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1 Historical analyses of word form reuse versus innova-
tion

To investigate the relative frequencies of cases where new meanings are labeled with existing
word forms (i.e., resulting in polysemy) and cases where novel word forms are created (i.e.,
resulting in new lexemes), we conducted a a set of analyses using data from the HTE de-
scribed in the main text. Our analyses quantified the proportion of cases over the history of
English in which new meanings were lexicalized using existing word forms vs. morphological
derivations of existing word forms vs. new lexemes.

We analyzed lexeme and meaning records over the past 1000 years (1001-2000) in English
(the HTE does not provide dates for word and meaning records earlier than the Old English
period, i.e., prior to 1000). For each new sense entering the dictionary at a given time point,
we classified how it was lexicalized into one of three categories. We considered a historical
case polysemous if the novel sense was labeled by an existing word form - that is, if a word
is reused exactly, with no change in the existing form. We considered the case innovative
if the novel sense was labeled by a new lexeme that was not present in the existing lexicon
prior to that time. To take into account cases of morphological derivation in English, where
words share a common root via suffixing (e.g., cost → costly), we considered these as de-
rived but not exact reuses. Other forms of morphological derivation are possible in English,
e.g., prefixing, but we chose to focus on suffixing due to the availability of automatic stem-
ming procedures that detect cases of suffixing. Our analyses thus provided a conservative
estimate of cases of morphological derivation, such that some of the cases we classified as
“innovation” likely involved some forms of derivation (e.g., prefixing) or compounding (e.g.,
smartwatch).

At each year where novel senses were recorded, we counted the cases of reused (exact
and derived) and new words. To identify cases of derived reuse automatically, we first used
the Natural Language Toolkit Python package of Snowball stemmer (http://www.nltk.
org/_modules/nltk/stem/snowball.html) to stem the words. We then treated a case as
derived if a novel sense was labeled by a word that shares a root with the existing words
in the lexicon. We also excluded all phrase records (i.e., compound words) in the thesaurus
that include a space.

We summarize the total counts of the cases we considered in the left panel of Figure S1,
collapsing data across the 1000-year period we analyzed. The result shows that cases of
reuse, regardless of whether they are exact only or include derived uses, are substantially
more prevalent than the cases of innovation (new). In particular, we obtained 425,817 total
counts of reuse, 345,285 cases of which are strict polysemy (exact reuse) and 80,532 of which
are derived reuses. In comparison, we obtained half as many counts (193,444) in the case
of innovation. The difference between exact reuse and new cases was highly significant by
a binomial test (p < 0.0001), suggesting that polysemy dominates word form innovation in
the history of English.

To evaluate if this trend is persistent over the course of history, we compared the count
of reused cases to that of new cases across all available years in the period we considered.
This difference should be positive if polysemy dominates innovation as a strategy of labeling
emerging meanings for a given year. Figure S1 shows this is the case, where the values of
difference are dominantly positive, with 669 times in which cases of reused (exact) exceed
those of innovation (new), 129 times in which the opposite is true, and 205 cases of tie
(almost all tied cases occured in the first 200-year period where sense records are relatively
sparse). Together, these analyses suggest that polysemy has been a dominant strategy
throughout the history of English.
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Figure S1: Summary of historical analyses on reuse and innovation of word forms. Reused
cases are tabulated for exact cases (black bar) and exact+derived, i.e., including those with
root-sharing via suffixing (gray bar); new cases correspond to those that do not fall under
either of the reused categories. The left panel shows the overall counts across the past 1000
years of English. The right panel shows the differences in counts over the course of history.
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2 Example calculation of conceptual proximity

We provide an example calculation of the conceptual proximity measure we used for the
analyses described in the main text. Table S1 shows two senses sampled from the sense
records of the word game (top panel) and the taxonomic representation of these senses
(bottom panel), following the hierarchical definitions provided in the HTE described in the
main text:

Table S1: Two example senses of game recorded in the Historical Thesaurus of English.

