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Abstract

Communication between a speaker and hearer will be most efficient when both
parties make accurate inferences about the other. We study inference and com-
munication in a television game called Password, where speakers must convey
secret words to hearers by providing one-word clues. Our working hypothesis is
that human communication is relatively efficient, and we usegame show data to
examine three predictions. First, we predict that speakersand hearers are both
considerate, and that both take the other’s perspective into account. Second, we
predict that speakers and hearers arecalibrated, and that both make accurate as-
sumptions about the strategy used by the other. Finally, we predict that speakers
and hearers arecollaborative, and that they tend to share the cognitive burden of
communication equally. We find evidence in support of all three predictions, and
demonstrate in addition that efficient communication tendsto break down when
speakers and hearers are placed under time pressure.

1 Introduction

Communication and inference are intimately linked. Suppose, for example, that Joan states that
some of her pets are dogs. Under normal circumstances, a hearer will infer that not all of Joan’s
pets are dogs on the grounds that Joan would have expressed herself differently if all of her pets
were dogs [1]. Inferences like these have been widely studied by linguists and psychologists [2,
3, 4, 5] and are often encountered in everyday settings. One compelling explanation is presented
by Levinson [4], who points out that speaking (i.e. phoneticarticulation) is substantially slower
than thinking (i.e. inference). As a result, communicationwill be maximally efficient if a speaker’s
utterance leaves inferential gaps that will be bridged by the hearer. Inference, however, is not only
the responsibility of the hearer. For communication to be maximally efficient, a speaker must take
the hearer’s perspective into account (“if I say X, will she infer Y?”). The hearer should therefore
allow for inferences on the part of the speaker (“did she think that saying X would lead me to infer
Y?”) Considerations of this sort rapidly lead to a game-theoretic regress, and achieving efficient
communication under these circumstances begins to look like a very challenging problem.

Here we study a simple communication game that allows us to explore inferences made by speakers
and hearers. Inference becomes especially important in settings where speakers are prevented from
directly expressing the concepts they have in mind, and where utterances are constrained to be short.
The television showPasswordis organized around a game that satisfies both constraints. In this
game, a speaker is supplied with a single, secret word (the password) and must communicate this
word to a hearer by choosing a single one-word clue. For example, if the password is “mend”, then
the speaker might choose “sew” as the clue, and the hearer might guess “stitch” in response. Figure 1
shows several examples drawn from the show—note that communication is successful in the first
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Figure 1: Three rounds from the television game show Password. Given each password, the top row
plots the forward (Sf : password→ clue) and backward (Sb: password← clue) strengths for several
potential clues. The clue chosen by the speaker is circled. Given this clue, the bottom row plots
the forward (Hf : clue→ guess) and backward (Hb: clue← guess) strengths for several potential
guesses. The guess chosen by the hearer is circled and the password is indicated by an arrow. The
first two columns represent two normal rounds, and the final column is a lightning round where
speakers and hearers are placed under time pressure. The gray dots in each plot show words that are
associated with the password (top row) or clue (bottom row) in the University of Southern Florida
word association database. Labels for these words are included where space permits.

example but not in the remaining two. The clues and guesses generated by speakers and hearers
are obviously much simpler than most real-world linguisticutterances, but studying a setting this
simple allows us to develop and evaluate formal models of communication. Our analyses therefore
contribute to a growing body of work that uses formal methodsto explore the efficiency of human
communication [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

At first sight the optimal strategies for speaker and hearer may seem obvious: the speaker should
generate the clue that is associated most strongly with the password, and the hearer should guess
the word that is associated most strongly with the clue. Note, however, that word associations are
asymmetric. Given a pair of words such as “shovel” and “snow”, the forward association (shovel→
snow) may be strong but the backward association (shovel← snow) may be weak. The third example
in Figure 1 shows a case where communication fails because the speaker chooses a clue with a
strong forward association but a weak backward association. Although the data include examples
like the case just described, we hypothesize that speakers and hearers are bothconsiderate: in other
words, that both parties attempt to take the other’s perspective into account. We test this hypothesis
by exploring whether speakers and hearers tend to take backward associations into account when
generating their clues and guesses.

