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Probability theory is not restricted to describing discrete variables. This note summarizes some
common facts about probabilities concerning continuous variables with an emphasis in the Gaussian
distribution (Gauss, 1809).

1. If a random variable X has a discrete distribution, the probability function f(·) that maps
its values to real numbers between 0 and 1 is known as the probability mass function (PMF),
such that f(x) = p(X = x). If a random variable is continuous in its values, the probability
function is known instead as the probability density function (PDF),∫ x1

x0

f(x) = p(x0 ≤ X ≤ x1), (1)

where
∫
x f(x)dx = 1 (−∞ ≤ x ≤ ∞). In this case, f(x) may have a value greater than 1.

Example A
A uniform PDF for a continuous variable X specifies a distribution over the numerical range
[l, u] where l and u are the parameters that specify the minimal and maximal values of X.
The probability density of X in this case is constant f(x|l, u) = 1

u−l and 0 elsewhere. If
u− l < 1, e.g. u = 0 and l = 0.5, then it follows that f(x|l, u) = 2 > 1.

2. The cumulative distribution function (CDF) F (·) is a monotonically increasing function such
that F (x0) = p(x ≤ x0). In the case of discrete variables, F (x0) =

∑x0
x=−∞ p(x). In the case

of continuous variables,

F (x0) =

∫ x0

−∞
f(x)dx. (2)

It follows that p(x > x0) = 1− F (x0).

Example B
The CDF of a uniform distribution as in Example A is piece-wise linear in x such that
F (x) = 0 for x < l, F (x) = x−l

u−l for l ≤ x < u, and F (x) = 1 for x ≥ u.

3. The expectation or mean of a variable X with PDF f(x) is:

E[X] =

∫
x
xf(x)dx. (3)

Example C
The mean of a uniform distribution as in Example A is E[X] =

∫ u
l x

1
u−ldx +

∫
x∈[u,l] 0dx =

1
2
u2−l2
u−l + 0 = u+l

2 .
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4. The variance of a variable X with PDF f(x) is:

V ar(X) = E[(X − E[X])2] =

∫
x
(x− E[X])2f(x)dx. (4)

Work this out yourself and show V ar(X) for a uniform distribution as in Example A is (u−l)2
12 .

5. A commonly used PDF is the Gaussian distribution, also known as the normal distribution,
with the form:

f(x|µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (5)

where µ is the mean (center), and σ is the standard deviation (variance
1
2 , an indicator of

average spread from the mean).

6. The area under a Gaussian PDF for the range [µ+ 2σ, µ− 2σ] covers about 95% of the total
probability densities.

7. A standard normal distribution centers at 0 and has a standard deviation of 1:

f(z) =
1√
2π
e−

z2

2 , (6)

where Z takes the transformed value of X: z = x−µ
σ , hence z = 2 and z = −2 corresponds to

two standard deviations above and below the mean respectively.

8. Multiplication of two Gaussians renders a Gaussian distribution off by a normalizing constant:

N (x|µu, σu)N (x|µv, σv) ∝ N (x|µw, σw), (7)

where

µw =
µuσ

2
v + µvσ

2
u

σ2
u + σ2

v

;σ2
w =

σ2
uσ

2
v

σ2
u + σ2

v

. (8)

Namely, the combined mean is a linear combination of (and hence lies between) the two
individual means:

µw = wuµu + wvµv, where wu =
σ2
v

σ2
u + σ2

v

and wv =
σ2
u

σ2
u + σ2

v

, (9)

and the combined variance is no greater than either of the individual variances:

σ2
w =

σ2
v

1 + σ2
v
σ2
u

≤ σ2
v or =

σ2
u

σ2
u
σ2
v

+ 1
≤ σ2

u. (10)
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Example C (exercise)
Imagine that you watched your friend throwing a dart and the dart landed at horizontal
position x on a dart board. You know for a fact that the dart throw tends to center at
position µ with a constant variance (e.g. σ2). Based on your prior belief, you also think
that the expected horizontal position µ itself centers around position p with uncertainty (i.e.
variance) s2. Given these two pieces of information, you should be able to derive an analytical
expression for the posterior probability of the expected position µ, by making use of the Bayes
rule (in formulating this problem) and the property of Gaussian multiplication (in deriving
an analytical expression for the posterior).

9. The Gaussian PDF of a multivariate variable in d dimensions is:

f(xxx|µµµ,ΣΣΣ) =
1

(2π)
d
2 |ΣΣΣ|

1
2

e−
1
2

(xxx−µµµ)tΣΣΣ−1(xxx−µµµ), (11)

where xxx and µµµ are d-dimensional vectors, and ΣΣΣ is a d× d covariance matrix.

Example D
For a bivariate normal (d = 2), xxx = [x1 x2]t, µµµ = [µ1 µ2]t, ΣΣΣ11 = σ2

1, ΣΣΣ22 = σ2
2, ΣΣΣ12 = ΣΣΣ21 =

E[(x1−µ1)(x2−µ2)], |ΣΣΣ| = ΣΣΣ11ΣΣΣ22−ΣΣΣ12ΣΣΣ21 is the determinant of ΣΣΣ, and ΣΣΣ−1 = 1
|ΣΣΣ|ΣΣΣ

′ is the

inverse of ΣΣΣ where ΣΣΣ′11 = ΣΣΣ22, ΣΣΣ′22 = ΣΣΣ11, and ΣΣΣ′12 = ΣΣΣ′21 = −ΣΣΣ12.1 How would you interpret
the four values in ΣΣΣ in a 2-dimensional space? (See if you have an intuition for the estimated
dart position for Example C imagining now that it lies in a 2-dimensional space.)

10∗. If two (sets of) variables xxx and yyy are jointly Gaussian (e.g. [xxx yyy]t ∼ N (µµµ,ΣΣΣ)), then the
conditional probability of one variable over another (e.g. p(xxx|yyy) or p(yyy|xxx)) is also Gaussian.
Similarly, the marginal probability of each variable is also Gaussian (e.g. f(xxx) =

∫
yyy f(xxx,yyy)dyyy

or f(yyy) =
∫
xxx f(xxx,yyy)dxxx).

1A reference for matrix algebra can be found here: https://www.math.uwaterloo.ca/ hwolkowi/matrixcookbook.pdf.
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