CSC 236 H1, SumMERr 2024 TutoriaL #4—SorLuTiON ELEMENTS WED. 5 JUNE

For each of the following programs:
e Find an appropriate postcondition.
¢ Give an appropriate loop invariant (LI) for the loop and prove your loop invariant.
e Use your LI and the loop exit condition to prove partial correctness.

¢ Define an appropriate loop measure m (called “E” in Frangois’ lecture slides) which you can use for
proving the termination of the loop.

1. Precondition: x is a non-empty string.

def MysTterY1(x):
i=0; word=
while i < len(x):
word = x[i] + word
i=i+1
return word

"nn

G L=

SoLuTION ELEMENTS

¢ Postcondition: returns x except with all the characters in reverse order.

e Let LI(k) denote the assertion that if the loop is executed at least k times, then
(a) 0 < ik <len(x);
(b) word, is the reverse of x[0: i].
Proof of the Ll is required but is not included in the solution elements.

e Suppose the precondition holds and the program terminates. Since the program terminates,
the loop is executed a finite number of times, say t.

By part (a) in LI(t), i; < len(x).

By the exit condition we have i; > len(x). So i; = len(x).
By part (b) in LI(t), word, is the reverse of x[0 : len(x)].
Since x[0: len(x)] = x, word, is the reverse of x.
Therefore, in Line 5, the reverse of x is returned.

e m=len(x)—1i.

DepT. oF CoMPUTER SCIENCE, UNIVERSITY OF TORONTO, ST. GEORGE CAMPUS PAGE 1 OF 2



CSC 236 H1, SumMERr 2024 TutoriaL #4—SorLuTiON ELEMENTS WED. 5 JUNE

. Precondition: word is a non-empty string of lowercase alphabetic characters.

NN

def MysTERY2(word) :

start_idx = 0; end_idx =len(word)—1; result = True
while start_idx < end_idx:

if word|[start_idx] = word[end_idx]:

result = False

start_idx = start_idx + 1

end_idx =end_idx -1
return result

SoOLUTION ELEMENTS

¢ Postcondition: returns True iff word is a palindrome.

e Let LI(k) denote the assertion that if the loop is executed at least k times, then

(a) start_idx, + end_idx, = len(word)—1;
(b) result, = True iff for all i € {0, 1,..., start_idx, — 1}, word|[i] = word[len(word) — 1 — i]).
Proof of the Ll is required but is not included in the solution elements.

Suppose the precondition holds and the program terminates. Since the program terminates,
the loop is executed a finite number of times, say t.

By exit condition we have start_idx; > end_idx;.
By part (a) in LI(t), start_idx, + end_idx; = len(word) — 1. So start_idx; > (len(word) —1)/2.

Case 1: result; = False.

Then, by part (b) in LI(t), there exists i € N such that word|[i] # word[len(word)—1 —i]. Then
word is not a palindrome.

On the other hand, MysTERY2(word) returns False, and so the postcondition holds.

Case 2: result; = True.

Then for all i € N, i < (len(word) — 1)/2, we have word[i] = word[len(word) — 1 — i]. Therefore,
word is a palindrome.

On the other hand, MysTERY2(word) returns True, and so the postcondition holds.

e m=end_idx —start_idx+ 1.

DepT. oF CoMPUTER SCIENCE, UNIVERSITY OF TORONTO, ST. GEORGE CAMPUS PAGE 2 OF 2