Definition of meaning HTE code Symbol
Celebratory social event 03.13.02.02|04 •
Ancient match/competition 03.13.04.01|02.02 ?

03:The Social World •?

01:Community · · · 13:Leisure •?

02:Social Event•

02:Large/Public Event•

04:Celebratory games•

04:Sports?

01:Match/Competition?

02:Series of (as public spectacle)?

02:Greek & Roman Antiquity?

· · ·

Because the two senses share two parent tiers in the taxonomic hierarchy (i.e., The social
world → Leisure), their conceptual proximity is calculated as follows:

c(•, ?) =
2× |parent|
l(•) + l(?)

=
2× 2

5 + 6
=

4

11
. (1)
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3 Illustration of verb taxonomy

Verbs are classified under the same taxonomy as nouns in the HTE. Table S2 illustrates an
example pair of senses for the verb play.

Table S2: Two example senses of play recorded in the Historical Thesaurus of English.

Definition of meaning HTE code Symbol
Play a card 03.13.01.05.02.07 •
Play instrument 03.13.03.02.06.03 ?

03:The Social World •?

01:Community · · · 13:Leisure •?

01:Entertainment•

05:A specific form of amusement•

02:Game•

07:Card-game•

03:The arts?

02:Music?

06:Performing music?

03:Playing instrument?

· · ·
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4 Nearest-neighbor chaining and minimal spanning tree

We demonstrate that the nearest-neighbor chaining model we proposed in the main text ap-
proximates the process of constructing a minimal spanning tree over time. Specifically, we
show that it resembles Prim’s classic algorithm that yields a minimal spanning tree, with a
certain probability. We then present empirical evidence that this probability is substantially
higher than other competing models we have considered.

4.1 Theoretical connection

We first show that the nearest-neighbor chaining model is closely related to Prim’s greedy
algorithm of constructing a minimal spanning tree. Assuming a graph with vertices v ∈ V ,
edges e, and edge weights (or costs) c, Prim’s algorithm runs as follows:

Initialize: Choose an arbitrary vertex v ∈ V ; let S = {v} and T be an empty set
while S 6= V do

Select an edge e such that only one of its endpoints is in S and c is minimal;
Add e to T ;
Add endpoints of e to S;

end
Return: T

Algorithm 1: Prim’s algorithm that gives a minimal spanning tree with lowest edge costs.

The nearest-neighbor chaining model we proposed is a probabilistic version of the Prim’s
algorithm with a fixed initial vertex s0 that corresponds to the initial sense of a word. As-
suming all possible senses of a word as vertices of a graph s ∈ S (e.g., in a taxonomy-based
similarity space or a Euclidean space), all pairs of these senses forming edges e, and costs
of sense extension as distance between an existing sense and a novel sense d, the nearest-
neighbor chaining algorithm constructs a tree probabilistically that favors the minimal-
distant sense to chain to at each step:

Initialize: Choose initial sense s0 ∈ S; let C = {s0} and T be an empty set
while C 6= S do

Sample a sense-sense edge e such that only one of its endpoints is in C and d is
minimal, with probability proportional to exp(−d);

Add e or its alternative candidate (with probability no greater than that of e) to
T ;

Add endpoints of e (that includes the new sampled sense) to S;

end
Return: T

Algorithm 2: Nearest-neighbor chaining algorithm that approximates the Prim’s algo-
rithm.

In the case where the nearest-neighbor chaining model maximizes the probability of
choice at each step, the algorithm converges to Prim’s algorithm except for a fixed starting
point, therefore yielding a globally minimally distant sense network over time:

Initialize: Choose initial sense s0 ∈ S; let C = {s0} and T be an empty set
while C 6= S do

Select an edge e such that only one of its endpoints is in C and d is minimal;
Add e to T ;
Add endpoints of e (that includes the new sense with the globally minimal d) to S;

end
Return: T

Algorithm 3: Nearest-neighbor chaining algorithm that maximizes probability at each
step.

