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Humans are remarkably proficient at categorizing visually-similar objects. To
better understand the cortical basis of this categorization process, we used
magnetoencephalography (MEG) to record neural activity while participants learned–with
feedback–to discriminate two highly-similar, novel visual categories. We hypothesized
that although prefrontal regions would mediate early category learning, this role would
diminish with increasing category familiarity and that regions within the ventral visual
pathway would come to play a more prominent role in encoding category-relevant
information as learning progressed. Early in learning we observed some degree of
categorical discriminability and predictability in both prefrontal cortex and the ventral
visual pathway. Predictability improved significantly above chance in the ventral visual
pathway over the course of learning with the left inferior temporal and fusiform gyri
showing the greatest improvement in predictability between 150 and 250 ms (M200)
during category learning. In contrast, there was no comparable increase in discriminability
in prefrontal cortex with the only significant post-learning effect being a decrease in
predictability in the inferior frontal gyrus between 250 and 350 ms (M300). Thus, the
ventral visual pathway appears to encode learned visual categories over the long term. At
the same time these results add to our understanding of the cortical origins of previously
reported signature temporal components associated with perceptual learning.
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1. INTRODUCTION
Objects from visually-similar categories can be difficult to distin-
guish, but human observers can make accurate category judg-
ments within a fraction of a second, a visual skill that is per-
fected by learning and experience (Gauthier et al., 2009). Beyond
the case of face individuation where each category is mapped
to an identity, the more general ability to assign categories to
visually-similar objects has important consequences in our nat-
ural environment. For example, distinguishing between ripe or
poisonous berries, wet or icy roads, or Retrievers or Rottweilers,
all necessitate placing one collection of visually-similar objects
into a common category, yet keeping that category distinct from
another collection of objects that are not only similar to one
another, but to the objects in the first category. This sort of
categorization is often referred to as “subordinate” to differen-
tiate from “basic-level” categorization in which there are sig-
nificant visual differences supporting placing objects into one
category or another (e.g., pigs vs. airplanes). Moreover, it is
often assumed that subordinate-level categorical decisions will
incur a larger cost in response time as compared to basic-level
categorical decisions–indeed, this functional definition is often
used to ascertain whether a given category is considered basic
or subordinate (Rosch et al., 1976). At the same time, this

response time differential can be minimized through experience
in that visual “experts” exhibit an entry-level shift whereby sub-
ordinate categorization for domains of interest becomes just as
fast as basic-level categorization (Jolicoeur et al., 1984; Tanaka
and Taylor, 1991). For example, for bird experts, distinguish-
ing between different species of birds, all nominally members
of the same basic-level category, is likely to be just as fast as in
telling a bird from a chair. Thus, we can view becoming pro-
ficient at categorizing visually-similar objects as an instance of
perceptual expertise with subordinate category discriminations.
While it is understood that both the ventral occipito-temporal
visual cortex, in particular the ventral visual pathway (VVP), and
the prefrontal cortex (PFC) are involved in such visual catego-
rization tasks, there is no strong consensus on the relative roles
of these neural substrates. Moreover, once specific subordinate-
level categorization proficiency has been acquired, there is still
a poor understanding of the precise timing of the contribu-
tions of the VVP and PFC during the on-line discrimination of
visually-similar objects.

To better characterize the roles of the VVP and PFC in the
categorization process, we use magnetoencephalography (MEG)
to unravel the cortical time course in visual category learning
in order to evaluate two prominent, yet competing, theories.
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The first approach, which we refer to as the “dominant PFC
viewpoint,” emphasizes the role of prefrontal cortex (PFC) in cat-
egorization and proposes the VVP to be sensitive to visual feature
differences but agnostic as to category memberships (Jiang et al.,
2007; Seger and Miller, 2010). For example, Jiang and colleagues
(2007) found that categorization training induces category-level
changes in lateral PFC but only continuous shape-level changes
in lateral occipital cortex (LOC). Related work in non-human
primates likewise suggests a similar distinction between PFC and
inferiortemporal cortical neurons (Miller et al., 2002; Freedman
et al., 2003; Meyers et al., 2008). These and other data paint
a picture of PFC as the neural substrate supporting category
learning and the VVP as the neural substrate providing the undif-
ferentiated (with respect to category) perceptual input that the
category-knowledgeable PFC utilizes.

An alternative approach, which we will refer to as the “com-
plementary PFC viewpoint,” suggests that the VVP and PFC
play complementary roles in categorization (Mishkin et al., 1983;
Goodale et al., 1994; Ungerleider and Haxby, 1994; Bar et al.,
2005; Folstein et al., 2012a). Under this view, the VVP exhibits
category boundary sensitivity (Sigala and Logothetis, 2002; de
Baene et al., 2008) and the PFC provides early top-down categor-
ical inferences that facilitate initial learning of category-relevant
feature dimensions (Fenske et al., 2006). Learning and reinforce-
ment progressively instantiate these stimulus dimensions within
the VVP; that is, the VVP becomes increasingly sensitive to
learned category boundaries as the high-dimensional stimulus
space is mapped. This is clearly seen in fMRI for highly over-
learned, “expert” domains in which the VVP shows spatially
localized, differential responses to subordinate-level categories
such faces (Kanwisher et al., 1997), novel objects (Gauthier et al.,
1999; Op de Beeck et al., 2006), birds and cars (Gauthier et al.,
2000). Similarly, event-related potential (ERP) has consistently
revealed category sensitivity in the VVP-sourced N170 compo-
nent (Tanaka and Curran, 2001) and, in several studies of visual
expertise, has been localized to posterior occipito-temporal areas
(Rossion et al., 2003). Again, as with the fMRI results, this cate-
gory sensitivity for domains of expertise has been found for both
real world (Tanaka and Curran, 2001) and lab-trained experts
(Scott et al., 2006).