Our second hypothesis is that speaker and hearer arecalibrated: in other words, that both make
accurate assumptions about the strategy used by the other. Taking the other person’s perspective into
account is a good start, but is no guarantee of calibration. Suppose, for example, that the speaker
attempts to make the hearer’s task as easy as possible, and considers only backward associations
when choosing his clue. This strategy will work best if the hearer considers only forward associates
of the clue, but suppose that the hearer considers only backward associations, on the theory that the
speaker probably generated his clue by choosing a forward associate. In this case, both parties are
considerate but not calibrated, and communication is unlikely to prove successful.
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Our third hypothesis is that speakers and hearers arecollaborative: in other words, that they settle on
strategies that tend to share the cognitive burden of communication. In operationalizing this hypoth-
esis we assume that forward associates are easier for peopleto generate than backward associates.
A pair of strategies can be calibrated but not cooperative: for example, the speaker and hearer will
be calibrated if both agree that the speaker will consider only forward associates, and the hearer will
consider only backward associates. This policy, however, is likely to demand more effort from the
hearer than the speaker, and we propose that speakers and hearers will satisfy the principle of least
collaborative effort [17, 18] by choosing a calibrated pairof strategies where each person weights
forward and backward associates equally.

To evaluate our hypotheses we use word association data to analyze the choices made by game
show contestants. We first present evidence that speakers and hearers are considerate and take both
forward and backward associations into account. We then develop simple models of the speaker and
hearer, and use these models to explore the extent to which speakers and hearers weight forward
and backward associations. Our results suggest that speakers and hearers are both calibrated and
collaborative under normal conditions, but that calibration and collaboration tend to break down
under time pressure.

2 Game show and word association data

We collected data from the Password game show hosted by AllenLudden on CBS. Previous re-
searchers have used game show data to explore several aspects of human decision-making [19], but
to our knowledge the game of Password has not been previouslystudied. In each game round, a
single English word (the password) is shown to speakers on two competing teams. With each team
taking turns, the speaker gives a one-word clue to the hearerand the hearer makes a one-word guess
in return. The team that performs best proceeds to thelightning rounds where the same game is
played under time pressure. Our data set includes passwords, speaker-generated clues and hearer-
generated guesses for 100 normal and 100 lightning rounds sampled from the show episodes during
1962–1967. Each round includes a single password and potentially multiple clues and guesses from
both teams. For all our our analyses, we use only the first clue–guess pair in each round.

The responses of speakers and hearers are likely to depend heavily on word associations, and we
can therefore use word association data to model both speakers and hearers. We used the word
association database from the University of South Florida (USF) for all of our analyses [20]. These
data were collected using a free association task, where participants were given a cue word and asked
to generate a single associate of the cue. More than6000 participants contributed to the database,
and each generated associates for100–120 English words. To allow for weak associates that were
not generated by these participants, we added a count of 1 to the observed frequency for each cue-
target pair in the database. The forward strength(wi → wj) is defined as the proportion ofwi trials
wherewj was generated as an associate. The backward strength(wi ← wj) is proportional to the
forward strength(wj → wi) but is normalized with respect to all forward strengths towi:

(wi ← wj) =
(wj → wi)∑
k(wk → wi)

. (1)

Note that this normalization ensures that both forward and backward strengths can be treated as
probabilities. The correlation between forward strengthsand backward strengths is positive but low
(r = 0.32), suggesting that our game show analyses may be able to differentiate the influence of
forward and backward associations.

The USF database includes associates for a set of5016 words, and we used this set as the lexicon for
all of our analyses. Some of the rounds in our game show data include passwords, clues or guesses
that do not appear in this lexicon, and we removed these rounds, leaving 68 password-clue and 68
clue-guess pairs in the normal rounds and 86 password-clue pairs and 80 clue-guess pairs in the
lightning rounds. The USF database also includes the frequency of each word in a standard corpus
of written English [21], and we use these frequencies in our first analysis.
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Figure 2: (a) Analyses of the speaker and hearer data (SN andHN ) from the normal rounds. (i)
Ranks of the human responses normalized with respect to all other words in the lexicon. Ranks are
shown along three dimensions: forward strength (f ), backward strength (b) and combined forward
and backward strengths. The dark square shows the mean rank,and the horizontal lines within the
box show the median and interquartile range. The plus symbols are outliers. (ii) Ranks of the human
responses along the forward and backward dimensions. (iii)“Matched rank” analysis exploring
whether human responses tend to be better along one of the dimensions than alternatives that are
matched along the other dimension. The four bars on the left in each subplot show normalized
counts based on comparisons with matches along thef dimension, and the four bars on the right are
based on matches along theb dimension. For example, groupBb includes human responses that are
better along theb dimension compared to matches along thef dimension, and groupsEb andWb
include cases where human responses are equal to or worse than thef -matches. GroupCf includes
cases where the human response is top ranked along thef dimension. GroupsBf , Ef , Wf andCb
are defined similarly. (b) Analyses of the lightning rounds.