Because this special case only occurs with a certain probability (e.g., see case study in
Model cost), it follows that the nearest neighbor model guarantees to produce a minimal
spanning tree with probability no less than p, where p is the probability that the algorithm
goes with the best choice at each step, among all other possible tree structures. Given this
theoretical connection, we next validate empirically whether the nearest-neighbor chaining
model indeed dominates other competing candidate models in producing low-cost sense
extensional paths.
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4.2 Empirical validation

We provide a comprehensive simulation to compare models in terms of cost, complementing
the illustrative simulation that we described in the main text.

We aimed to investigate whether the nearest-neighbor chaining model produces the low-
est empirical cost empirically, considering four variable parameters in a simulation (which
we did not vary systematically in the simulation described in the main text): 1) number of
hypothetical senses of a word; 2) typology or relative positions of the senses in 2D space; 3)
initial sense, or seeding position of the model; 4) randomness due to the probabilistic nature
of each algorithm.

To account for these factors, we performed the simulation just as we introduced in the
main text by further (step i) varying the number of senses in a 2D Euclidean space, from 5
to 30 in increments of 5; (step ii) generating 10 different randomized typologies by sampling
senses (or points) in a [0−1,0−1] grid, for each level we varied in step i ; (step iii) iterating
through every available sense and treating it as the initial position (and hence exhausting
the possible starting positions for each model); (step iv) probabilistically sampling accord-
ing to Luce’s choice rule (which we have defined separately for each model) at each step, in
20 different iterations.

Figure S2 shows the tallies for which model has yielded the minimal-cost probabilistic
path at all varying conditions. We observed that in almost all cases, the nearest-neighbor
chaining model was dominant in producing the lowest-cost sense network over time, which
provides strong empirical support for our theoretical proposal that the algorithm constructs
a near minimal-cost sense network.
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Figure S2: Comparison of model-generated costs in the simulation. Number of senses is
increased from 5 to 30 in incremental steps of 5 in the simulation. Vertical axis indicates
the number of runs at which a model produced the lowest overall cost among all competing
models. The abbreviations on the horizontal axis (from left to right) correspond to exemplar,
progenitor, prototype, local, and nearest-neighbor chaining models.
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5 Model cost and likelihood

We illustrate how to calculate cost and likelihood of the models we have proposed by a
simple case study. We show how cost and likelihood are dissociable, such that a model
that yields a higher likelihood does not imply that it is necessarily lower in cost. Their
correspondence in the data is an empirical result, not an a priori outcome.

Figure S3 shows the semantic space that we used for this case study, similar to that in
Computational Formulation of Theory. Despite the simplicity of this setting, the principles
we demonstrate here should generalize to more complex scenarios. Specifically, we have
constructed a hypothetical word that includes four senses, labeled “A” to “D”, following
their temporal orders of emergence (also indicated in the figure). We took Euclidean distance
d(·, ·) between any pair of senses as a proxy of semantic relatedness, where similarity between
two senses is sim(·, ·) = e−d(·,·) as described in the main text. In this specific case, sense
pairs AB and BD bear equal distances of 1—slightly shorter than distance between senses
A and C, which is 1.1. We will see later how such a construction yields different temporal
predictions from the progenitor model and the nearest-neighbor chaining model, which we
focus on comparing for the purpose of illustration.

B
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A

t0

C

t2

D

t3

d(A,B) = 1
d(A,C) = 1.1
d(A,D) = 1.85
d(B,C) = 1.94
d(B,D) = 1
d(C,D) = 2.89

Figure S3: Semantic space of a hypothetical word. Dots marked with “A”, “B”, “C”, and
“D” represent emerging senses for that word. The red dot represents the earliest sense.
The true emerging order for this word is: A (appearing at time t0), B (appearing at t1),
C (appearing at t2), D (appearing at t3). Distance between senses d(·, ·) is indicated by
dotted line, based on Euclidean distance.