Some of the discrepancies between results supporting these
two approaches may be accounted for by differences in stimulus-
morphing procedures used in different experiments. In particular,
research supporting a dominant PFC view has typically used
a more difficult to learn type of morph space (i.e., blended
morphspace). In contrast, research supporting the complemen-
tary PFC view has typically relied on a grid morph space (for a
thorough consideration of the topic, see Folstein et al., 2012a).
This raises the possibility that morphing procedures are actu-
ally driving the apparent differences in the role of the PFC for
these experiments: the extremely difficult morphspaces require
more PFC intervention for participants to map category bound-
aries, which in turn supports a dominant PFC viewpoint, while
the more comprehensible morphspace experiments find that VVP
areas are capable of instantiating category boundaries in and
of themselves, supporting a complementary PFC viewpoint. As
such, perceptually homogenous subordinate categories that have

clear decision boundaries, may serve as an ideal test for com-
paring these views of the PFC’s role in categorization. In our
experimental paradigm, category membership is never as inde-
terminate as it would be in the blended morphspace seen in
dominant PFC studies, but accurate categorization is still chal-
lenging, due to the subtle differences in category features. This
design retains the difficulty of blended morphspaces with the pre-
dictability of grid morphspaces. Thus, this experiment has the
potential to resolve some of the reported differences between the
two approaches on the magnitude of the role that VVP plays in
the context of subordinate categorization.

To evaluate both approaches, we studied human cortical
activity while participants learned to discriminate between two
novel and highly-similar visual categories. We hypothesized that
although both the VVP and PFC would be involved in the catego-
rization process, their roles would differ during different phases
of learning, which is more consistent with a VVP-PFC comple-
mentary viewpoint. More specifically, we predicted that the VVP
would acquire categorical representation as learning progressed to
the point where the category boundaries are better distinguished
by participants. In contrast, we predicted that PFC would play a
more significant role in category encoding in the initial phases
of learning, during the early formation of categorical representa-
tions, but that this role would diminish later in learning. With
respect to these predictions, the differential roles of the VVP
and PFC have been explored by Bar et al. (2005), who found,
in a visual recognition task that PFC responses both temporally
preceded those in the VVP and were more sensitive to low spa-
tial frequencies. They hypothesized that PFC may be involved in
providing early inferences regarding object identities that are sub-
sequently refined by further visual processing within the VVP.
Our predictions are related to this hypothesis, but are critically
different in two important aspects. First, we focused on cate-
gorization instead of individual object recognition—it remains
unclear whether the VVP and PFC both play a role in discriminat-
ing between visually-similar categories. Second, we investigated
the change in response for the VVP and PFC over the course of
category learning as opposed to investigating only the end point
of learning. In particular, this latter manipulation allowed us to
monitor how neural coding of categories change over time, which
should offer a better means for better elucidating the functional
roles of both PFC and the VVP.

To pursue these goals, we created two novel, visually-similar
shape categories inspired by the stimuli used by Krigolson and
colleagues (2009). Figure 1A illustrates the stimulus image space,
showing five samples from each of the two categories. Each of
these blob-like exemplars is unique and represents a jittered ver-
sion derived from one of the two prototypes located at the center
of the space of samples forming each category. Although these
exemplars are perceptually similar with small differences in the
edge contours, a distinct category boundary is embedded in
the overall space, as illustrated by two distinct clusters shown
in Figure 1B. Participants were trained to discriminate between
these two “blob” categories in a feedback-driven categorization
task in which we monitored neural activity using MEG. At a fine
temporal scale, MEG’s millisecond temporal resolution afforded
us the ability to investigate how different cortical regions embed
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FIGURE 1 | Visual stimulus design. (A) Blob samples from A and B categories. (B) Projection of A and B blobs in two principal dimensions via principal
components analysis. (C) Cumulative variability accounted for in the principal dimensions. (D) Normalized edge weights from the first principal dimension.

discriminative information about the blob categories over time.
At a coarser temporal scale, we were able to explore how the
encoding of this category information evolves during the course
of learning, particularly with respect to categorical representa-
tions in the ventral and occipito-temporal visual and prefrontal
cortices.

2. MATERIALS AND METHODS
2.1. ETHICS STATEMENT
All experimental procedures were approved by the Institutional
Review Boards at Carnegie Mellon University and the University
of Pittsburgh. All participants gave written informed consent and
were compensated financially for their participation.

2.2. PARTICIPANTS
Ten right-handed participants (4 females and 6 males) aged
between 17 and 35, recruited from the Pittsburgh area, were run
in the experiment. Participants were financially compensated for
their participation. Two of the participants ran in experimental
sessions in which trigger failures meant that the timing of indi-
vidual trials could not be retrieved, so the data for these two par-
ticipants was discarded. One participant was unable to correctly
learn the blob category boundaries, exhibiting near-chance cate-
gorization accuracy throughout the experimental session, so the
data for this participant was likewise discarded. Thus, the results
reported here are based on the remaining seven participants.