3 Speakers and hearers are considerate

A speaker should find it easy to generate clues that are strongforward associates of a password, and a
hearer should likewise find it easy to generate guesses that are strong forward associates of a clue. A
consideratespeaker, however, may attempt to generate strong backward associates, which will make
it easier for the hearer to successfully guess the password.Similarly, a hearer who considers the task
faced by the speaker should also take backward associates into account. This section describes some
initial analyses that explore whether clues and guesses areshaped by backward associations.

Figure 2a.i compares forward and backward strengths as predictors of the responses chosen by
speakers and hearers. A dimension is a successful predictorif the words chosen by contestants tend
to have low ranks along this dimension with respect to the5016words in the lexicon (rank 1 is the top
rank). We handle ties using fractional ranking, which meansthat it is sensible to compare mean ranks
along each dimension. In Figure 2a.i,Sf andSb represent forward (password→ clue) and backward
(password← clue) strengths for the speaker, andHf andHb represent forward (clue→ guess) and
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backward (clue← guess) strengths for the hearer. In addition to forward and backward strengths,
we also considered word frequency as a predictor. Across both normal (SN andHN ) and lightning
(SL andHL) rounds, the ranks along the forward and backward dimensions are substantially better
than ranks along the frequency dimension (p < 0.01 in pairwise t-tests), and we therefore focus on
forward and backward strengths for the rest of our analyses.

For data setSN the mean ranks suggest that forward and backward strengths appear to predict
choices about equally well. The third dimensionSf + Sb is created by combining dimensionsSf

andSb. Wordw1 dominatesw2 if it is superior along one dimension and no worse along the other,
and the rank for each word along the combined dimension is based on the number of words that
dominate it. For data setSN , the mean rank based on theSf + Sb dimension is lower than that for
Sf alone, suggesting that backward strengths make a predictive contribution that goes beyond the
information present in the forward associations. Note, however, that the difference between mean
ranks forSf andSf + Sb is not statistically significant.

For data setHN , Figure 2a.i provides little evidence that backward strengths make a contribution
that goes beyond the forward strengths. Figure 2a.ii plots the rank of each guess along the dimen-
sions of forward and backward strength. The correlation between the dimensions is relatively high,
suggesting that both dimensions tend to capture the information present in the other. As a result, the
hearer data setHN may offer little opportunity to explore whether backward and forward associa-
tions both contribute to people’s responses.

Figure 2a.iii shows the results of an analysis that exploresmore directly whether each dimension
makes a contribution that goes beyond the other. We comparedeach “actual word” (i.e. each clue
or guess chosen by a contestant) to “matched words” that are matched in rank along one of the
dimensions. For example, if the backward dimension matters, then the actual words should tend to
be better along theb dimension than words that are matched along thef dimension. The first group
of bars in Figure 2a.iii shows the proportion of actual wordsthat are better (Bb), equivalent (Eb) or
worse (Wb) along the backward dimension than matches along the forward dimension. TheBb bar
is higher than the others, suggesting that the backward dimension does indeed make a contribution
that goes beyond the forward dimension. Note that a match is defined as a word that is ranked
the same as the actual word, or in cases where there are no ties, a word that is ranked one step
better. The fourth bar (Cf , for champion along the forward dimension) includes all cases where a
word is ranked best along the forward dimension, which meansthat no match can be found. Our
policy for identifying matches is conservative—all other things being equal, actual words should be
equivalent (Eb) or worse (Wb) than the matched words, which means that the largeBb bar provides
strong evidence that the backward dimension is important. Abinomial test confirms that theBb
bar is significantly greater than theWb bar (p < 0.05). TheBf bar for the speaker data is also
high, suggesting that the forward dimension makes a contribution that goes beyond the backward
dimension. In other words, Figure 2a.iii suggests that bothdimensions influence the responses of
the speaker.