5.1 Space of possible paths

Given the configuration described in Fig. S3, there will be 3! = 3 × 2 × 1 = 6 possible
historical orders in which senses B, C, and D could have been derived over time: ABCD,
ABDC, ACBD, ACDB, ADBC, and ADCB. In general, for a word with n senses, the number
of possible historical orders is (n − 1)!. However, it is important to note that each model
specifies a potentially different way in which senses may be derived over time, given a specific
historical order of emergence.

In theory, each model specifies a full probability distribution over all possible orders of
sense emergence for a given word. Such a distribution reflects the degree to which a model
favors one possible extensional mechanism over other alternatives in accounting for the
historical order of senses. For example, given a single emerging order of ABCD, a nearest-
neighbor chaining model might assign a relatively high probability to the extensional path
A→B, B→C, C→D (e.g., a chain-based mechanism of extension), as opposed to A→B,
A→C, A→D, (e.g., a radially structured mechanism of extension), which may in turn be
assigned with a high probability by the progenitor model. The models we have proposed
effectively explore the space of possible ways in which new senses could have been derived,
even though there exists only one true historical order via which they have actually emerged.
This fact allows us to distinguish between the cost of a model (i.e., a cognitive metric that
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defines how efficient or cost effective models are), which depends on the aggregated semantic
distance that a specific algorithm traverses over time, and the likelihood of a model (i.e., a
statistical metric for evaluating models against truth), which depends on the true historical
order of sense emergence.

5.2 Model cost

Because the space of possible sense emerging paths scales rapidly with number of senses
(e.g., for 13 senses, (n − 1)! = 12! yields 479,001,600 possibilities), it is intractable to esti-
mate probabilities and costs exhaustively. In this constrained case study, however, we can
perform exhaustive calculations.

We first show the calculation of cost with a single-path prediction made by a model,
which chooses the candidate sense with maximal probability at each step. We then gener-
alize and show the cost of each possible path.

Figure S4 illustrates the predicted paths and associated probabilities from two models,
progenitor and nearest-neighbor chaining, in the hypothetical space we described. At each
step, each model infers which sense is likely to be the next emerging sense, extended from
existing senses of that word. Specifically, the progenitor model infers an emerging sense with
probability in proportion to its similarity to the earliest progenitor sense A (i.e., marked
in red in the figure). For example, initially in time, it assigns a probability to each of the
candidate senses B, C, and D, with B carrying the most probability weight because it is the
closest to A among other candidates. The nearest-neighbor chaining model makes similar
predictions and yields the same probability weighting in this step, because there is only one
existing sense to chain from. However, these two models differ in their predicted path in the
next step(s): The progenitor model infers with greater probability that C should emerge
next, because C is closer to A than D; the nearest-neighbor chaining model instead infers
with greater probability that D should emerge next, because D is the closest candidate to
existing sense B—just as C is to existing sense A, but distance DB is shorter than distance
AC by construction (and hence chain DB is considered semantically more related than chain
AC).
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Figure S4: Illustration of sense extensional paths for the hypothetical word as predicted by
the progenitor model (top panel) and the nearest-neighbor chaining model (bottom panel).
Gray dashed lines indicate possible choices of extension given an existing sense. Width of
dashed lines is proportional to the probability of any candidate sense being chosen at a given
time point, based on Luce’s choice rule. Black solid lines indicate chosen paths. Cost of a
model corresponds to the total distance traversed in sense extension, or the sum of graph
edges at t2.

We can calculate cost of these models based on their predicted paths, assuming they
maximize probabilty at each step. Specifically, we define cost as the aggregated sum of
distances in the extension path. In this case, the nearest-neighbor chaining model yields a
lower cost (as expected):

cnnchaining = d(A,B) + d(B,D) + d(A,C) = 1 + 1 + 1.1 = 3.10, (2)

in comparison to the progenitor model:

cprogenitor = d(A,B) + d(A,C) + d(A,D) = 1 + 1.1 + 1.85 = 3.95. (3)

We can compute the probabilities of these paths based on Luce’s choice rule (we abbre-
viate similarity sim(·, ·) as s · · in the following):

pnnchaining ∝ p(B|A)× p(D|A,B)× p(C|A,B,D) (4)