2.3. STIMULUS DESIGN
The visual stimuli were generated from two novel artificial cate-
gories, A and B. Each category was defined around a prototype
“blob” that corresponded to the center of a space of blob exem-
plars (Figure 1A). Within each category, 300 unique blob exem-
plars were generated from a parameterized distribution. Each
blob was the result of a random two-dimensional polygon with
20 edges (or dimensions) similar to the design used by Krigolson
et al. (2009). The edges were defined as distances of proportion
30–70% of the distance between an origin and 20 vertices uni-
formly distributed around a unit-length circle. To control for
statistical variability, blobs were generated from a multivariate
Gaussian distribution specified for each category, where the mean

of the distribution is the 20-dimensional vector of the prototype,
and the covariance is a diagonal matrix with variance in each
dimension proportional (20%) to the difference in edge distances
across the two exemplars. This ensures samples within each cat-
egory vary slightly from each other but remain distinct from the
other stimulus category. Figure 1A shows several samples drawn
from each of the two categories. This design yields a distinct
category boundary which is illustrated by the two separate blob
distributions as projected into a space spanned by the first two
principal components of a PCA (Figure 1B). A comparison of the
number of dimensions to cumulative variability establishes that
the greatest variation (∼90%) among the blob samples is cap-
tured in one to two dimensions (Figure 1C). Finally, Figure 1D
illustrates the normalized weight that each edge shares in the first
principal dimension. A lengthier edge accounts for more variabil-
ity in this dimension and hence it is more likely to be used as
discriminative feature for visual categorization.

2.4. EXPERIMENTAL PROCEDURES
The experiment involved a trial-by-trial feedback-driven visual
category learning task where the participants’ task was to discrim-
inate between the two blob categories. Each experimental session
consisted of 600 trials that included randomized presentations
of 300 unique A-blobs and 300 unique B-blobs. The session was
divided into five equal blocks of trials with brief self-paced breaks
between each block to reduce fatigue. The sequence of A and B
blobs was permuted for each participant and the number of pre-
sentations of stimuli from each category was balanced during each
block.

Each trial began with a machine-synthesized random audi-
tory label of “A” or “B” (630 ms) transmitted via non-magnetic
ear-plugs while the participant visually fixated on a centered
cross. A projector was used to back-project stimuli on a non-
magnetic screen (58 × 81 cm) to display all visual stimuli. After
an extended 120 ms fixation, either an A-blob or B-blob exem-
plar was displayed at the center of the screen (subtending a
visual angle of approximately 3.4 degrees both vertically and
horizontally) for a brief interval of 750 ms. During the period
while the blob was displayed, the participant responded with a
finger press to indicate whether the audio category label matched
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the blob category (“yes” or “no”). For example, if the partic-
ipant heard the label “A” followed by a visually-presented “B”
blob, the participant would press a button to indicate “yes,”
match, or “no,” a mismatch. The “yes” and “no” labels were dis-
played along the left or right bottom corners of the screen with
their positions counterbalanced for each experimental session.
A glove response pad was used to allow participants to respond
with finger presses with minimal wrist movement. Shortly after
response, the participant would receive on-screen feedback after
a jittered interval of 150–300 ms: “correct,” “wrong,” or “too
slow” were displayed in the center of the screen for 750 ms to
indicate the correctness of their response. Participants had to
respond within the 750 ms window to avoid the “too slow” feed-
back. The intertrial interval was 500 ms before the next trial
began.

Our experimental procedure is similar to the study by
Krigolson et al. (2009) with two important distinctions. First, we
used an audio label as a prompt for each category to be matched
to the subsequent visual presentation of a blob exemplar, whereas
in Krigolson et al. (2009) each blob stimulus was simultaneously
shown below a randomized written label showing either the let-
ter “A” or “B.” Their trial design made it difficult to determine
whether the observed categorical visual responses were driven by
the visual letter or the blob stimulus. Second, Krigolson et al.
(2009) were equally interested in categorization and error-driven
learning, so they continually shortened stimulus presentation to
ensure an adequate number of errors for analysis. In contrast,
our primary interest was in understanding visual category learn-
ing, therefore we maintained a stable visual presentation time
throughout our experiment.

2.5. MEG DATA ACQUISITION AND PREPROCESSING
Using MEG, we recorded cortical activity while participants were
trained to discriminate between the two blob categories. All
experiments were conducted in an electromagnetically shielded
room with participants seated comfortably and head-fixed
throughout the session. Neural data were recorded using a 306-
channel whole-head MEG system (Elekta Neuromag, Helsinki,
Finland). The system has 102 channels where each is a triplet of a
magnetometer and two perpendicular gradiometers.

MEG signals were sampled at 1000 Hz. Four head posi-
tion indicator coils were placed on the scalp to record rel-
ative head positions to the MEG machine at each session.
Electrooculography and electrocardiography were recorded by
additional electrodes placed above, below and lateral to the eyes
and at the left chest, respectively. The coil and electrode signals
were used to correct for movement and artifacts throughout the
experiments, the MEG signals were bandpass-filtered between 0.1
and 50 Hz to prevent power-line interference at 60 Hz, and signal
projection methods were used to remove artifacts such as heart
beats. Any delay in the visual display of stimuli on the screen was
measured by photodiodes and was corrected for in all reported
results. For all of our analyses, we focused on the 400 ms period
after visual stimulus onset and prior to the participant’s catego-
rization responses. The baseline defined as 120 ms prior to the
onset of the blob stimulus was removed for each trial to account
for signal drift.

