
CSC236H1Y, Summer 2024 Tutorial #6—Solution Elements Wed. 03 July

1. Let T (n) denote the worst-case running time of the algorithm below on inputs of size n.

Precondition: A is a non-empty list of integers, i is a natural number.
def recSS(A,i):

1. if i < len(A)− 1:
2. small = i
3. for j in range(i + 1, len(A)):
4. if A[j] < A[small]:
5. small = j
6. temp = A[i]
7. A[i] = A[small]
8. A[small] = temp
9. recSS(A,i + 1)

Note that the above algorithm has an implicit base case, for which it does nothing.

Recall the recurrence relation that we saw last tutorial satisfied by T . For any natural number n, let T (n)
denote the maximum number of steps executed by a call to recSS(A,i), where n = len(A)− i. We get the
following definition for T (n):

T (n) =

a, n ≤ 1

T (n− 1) + b(n− 1) + c, n ≥ 2

Give an asymptotic tight-bound for the worst-case running time of the algorithm.

Solution Elements

Assume n ⩾ 2. Then

T(n) = T(n −1) + b(n −1) + c
= [T(n −2) + b(n −2) + c] + b(n −1) + c
= T(n −2) + b((n −1) + (n −2)) + 2c
= [T(n −3) + b(n −3) + c] + b((n −1) + (n −2)) + 2c
= T(n −4) + b((n −1) + (n −2) + (n −3)) + 3c

It seems that after i (1 ⩽ i ⩽ n −1) applications of the recursive definition we have

T(n) = T(n − i) + b((n −1) + (n −2) + (n −3) + ...+ (n − i)) + i · c

Therefore, after n −1 applications of the recursive definition we have

T(n) = T(1) + b((n −1) + (n −2) + (n −3) + · · ·+ 1) + (n −1) · c

= a+ b
(n −1)n

2
+ c(n −1) =

b
2
n2 + (c − b

2
)n + a− c.

Note that in a test/assignment you are expected to prove the correctness of the closed-form
expression you obtained for T by induction.

Dept. of Computer Science, University of Toronto, St. George Campus page 1 of 3

CSC236H1Y, Summer 2024 Tutorial #6—Solution Elements Wed. 03 July

Finally, we can conclude that T(n) ∈Ê(n2).

2. The following algorithm performs breadth-first search on a perfect binary search trees. A binary search tree is
a binary tree which stores a value u.val for every node u. The values satisfy: for all nodes s in the subtree
of u rooted at its left-child, s.val < u.val, and for all nodes t in the subtree of u rooted at its right-child.
t.val > u.val. You can assume that the values are all unique. Further, such a tree is perfect if each internal
node has both a left and a right child. We want to know if x appears as a value on some node of the tree.

Let T (n) denote the worst-case running time of the algorithm on trees with n nodes.

Precondition: r is the root of a perfect balanced binary search tree.
def bfs(r,x):

1. if r is None:
2. return False

3. if r.val == x:
4. return True

5. if x < r.val:
6. return bfs(r.lef t,x)
7. else:
8. return bfs(r.rigth,x)

Recall the recurrence relation that we saw last tutorial satisfied by T . For any natural number n, let
T (n) denote the maximum number of steps executed by a call to bfs(r,x), where r is the root of a perfect
balanced binary search tree with n nodes. We get the following definition for T (n):

T (n) =

O(1), n = 0

T (n/2) +O(1), n ⩾ 1
.

Give an asymptotic tight-bound for the worst-case running time of the algorithm.

Solution Elements
Recall that the Master method states that for recurrence relations of the form T(n) = aT

(
n
b

)
+f (n),

three cases are possible:

If f (n) = Ò
(
nlogb a+×

)
for × > 0,T(n) = Ê (f (n)) .

If f (n) = O
(
nlogb a−×

)
for × > 0,T(n) = Ê

(
nlogba

)
.

If f (n) = Ê
(
nlogb a

)
,T(n) = Ê

(
nlogba logn

)
,

Plugging in a = 1, b = 2, and f (n) = O(1), the third case is true and we have that T(n) = Ê(logn).

3. Give an asymptotic tight-bound for each of the following functions.

(a)

T2(n) =

a, n = 1

2T2(n/2) + 4n, n ⩾ 2

Dept. of Computer Science, University of Toronto, St. George Campus page 2 of 3

CSC236H1Y, Summer 2024 Tutorial #6—Solution Elements Wed. 03 July

Solution Elements
We will use the Master Theorem.

Here, a = 2,b = 2, and f (n) = n. Since log2 2 = 1 (equivalently, 2 = 21), by the Master Theo-
rem, T2(n) ∈Ê(n logn).

(b)

T3(n) =

a, n = 1

2T3(n/7) + logn+
√
n, n ⩾ 2

Solution Elements
We will use the Master Theorem.

Here a = 2, b = 7, and f (n) = logn +
√
n ∈Ê(

√
n). So, f (n) = nk where k = 1

2 . Since 2 < 7
1
2 we

have log7 2 < 1
2 . By the Master Theorem, T3(n) ∈Ê(

√
n).

Dept. of Computer Science, University of Toronto, St. George Campus page 3 of 3