∝ sAB

sAB + sAC + sAD
× sBD

sAC + sBD
× sAC

sAC
(5)

∝ 0.428...× 0.524...× 1 = 0.23, (6)

pprogenitor ∝ p(B|A)× p(C|A,B)× p(D|A,B,C) (7)

∝ sAB

sAB + sAC + sAD
× sAC

sAC + sAD
× sAD

sAD
(8)

∝ 0.428...× 0.679...× 1 = 0.29. (9)

Similarly, we can also compute cost and probability of each of the 6 possible paths under
these two models separately, summarized in Table S3.
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Table S3: Summary of probability (p) and cost (c) of all possible paths from the progenitor
and nearest-neighbor chaining models.

Path pprogenitor cprogenitor pnnchaining cnnchaining
ABCD 0.29 3.95 0.20 3.10
ABDC 0.14 3.95 0.23 3.10
ACBD 0.27 3.95 0.27 3.10
ACDB 0.12 3.95 0.12 3.95
ADBC 0.10 3.95 0.10 3.95
ADCB 0.20 3.95 0.10 3.95

In this specific case, we can compute the average cost under each model m:

E[costm] =
∑

p(pathm)c(pathm), (10)

which yields 3.36 for the chaining model and 3.95 for the progenitor model. In the main
text, we estimate cost under a single prediction from each model that maximizes stepwise
probability, which yields 3.10 for the chaining model and 3.95 for the progenitor model.
Regardless whether we consider the average or the single-shot cost, the chaining model
yields a lower overall cost.

5.3 Model likelihood

To evaluate the models, we estimate model likelihood as the log probability at which each
model would predict the true historical order of emerging senses, i.e., L = p(pathtrue) =
p(A = t0)×p(B = t1|A = t0)×p(C = t2|B = t1, A = t0)×p(D = t3|C = t2, B = t1, A = t0)
for the case scenario we described. This metric determines the likelihood under which senses
would emerge as observed, based on the specific extensional mechanism postulated by a given
model. Note that the value of this metric is determined by how probable a model considers
the true order of sense emergence, not how cost effective a model is in extending senses from
one another.

Table S4 shows the stepwise calculations of likelihood for both models, given the true
emerging order of senses: ABCD. In this case, the progenitor model yielded a higher overall
likelihood, because it assigned the highest probability to the true emerging sense at each
step. However, this is not so for the nearest-neighbor chaining model, because it assigned
more probability to D (i.e., false candidate) as opposed to C (i.e., true candidate) when C
emerged at t2. The likelihood of the random baseline model is (i.e., 1

6 = 1
3 ×

1
2 × 1) , and it

is lower than both models examined here.

Table S4: Calculation of model likelihoods. “sAB” is abbreivation for sim(A,B).
p(B = t1|A) p(C = t2|B,A) p(D = t3|C,B,A) Likelihood

Progenitor
Formula sAB

sAB+sAC+sAD
sAC

sAC+sAD
sAD
sAD

Value 0.428... 0.679... 1 0.29
NN chaining
Formula sAB

sAB+sAC+sAD
sAC

sAC+sBD
sBD
sBD

Value 0.428... 0.475... 1 0.20

Table S5: Summary of cost and likelihood of the two models in the simulation. Bold-faced
quantities reflect better values along the variables of interest.

Cost Likelihood
Progenitor 3.95 0.29
NN Chaining 3.10 0.20

Table S5 summarizes the cost and likelihood for both models. These results suggest how
cost and likelihood of models may be dissociated, such that a cost-optimized model may not
always yield the optimal likelihood in predicting temporal emergence of word senses.
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6 Model comparison controlling for age of words

We summarize the results from additional model comparisons, based on the second word
set that controls for age of word described in the main text.