Cortical source estimates were computed using the Minimum
Norm Estimates (MNE) (Hamalainen et al., 1993) in MNE Suite
software (http://www.nmr.mgh.harvard.edu/martinos/userInfo/
data/sofMNE.php). Source dipoles were evenly distributed (5 mm
separation between neighboring sources) with orientations fixed
normally to the cortical surface. Surface brain models for each
individual participant were constructed by Freesurfer software
(http://surfer.nmr.mgh.harvard.edu/) from structural magnetic
resonance imaging scans acquired at the Scientific Imaging and
Brain Research Center at Carnegie Mellon University (Siemens
Verio 3T, T1-weighted MPRAGE sequence, 1 × 1 × 1 mm, 176
sagittal slices, TR = 1870 ms, TI = 1100 ms, FA = 8 degrees,
GRAPPA = 2). Based on the neural anatomy of each individual
participant, 24 ventral visual and prefrontal cortical regions con-
taining multiple source dipoles were identified from Freesurfer
segmentation using the Desikan-Killiany Atlas (Desikan et al.,
2006).

2.6. MEG SENSOR-SPACE ANALYSIS
A multivariate Hotelling’s t-test was applied across the MEG
time series data to evaluate whether MEG sensor signals carry
information capable of discriminating between categories A and
B. At each time point, a multi-dimensional vector was defined
as the ensemble signal from 102 scalp magnetometers averaged
within a 10 ms window (the time-averaging was performed by
taking the mean within a moving window of 20 ms in step of
10 ms along the time course). This vector was then collected
for each single trial where a blob exemplar was presented. All
trials were divided into two groups based on the category mem-
bership of the presented blob stimulus in each trial for the
t-test. To assess whether the multivariate sensor signal is identical
under A and B groups (null hypothesis), the high-dimensional
vectors were first mapped into a lower-dimensional space via
principal components that preserved at least 99% signal vari-
ability prior to the test. This ensures a non-singular inversion in
estimating the covariance matrices in the t-tests. The resulting
projected vectors from all trials were subsequently evaluated with
the Hotelling’s t-test. The computed value was expressed in terms
of a χ2 statistic at each time point, and it was repeatedly applied
through the entire time course between 0 and 400 ms after the
visual onset.

2.7. MEG SOURCE-SPACE ANALYSIS
Similar procedures were applied to the MEG source space.
Anatomically bounded regions in the ventral visual pathway and
prefrontal cortex were first defined by the segmentation result
from Freesurfer. Because each region contained multiple dipoles,
a multivariate Hotelling’s t-test was performed over time to eval-
uate whether dipoles within each cortical region discriminated
trials containing A or B blobs. At each time point, a multidi-
mensional vector was constructed by the ensemble of cortical
dipole amplitudes averaged in 10 ms windows. This vector was
then reduced via principal components analysis to lower dimen-
sions that capture 99% variability (again to ensure non-singular
inversion in the covariance estimation). The resulting projected
vectors from all trials were evaluated with the Hotelling’s t-test at
each available time point. The analysis was repeated among first
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100 trials and final 100 trials separately to compare the neural dis-
criminability of visual categories at different stages in the learning
process.

An excursion test (Xu et al., 2011) was used to evaluate the
significance of the discriminative time course in source space.
This followed a number of steps. First, discriminative time course
was thresholded and only contiguous time points that exceeded
the threshold were proposed as potential regions of interest.
Contiguity was satisfied if any of the immediate neighbors of a
given point in time also passed the threshold—this procedure
helped to prune isolated events that are likely to occur due to
chance. This same procedure was then applied to the same data
multiple times (100-fold permutations), but in each case, cate-
gory labels were shuffled—this provided a baseline measure, or
a null distribution. A p-value was then computed using a stan-
dard permutation test by comparing the discriminability statistics
within the proposed regions of interest to those in the permuted
data following procedures described in Xu et al. (2011).

Logistic regression was used to predict blob categories from
cortical time course activities at predefined time windows. Within
each of 24 anatomically defined cortical regions, time courses of
all available cortical dipoles were averaged across time windows
50–150, 150–250, 250–350 and 0–50 (baseline) post-stimulus,
respectively. The predictive decoding analysis was then performed
within each of these windows. First, ensembles of cortical dipole
amplitudes were collected for 100 trials in earliest and final phases
of the learning session separately. For each phase, a leave-one-
trial-out cross-validation was used to predict the category mem-
bership of blob presented at a single held-out trial. Specifically,
the multidimensional ensemble of dipole amplitudes for each
anatomical region were projected to a low-dimensional space via
principal components that captured 99% variability. Then, at
each round of cross validation, a logistic regression classifier was
used to predict the blob category in an unseen held-out trial given
logistic weights estimated from all remaining trials. This proce-
dure was repeated for all trials until every trial was predicted, and
the overall accuracy was reported based on the percentage of trials
where the classifier correctly predicted the blob category.