The results for the hearer dataHN provide additional support for the idea that neither dimension
predicts hearer guesses better than the other. Note, for example, that the second group of four bars
in Figure 2a.iii suggests that the forward dimension is not predictive once the backward dimension
is taken into account (Bf is smaller thanWf ). This result is consistent with our previous finding
that forward and backward strengths are highly correlated in the case of the hearer, and that neither
dimension makes a contribution after controlling for the other.

Our analyses so far suggest that forward and backward strengths both make independent contri-
butions to the choices made by speakers, but that the hearer data do not allow us to discriminate
between these dimensions. Figure 2b shows similar analysesfor the lightning rounds. The most no-
table change is that backward strengths appear to play a muchsmaller role when speakers are placed
under time pressure. For example, Figure 2b.i suggests thatbackward strengths are now worse than
forward strengths at predicting the clues chosen by speakers. Relative to the results for the normal
roundsSN , theBb counts forSL in Figure 2b.iii show a substantial drop (53% decrease) and the
Bf counts show an increase of similar scale.χ2 goodness-of-fit tests show that the distributions
of counts for both{Bb,Eb,Wb,Cf} and{Bf,Ef,Wf,Cb} in the lightning rounds significantly
deviate from those in the normal rounds (p < 0.01). This result provides further evidence that
speakers tend to rely more heavily on forward associations than backward associations when placed
under time pressure.
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Speaker distributionpS(c|w) Hearer distributionpH(w|c)
S0 (w → c) H0 (c→ w)
S1 (w ← c) H1 (c← w)

S2 α
(2)
S (w → c) + β

(2)
S (w ← c) H2 α

(2)
H (c→ w) + β

(2)
H (c← w)

...
...

Sn α
(n)
S (w → c) + β

(n)
S (w ← c) Hn α

(n)
H (c→ w) + β

(n)
H (c← w)

Table 1: Strategies for speaker and hearer. In each case we assume that the speaker and hearer
sample words from distributionspS(c|w) andpH(w|c) based on the expressions shown. At level 0,
both speaker and hearer rely entirely on forward associates, and at level 1, both parties rely entirely
on backward associates. For each party, the strategy at level k is the best choice assuming that the
other person uses a strategy at a level lower thank.

Our previous analyses found little evidence that forward and backward strengths make separate
contributions in the case of the hearer, but the lightning data HL suggest that these dimensions
may indeed make separate contributions. Figure 2b.iii suggests that time pressure affects these
dimensions differently: note thatBb counts decrease by19% andBf counts increase by64%. χ2

tests confirm that the distributions of{Bb,Eb,Wb,Cf} and{Bf,Ef,Wf,Cb} in the lightning
rounds significantly deviate from those in the normal rounds(p < 0.01), suggesting that the hearer
(like the speaker) tends to rely on forward strengths ratherthan backward strengths in the lightning
rounds.

Taken together, the full set of results in Figure 2 suggests that the responses of speakers and hearers
are both shaped by backward associates—in other words, thatboth parties are considerate of the
other person’s situation. The evidence in the case of the speaker is relatively strong and all of the
analyses we considered suggest that backward associationsplay a role. The evidence is weaker in
the case of the hearer, and only the comparison between normal and lightning rounds suggests that
backward associations play some role.

4 Efficient communication: calibration and collaboration

Our analyses so far provide some initial evidence that speakers and hearers are both influenced by
forward and backward associations. Given this result, we now consider a model that explores how
forward and backward associations are combined in generating a response.

4.1 Speaker and hearer models

Since both kinds of associations appear to play a role, we explore a simple speaker model which
assumes that the cluec chosen for the passwordw is sampled from a mixture distribution

pS(c|w) = αS(w → c) + βS(w ← c) (2)

where(w → c) indicates the forward strength fromw to c, (w ← c) indicates the backward strength
from c to w, andαS andβS are mixture weights that sum to 1. The corresponding hearer model
assumes that guessw given cluec is sampled from the mixture distribution

pH(w|c) = αH(c→ w) + βH(c← w). (3)

Several possible mixture distributions for speaker and hearer are shown in Table 1. For example,
the level 0 distributions assume that speaker and hearer both rely entirely on forward associates, and
the level 1 distributions assume that both rely entirely on backward associates. By fitting mixture
weights to the game show data we can explore the extent to which speaker and hearer rely on forward
and backward associations.