Figure S5 summarizes the mean log likelihood ratios and the winner-take-all results
for all models on this word set. Consistent with the BNC word set, the nearest-neighbor
chaining model yields the best performance in these tests. We assessed the significance of this
result by performing paired t-tests between the chaining model and each of the competitors
(p < 0.001 from all tests (n = 2648) with Bonferroni correction for multiple tests: against
Exemplar (t = 17.0), Prototype (t = 17.7), Progenitor (t = 20.2), Local (t = 11.9)).
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Figure S5: Summary of model performances on the word set that controls for word age. A)
Likelihood ratio test. “0.0” on the y-axis indicates performance of the null model. Bar height
indicates the mean log likelihood ratio averaged over the pool of most common words from
the BNC corpus. Error bars indicate 95% confidence intervals. B) Visualization of winner-
take-all percentage breakdown among the proposed models from the same test. “Chain.
[nn]” refers to the nearest-neighbor chaining model.
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7 Analyses of conditions that favor chaining

We describe the measure we used to explore the relative superiority of the chaining model
in the main text, along with example words given this measure.

We defined a superiority score of chaining Snn by the extent to which the nearest-
neighbor chaining model outperforms other competing models we have considered, in terms
of their ability to predict the historical order of emergence of a word’s senses. Specifically,
we took the expected value of difference in log likelihoods between the chaining model and
each of the remaining four models:

Snn = E[Lnn − Lm],where m ∈ {exemplar, prototype, progenitor, local} (11)

Intuitively, this score determines the degree to which the nearest-neighbor chaining model
predicts historical ordering of a word’s senses better than each of the alternative models.
Figure S6 visualizes the distribution of this score for all words in the BNC set, along with
some example words. We observed that this distribution is strongly positively skewed (skew-
ness = 2.56), indicating that nearest-neighbor chaining generally outperforms other models
in predicting the orders of sense emergence for most words.
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Figure S6: Histogram of superiority scores of chaining in the BNC word set. Positive and
negative values on the x-axis indicate relative superiority of chaining above and below its
competitive models, with locations of example words marked in green (scores of game and
over are very similar and hence these words are located closely to each other).

Table S6 further summarizes information regarding words that fall in the left and right
tails of this distribution. As the table indicates, the words with the highest superiority
scores of chaining also tended to be highly polysemous words, carrying many different senses.
Importantly, the relative superiority of the chaining model is also high for words such as
over and game (and face which we used to illustrate chaining in the main text), which are
paradigm examples highlighted by Lakoff (1987) and Wittgenstein (1953). In contrast, words
with fewer senses tended to have lower scores, such that the historical order of development
of their senses was better explained by other models such as the prototype or local models.
As noted in the main text, it is interesting that the chaining model performed better on
words that have developed more senses over history, since it is these words that could have
the most costly sense extensional paths. This finding supports our proposal that nearest-
neighbor chaining has been a preferred mechanism for minimizing cost in historical word
sense extension.
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Table S6: Example words that showed the best and worst performance of chaining relative
to other models chaining in the BNC word set. “Best model” shows the model that yielded
the highest log likelihood ratio score for a given word. Abbreviations “ex.”,“prog.”, “prot.”,
“loc.”, and “nn” correspond to exemplar, progenitor, prototype, local, and nearest-neighbor
chaining models. “Number of senses” records the number of total senses for a given word
from the HTE database.

Words best predicted by chaining
Word Best model Number of senses
turn nn 159
round nn 154
in nn 217
show nn 140
shift nn 102
order nn 81
hold nn 138
list nn 59
strip nn 79
sharp nn 106
soft nn 119
walk nn 104
set nn 192
point nn 147
pull nn 92
rank nn 71
cross nn 99
cut nn 125
pitch nn 114
miss nn 67

Words worst predicted by chaining
Word Best model Number of senses
thread prog. 37
dark loc. 53
standing loc. 67
cancer loc. 14
bitch prog. 14
heart loc. 46
tongue loc. 42
entertain prot. 28
chair prot. 31
faculty loc. 21
last loc. 59
wit prot. 42
necessity prog. 14
wealth loc. 13
striker prot. 28
descend loc. 16
way ex. 46
super prot. 38
difference prot. 18
eye prot. 29
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