3. RESULTS
3.1. BEHAVIORAL CATEGORY LEARNING PERFORMANCE
Seven participants successfully learned the blob categorization
task. Figure 2A shows the individual categorization accuracies in
the first and final 100 trials (error bars indicate standard errors
of the means), representing behavioral performance during early
and late stages of learning. All but one participant improved
significantly (p < 0.05 from binomial tests with Bonferroni cor-
rections) over the course of learning. The remaining participant
also improved, although the improvement was only marginally
reliable (p = 0.07). However, all participants were able to catego-
rize the blobs significantly above chance rate 50% (p < 0.01 from
t-tests) with an average terminal accuracy of 83% for the late stage
of learning. Figure 2B shows the mean reaction times for the early
and late stages of learning (error bars indicate standard errors of
the means). Only three subjects showed significant reduction in
the reaction time (p < 0.005 from t-tests with Bonferroni correc-
tions). This was expected because the 750 ms-deadline period was

sufficiently short for a combined perceptual and motor response
for some participants.

3.2. CATEGORY-DISCRIMINATIVE TIME COURSE IN MEG SENSOR
SPACE

Given that our participants successfully learned the two visual
categories, our next step was to assess whether category mem-
berships can be reliably discriminated from MEG sensor data.
We expected the recorded sensor data to differentiate trials in
which participants recognized blobs from category A as com-
pared to category B. To evaluate this proposal, we performed
Hotelling’s t-tests with dimension-reduced magnetometer signals
and computed category discriminability (χ2 statistic) over time
using all available trials partitioned into A and B categories. To
obtain a chance-level distribution for comparison, we also applied
this procedure to trials with shuffled category labels (100-fold
permutations) for each individual subject.

Figure 3 shows the group-level statistics. We were able to
reliably discriminate the A and B blob categories within the
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half-second period after visual onset in a single trial. In partic-
ular, the mean category discriminability rises post-50 ms and is
highly separable from the chance-level after 100 ms. To assess
the significance of these results, we applied an excursion pro-
cedure similar to (Xu et al., 2011) that compares the temporal
statistics from the original data (without permutation) with the
permuted statistics. We found that category discriminability is
statistically significant post-100 ms for all subjects (combined
p < 1.8 × 10−8 from Fisher’s method; p < 0.01 from individual-
based excursion tests). Figure A1 in the Appendix shows the time
course for each individual subject.

3.3. CATEGORY-DISCRIMINATIVE TIME COURSE IN THE VENTRAL
VISUAL PATHWAY AND PREFRONTAL CORTEX

Our previous analysis demonstrates that the time course in
MEG sensors contains significant category information in aggre-
gate, but it does not address the question of localizing which
brain regions are the sources of this information or how these
sources may change with learning. To evaluate our hypothe-
ses regarding the relative roles of the ventral visual pathway

and the prefrontal cortex, we used similar methods to compute
category-discriminative time series in MEG source space. In par-
ticular, we focused on anatomically-defined regions in ventral
occipito-temporal visual and prefrontal cortices.

To test whether the ventral visual pathway is capable of
learning and discriminating exemplars from visually-similar cat-
egories, we compared time courses in related cortical regions
during both the early and late stages of learning. Similar to
our sensor-space analysis, a category-discrimination time course
in source space was computed by performing multivariate
Hotelling’s t-tests from cortical dipole activities across time. To
distinguish trials in the early and late stages of learning, tests were
performed for the 100 earliest and the 100 latest trials separately
with equal numbers of A and B blobs presented.

Figure 4 summarizes the results for 12 visual cortical regions
and 12 prefrontal regions in both left and right hemispheres.
During early learning as illustrated in Figures 4A,B, we observed
that category discriminability rises at approximately 100 ms post-
stimulus in both hemispheres. During late learning as illustrated
in Figures 4C,D, we observed that category discriminability also
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FIGURE 4 | Category-discriminative time courses in ventral visual and

prefrontal cortices. (A) Group-level discriminative time courses in
right-hemispheric VVP contrasting dipole responses in trials containing A
and B blob categories during early learning. (B) Discriminative time

courses in left-hemispheric VVP regions during early learning. (C,D)
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under similar conditions.
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rises at approximately 100 ms, but discriminability peaks post-
200 ms in the lingual, lateral-occipital and fusiform gyri in the
left hemisphere. This time window agrees roughly with N250
as previously reported in Krigolson et al. (2009), except here
we provided better localization of its sources in the cortex. In
comparison, we observed relatively scarce discriminability in pre-
frontal cortex throughout time course and learning as illustrated
in Figures 4E–H.

To assess the significance of the category-discriminative time
course, we performed an excursion test following Xu et al. (2011).
Specifically, for each subject, we obtained regions of interest by
thresholding the time course at 20 and kept contiguous time
points that passed the threshold. We evaluated the significance for
each subject by comparing the discriminability statistics within
the proposed regions of interest against the statistics within
regions found from the permutated data (100 folds)—this yielded
a global p-value. Figure 5 shows the temporal regions of interest
pooled across subjects (combined p < 1.8 × 10−8 from Fisher’s
method; p < 0.01 from individual-based excursion tests). These
results show that category information flows primarily in the
bi-lateral occipital, lingual, pericalcarine, fusiform and inferior-
temporal gyri during both early and late learning, suggesting
that the VVP acquires discriminability of novel, visually similar
categories during learning.

Figure 5 also shows that regions of interest in prefrontal cortex
are more sparse in comparison with those in the VVP. In particu-
lar, whereas temporal coding appears in prefrontal cortex during
early learning, it decreases in late learning, suggestive of a dimin-
ished role of prefrontal cortex. Figure A2 in the Appendix shows
that such a pattern is consistent across all subjects. Our current set
of results, however, does not rule out the possibility that coding
in PFC becomes more sparse over time (e.g. Meyers et al., 2008)
or that it could be generated from a deep source which is difficult
to detect with MEG.

