don’t worry if you don’t cover everything these notes will be posted.

1. For n ∈ N, 1 + 2 + · · ·+ n = n(n+1)
2 .

Proof: Let P (n) be the predicate
∑n

i=0 i =
n(n+1)

2 and let S be the set of natural number where s ∈ S
if and only if ¬P (s). For a contradiction suppose S is non-empty. By WOP, let k be the minimum

element of S. Then we know that 1 + 2 + · · · + k ̸= k(k+1)
2 but for all i ∈ N with i < k, P (i) is true.

Note that k ̸= 0 as 0 = 0(0+1)
2 . Thus, k − 1 ∈ N and since k − 1 < k, P (k − 1) must be true. Note

(1 + 2 + · · ·+ k − 1) + k =
(k − 1)k

2
+ k =

k(k + 1)

2
.

This is a contradiction, as we assumed ¬P (k). Thus S must be empty.

2. There are no positive integers a, b, c ∈ Z+ such that 4a3 + 2b3 = c3.

For this question, remember to emphasize the importance of extending the Well-Ordering Principle to
elements of Z3

+ (standard WOP only applies to N).
Proof: Let S = {(x, y, z) ∈ Z3

+ : 4x3 + 2y3 = z3}. For a contradiction, assume that S is non-empty.
Apply WOP with lexicographical order on the triples i.e. for triples (x1, y1, z1) and (x2, y2, z2), first we
compare x1 and x2, if they are equal, we compare y1 and y2, if they are equal, we compare z1 and z2 (it
is left as an exercise to show that the standard “<” on N with lexicographical order is a well-ordering
of all elements in Z3

+).

Let (x, y, z) be the smallest element of S. Note that z3 must be even as it is the sum of two even
numbers 4x3 and 2y3. Since z3 is even, then z must be as well. Let w be the integer z/2. Plug 2w
into the formula to get 4x3 + 2y3 = (2w)3 = 8w3. Similar arguments show that x and y are even as
well and we have integers u = x/2 and v = y/2 such that 32u3 + 16v3 = 8w3. But we can divide all
terms by 8 to obtain 4u3 + 2v3 = w3. This implies that (u, v, w) ∈ S with (u, v, w) < (x, y, z). This
contradicts the minimality of (x, y, z) so S must be empty.

3. The Division Algorithm. Given a, b ∈ Z with b > 0, there exists q, r ∈ Z (q is quotient, r is
remainder) so that a = qb+ r and 0 ≤ r < b.

Proof: The key is to pay attention to which set you are applying WOP to. We consider S = {a− xb :
x ∈ Z, a− xb ≥ 0}. Note that S ⊆ N.
To see that S is non-empty, take x = −|a| ∈ Z, so that a− xb = a+ |a|b ≥ 0. Note that b is a positive
integer (b ≥ 1) so a+ |a|b ∈ S. By WOP on N, S contains a least element which we will call r. Since
r ∈ S ⊆ N, r ≥ 0 and r = a− qb for some q ∈ Z. It remains to prove that r < b. If r ≥ b, then

0 ≤ r − b = (a− qb)− b = a− (q + 1)b

would imply r − b ∈ S, which contradicts the fact that r is the smallest element of S.

This question is taken from Jingyi Chen’s MATH 220 notes.

Notes adapted from Chapter 2.1 to 2.3 of the MIT 6.042J Course Textbook (available online).

https://personal.math.ubc.ca/~jychen/2016Math220/Note_wellordering.pdf
https://ocw.mit.edu/courses/6-042j-mathematics-for-computer-science-spring-2015/resources/mit6_042js15_session3/
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