3.4. PREDICTING CATEGORIES FROM CORTICAL ACTIVITY
To this point, our analyses have explored category discrim-
inability across a continuous time course. These analyses also
help identify time windows that appear to offer availability of

category-discriminative cortical information. Thus, one question
we can ask is how temporal windows differ from one another with
respect to what information they carry regarding visual category
learning. A similar question may be asked with respect to spa-
tially localized activity: does the ventral visual pathway carry more
information regarding subordinate-level visual categories relative
to prefrontal cortices?

To address these questions, this next analysis evaluates to what
extent the ventral visual pathway and prefrontal cortex are predic-
tive of blob categories at the discrete temporal windows of M100
(50–150 ms), M200 (150–250 ms) and M300 (250–350 ms), as
well as, critically, how category predictability within these tempo-
ral windows changes over the course of learning. We predict that
the ventral visual pathway will play a significant role in category
learning and representation. In particular, the VVP is expected to
acquire an increasing degree of category predictability (more than
PFC) during learning.

To test this prediction, we performed a decoding analysis to
assess category predictability in the same 24 anatomically-defined
regions in the ventral visual pathway and prefrontal cortex used
in our earlier analyses. Within each of these regions, we ran
held-out predictions regarding blob categories on a trial-by-trial
basis using multidimensional cortical dipole activities averaged
within the following time windows: M100 (50–150 ms), M200
(150–250 ms), and M300 (250–350 ms), as well as the baseline
of 0–50 ms, post-stimulus. This was implemented using a stan-
dard leave-one-out cross validation technique which evaluated to
what degree category membership of a blob presented in a sin-
gle trial not part of the training set can be predicted based on
region-bounded dipole responses and blob category labels from
the remaining trials in the training set. To compare predictability
during initial and end-stage learning, as in the previous analysis,
this decoding analysis was conducted separately for the first and
final 100 trials.

Figure 6 summarizes blob category-predictive accuracies
across all 24 cortical regions and time windows in the early
and late stages of learning. At M100, the bilateral peri-calcarine
gyri, the right lingual gyrus and the left lateral occipital gyrus
become highly predictive with respect to blob categories (p <
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window. (D) Decoding accuracies in M300 (250–350 ms) window. Asterisks
indicate significant difference (p < 0.05) in predictive accuracy between early
and late learning.

0.005 under t-tests), but no significant difference was observed
in predictability between early and late learning (p > 0.05 under
t-tests)—suggesting that category predictability in this early time
window may not be shaped by category learning per se. Within
M200 and M300 windows, across most of visual cortex, predic-
tive accuracies in the late learning stage are considerably better
than they were in the initial learning stage.

In particular, the left inferior temporal gyrus (ITG)
(p < 0.024) and the left fusiform gyrus (FG) (p < 0.025)
show significant increases in category-predictive accuracy. This
pattern suggests that learning plays a greater role in shaping
cortical responses at these later temporal stages of processing—
confirming our hypothesis that visual cortex encodes and
represents subordinate visual categories. To visualize these
cortical learning effects, we extracted dipoles that showed
reliable differential response (p < 0.001) across the A and B
blob categories within the M200 window. Figure 7 illustrates the
significant discriminability in source dipoles that appeared in the
left ITG, the left FG, and the bilateral lateral occipital gyri later
in learning. Note that these effects were absent during the initial
learning phase of the experiment.

Unlike visual cortex, regions in prefrontal cortex are generally
less predictive about blob categories (bottom panels of Figure 6).
In addition, these regions are marginally more predictive earlier
in learning relative to later in learning, with left pars orbitalis
(or inferior frontal gyrus) showing a marginally significant (p <

0.05) decrease in predictive accuracy at M300. These observa-
tions are suggestive that prefrontal cortex plays a greater role in
category encoding during learning, but they do not exclude the
possibility that learning induces sparse coding in PFC or a more
complementary role of PFC that jointly participates category
coding with the VVP.

Figure 8 compares the ventral visual pathway and prefrontal
cortex at M100, M200, and M300 by pooling predictive accuracies

across dipoles within each of these cortical regions. The result
suggests that both the VVP and PFC are near chance in pre-
dicting the blob categories during initial learning. However,
later in learning, the ventral visual pathway becomes signifi-
cantly more category-predictive than prefrontal cortex at M200
and M300 (p < 0.005 under t-tests) but not at M100 (p > 0.5).
Interestingly, we found significant interaction between the VVP
and PFC during the three time windows during late learning
(p < 0.005 under 2 × 3 ANOVA) but not initially during learn-
ing (p > 0.1). Together, these results support the hypothesis that
the VVP and PFC function as complements to one another, sug-
gesting that improved categorization performance over the course
of learning is associated with increased predictability post-150 ms
for the VVP.

4. DISCUSSION
Models addressing the neural basis of visual category learning
have focused on the interplay between the ventral visual pathway
(VVP) and prefrontal cortex (PFC). However, there has been no
clear consensus on the respective roles of these two neural sub-
strates, with some theories taking a dominant PFC view in which
category membership is encoded within PFC, while the VVP
is sensitive only to visual feature differences (albeit correlated
with category membership) (Freedman et al., 2003; Seger and
Miller, 2010). In contrast, the complementary PFC view holds
that the VVP and PFC play different functional roles at differ-
ent points in category acquisition—PFC facilitating the learning
of category-relevant features during the initial stages of learning,
but with the VVP ultimately encoding these featural dimensions
so as to become progressively more sensitive to category bound-
aries (as opposed to purely visual feature differences) (Sigala and
Logothetis, 2002; Fenske et al., 2006).

Using MEG which provides superb temporal resolution and
good spatial resolution, we conducted a decoding analysis to
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show that the ventral visual pathway contained the neural infor-
mation to accurately categorize stimuli with in the first 400 ms
after stimulus presentation during a subordinate categorization
judgment.

We obtained these findings by using multivariate discrimina-
tive and predictive analyses to assess the role of the VVP and
PFC during visual category learning. Overall, our data suggested
that category-discriminative information is available from the
VVP responses in the M200 and M300 time windows and that
responses originating from the left fusiform and inferior temporal

gyri acquire a higher degree of discriminability and predictabil-
ity concomitant with increasing categorization performance. In
comparison, we found little evidence that PFC carries significant
information about visual categories, but the small sample size
encourages a cautious interpretation of this fact.

4.1. THE FUNCTIONAL ROLES OF THE VENTRAL VISUAL PATHWAY AND
PREFRONTAL CORTEX

As already discussed, our study is in large part based on pre-
vious research on visual categorization and category learning
using both single and multi-array neural recordings in pri-
mates (Freedman et al., 2003; Meyers et al., 2008), and fMRI (Op
de Beeck et al., 2006; Folstein et al., 2012b), ERP (Rossion et al.,
2002; Wong et al., 2005; Scott et al., 2006; Krigolson et al., 2009),
and MEG (Halgren et al., 2000; Liu et al., 2002) in humans.
However, to this point, subordinate-level category discrimina-
tion at fine-scale temporal resolution with good spatial resolution
has primarily been studied at the physiological-level in pri-
mates (Freedman et al., 2003; Meyers et al., 2008). Critically, for
the majority of these primate-based studies, the stimuli were cre-
ated in a morphspace where the category boundary could not be
clearly specified, an issue that places some constraints on what
can be concluded from their results (Folstein et al., 2012a). It
is unsurprising that the complicated morphspace studies find
more PFC activity than the simpler grid-based design spaces,
given the relative difficulty of these two categorization tasks.
Meanwhile, Folstein et al. demonstrate that the VVP can instanti-
ate newly-learned category boundary sensitivity when people can
focus on diagnostic stimulus dimensions and, essentially, ignore
non-diagnostic ones—and that these boundary sensitivites are
retained even when task is no longer relevant.

To explore category discrimination in humans, we used a
visual stimulus space in which we clustered exemplars to form a
distinct category boundary. Moreover, these stimuli were novel to
our participants, as such we were able to monitor how the cate-
gories became differentiated in the cortex from early to late stages
of learning. Our analyses indicated that the measured neural data
obtained through MEG tracked the qualitative changes seen in
behavioral categorization performance. Our results are consistent
with studies that find the VVP to acquire information about stim-
ulus categories, (e.g., Folstein et al., 2012b). More specifically, we
found that the lateral occipital complex and the inferiotemporal
cortex, possible homologs to the ITC in primates, became signif-
icantly more informative with respect to category membership
over the course of learning. Contrary to previous findings that
support the PFC-dominant theory (Freedman et al., 2003; Jiang
et al., 2007), we found that categorical representation is encoded
in the human ventral visual pathway even when categories are
comprised of perceptually similar items, supporting the idea that
visual cortex plays an predominant role in category learning.

Of note, our study is somewhat different methodologically
from many other prior category training studies (Op de Beeck
et al., 2006; Scott et al., 2006) in that training in our experiment
occurred over a single session in which participants are received
a training signal in the form of correctness feedback. In contrast,
other studies have typically involved a pre-test, a set of training
sessions to learn the categories, and a post-test, often including
neuroimaging pre- and post- to assess training effects (Gauthier
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et al., 1999; Op de Beeck et al., 2006). For example, in Op de
Beeck et al. (2006), participants completed 10 training sessions
in order to learn novel object categories, then performed a color
change detection task while fMRI data was collected. Consistent
with our present results, they observed a wide range of category-
selective responses across the VVP. Interestingly, in this study they
observed a change in the spatial distribution of the category-
selective responses across training, suggesting that the neural
representation of categories changes dynamically with experience.
In that our study relied on a single training session, our data can-
not address the question as to whether the pattern we observe in
VVP would remain stable over further training. Finally, we note
that although our single session protocol cannot eliminate the
possibility that some of our observed effects are due to attention
in that participants necessarily use attentional resources during
learning, our results largely converge with these and other studies
showing widespread VVP activation with category learning.

Overall, our work suggests that the VVP plays a central role
in discriminating visually-similar object categories. However, our
results do not rule out the possibility that prefrontal cortex also
plays a role in shaping categories—exerting, possibly based on
the nature of the categorization task, some top-down influence on
visual cortex during learning (Bar et al., 2005). At the same time,
our results do not provide evidence for explicit coding of subor-
dinate categories in prefrontal cortex. Beyond our arguments, it
is also possible that the coding of categories in PFC is relatively
sparse and therefore cannot be detected using the coarse spatial
resolution of MEG. Thus, future work is needed to investigate
whether sparse codes exist in prefrontal cortex and to address how
prefrontal cortex coordinates with visual cortex in representing
visual categories during different phases of learning.

4.2. THE TIME COURSE OF CORTICAL PROCESSING DURING VISUAL
CATEGORY LEARNING

The ERP and MEG literatures contain many proposals about sig-
nature waveforms that relate to visual categorization and recog-
nition, the most common ones being time windows at M100 (Liu
et al., 2002), N170 (Rossion et al., 2002) or M170 (Liu et al.,
2002), and N250 (Krigolson et al., 2009)—negative deflecting
MEG or ERP components that peak around 100 ms, 170 ms, and
250 ms post-stimulus. Unresolved is how these waveform com-
ponents relate to coding of visual categories and to what extent
they are shaped by learning. To the extent there is any consensus,
within the literature the N170 has been found to exhibit a greater
negative amplitude with increased perceptual experience with a
particular stimulus category (e.g., wading birds). Similarly, the
N250 component has been found to increase with increasing pro-
ficiency at identifying individual exemplars within a category. For
example, work by Krigolson et al. (2009) found increased negativ-
ity at N250 after participants learned to discriminate blob stimuli
similar to those used here. However, these and related studies
focused on negativity as measured by sensor-averaged signals and
did not show whether components such as N170 and N250 actu-
ally carry sufficient information to discriminate or predict the
learned visual categories.

Along with recent studies that explored visual object decod-
ing using MEG and EEG (Philiastides and Sajda, 2006; Carlson
et al., 2011, 2013; Chan et al., 2011), in this study we also went

beyond finding raw amplitude differences between categories and
asked whether neural signals support category discrimination. In
particular, we demonstrate post-stimulus MEG data can both dis-
criminate and predict subordinate visual categories. Moreover,
we were able to identify critical time windows by comparing
their respective roles in category learning, finding that the M100
component is minimally sensitive to learning and seems to be
driven largely by low-order visual processes, while the M200 and
M300 components both become more predictive of visual cate-
gories by the end of learning. These results are largely consistent
with Krigolson et al. (2009) results and support their claim that
the N250 is a crucial component in characterizing perceptual
learning. We further suggest that the N250 component is par-
ticularly prominent in visual processing and increased category
predictability in the ventral visual pathway, possibly due to an
interaction between inferiortemporal and fusiform cortices. More
generally, these findings are consistent with previous proposals
that place the source of N170 in posterior inferior temporal cor-
tex (Tanaka and Curran, 2001; Rossion et al., 2002; Wong et al.,
2005; Scott et al., 2008) and N250 in fusiform areas (Scott et al.,
2006)—a claim that might be further resolved by simultaneous
MEG and EEG recordings to establish a better correspondence
between the ERP and MEG time components.

In interpreting these results, we would like to note that
although we posit specific temporal windows at M100, M200,
and M300 as playing important roles in category learning, these
markers should not be taken as a strict classification or as markers
of mechanisms arising from isolated cortical areas. On the con-
trary, these components are more likely to arise from functional
networks driven by a combination of bottom-up and top-down
interactions among cortical and subcortical structures (Ashby
et al., 1998; Kveraga et al., 2007), where the measured wave-
forms are manifestations of cortical systems that exhibit the
most robust responses. Future work should examine how visual
category learning is communicated interactively among corti-
cal and subcortical areas to achieve efficient categorization, as
well as how such communication emerges in category learn-
ing.

Finally, we should note that although our study focused on
cortical dynamics—the domain in which feedforward visual cat-
egory coding most plausibly occurs—a separate, yet important,
aspect of visual categorization involves feedback learning, often
propagated through deeper structures such as the basal ganglia
and anterior cingulate cortex. While extensive research (Gehring
et al., 1993; Ashby et al., 1998; Holroyd and Coles, 2002; Seymour
et al., 2004; Holroyd et al., 2005) indicates that basal ganglia
and anterior cingulate cortex are crucial in trial-and-error learn-
ing and decision making processes such as that employed in
our category learning task, detecting neural signals from deep
cortical and subcortical structures is typically not feasible using
MEG (Hamalainen et al., 1993). For this reason, some category
information may also be contained in these neural substrates, but
would not be revealed by our analyses due to the depth of these
structures and the limitations of the MEG signal.

5. CONCLUSIONS
In sum, our findings support a complementary PFC view of
visual category learning. This view is supported by previous work
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showing both early PFC influences in object recognition pro-
cesses (Bar et al., 2005) and category boundary sensitivity within
VVP areas (Folstein et al., 2012b). Critically, not only does the
VVP carries category-predictive information, but it does so in a
time frame that agrees with the predictions of the complementary
PFC viewpoint: the VVP increases in its category predictiveness
as learning increases. More generally, our work offers an account
that uniquely considers combined spatiotemporal properties asso-
ciated with the encoding of subordinate categories, and further,
how these properties change over learning. As such, we consider
this study to be a starting point for a better understanding of
the complex and interactive neural mechanisms underlying visual
category learning.
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APPENDIX

FIGURE A1 | Category-discriminative time course in MEG

magnetometers. Individual category-discriminative time course (visual
stimulus onset at 0ms) compared against discriminative time course

computed from trials with shuffled category labels (100 permutations).
The 95% confidence intervals of the permuted time course (almost)
overlap with the mean.

FIGURE A2 | Regions of interest in ventral visual and prefrontal

cortices after excursion tests. The upper row shows regions of
interest during early learning for each individual subject. The bottom

row shows regions of interest during late learning. Regions of
interest (in bright color) for each subject was validated using an
excursion test that yielded a p < 0.01 with 100-fold permutations.
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