The mixture models in Equations 2 and 3 can be derived by assuming that the hearer relies on
Bayesian inference. Using Bayes’ rule, the hearer distribution pH(w|c) can be expressed as

pH(w|c) ∝ pS(c|w)p(w). (4)
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To simplify our analysis we make three assumptions. First, we assume that the priorp(w) in Equa-
tion 4 is uniform. Second, we assume that contestants are near-optimal in many respects but that
they sample rather than maximize. In other words, we assume that the hearer samples a guessw
from the distributionpH(w|c) in Equation 4, and that the speaker samples a clue from a distribution
pS(c|w) ∝ pH(w|c). Finally, we assume that the normalizing constant in Equation 1 is 1 for all
wordswi. This assumption seems reasonable since for our smoothed data set the mean value of the
normalizing constant is 1 and the standard deviation is 0.04. Our final assumption simplifies matters
considerably since it implies that(wi → wj) = (wj ← wi) for all pairswi andwj .

Given these assumptions it is straightforward to show that the level 0 strategies in Table 1 are the
best responses to the level 1 strategies, and vice versa. Forexample, if the speaker uses strategyS0

and samples a cluec from the distributionpS(c|w) = w → c, then Equation 4 suggests that the
hearer should sample a guessw from the distributionpH(c|w) ∝ (w → c) = (c ← w). Similarly,
if the speaker uses the strategyS1 and samples a cluec from the distributionpS(c|w) = (w ← c),
then Equation 4 suggests that the hearer should sample a guessw from the distributionpH(c|w) ∝
(w ← c) = (c→ w).

Suppose now that the hearer is uncertain about the strategy used by the speaker. A level 2 hearer
assumes that the speaker could use strategyS0 or strategyS1 and assigns prior probabilities ofβ(2)

H

andα
(2)
H to these speaker strategies. SinceH1 is the appropriate response toS0 andH0 is the

appropriate response toS1, the level 2 hearer should sample from the distribution

pH(w|c) = p(S1)pH(w|c, S1) + p(S0)pH(w|c, S0)

= α
(2)
H (c→ w) + β

(2)
H (c← w). (5)

More generally, suppose that a leveln hearer assumes that the speaker uses a strategy from the
set{S0, S1, . . . , Sn−1}. Since the appropriate response to any one of these strategies is a mixture
similar to Equation 5, it follows that strategyHn is also a mixture of the distributions(w → c) and
(w ← c). A similar result holds for the speaker, and strategySn in Table 1 also takes the form of
a mixture distribution. Our Bayesian analysis therefore suggests that efficient speakers and hearers
can be characterized by the mixture models in Equations 2 and3.

Some pairs of mixture models arecalibrated in the sense that the hearer model is the best choice
given the speaker model and vice versa. Equation 4 implies that calibration is achieved when the
forward weight for the speaker matches the backward weight for the hearer (αS = βH ) and the
backward weight for the speaker matches the forward weight for the hearer (βS = αH ). If game
show contestants achieve efficient communication, then mixture weights fit to their responses should
come close to satisfying this calibration condition.

There are many sets of weights that satisfy the calibration condition. For example, calibration is
achieved if the speaker uses strategyS0 and the hearer uses strategyH1. If generating backward
associates is more difficult than thinking about forward associates, this solution seems unbalanced
since the hearer alone is required to think about backward associates. Consistent with the principle
of least collaborative effort, we make a second prediction that speaker and hearer will collaborate
and share the communicative burden equally. More precisely, we predict that both parties will assign
the same weight to backward associates and thatβS will equalβH . Combining our two predictions,
we expect that the weights which best characterize human responses will haveαS = βS = αH =
βH = 0.5.

4.2 Fitting forward and backward mixture weights to the data

To evaluate our predictions we assumed that the speaker and hearer are characterized by Equations 2
and 3 and identified the mixture weights that best fit the game show data. Assuming that theM game
rounds are independent, the log likelihood for the speaker data is

L = log

M∏

m=1

P (cm|wm) =

M∑

m=1

[αS log(wm → cm) + βS log(wm ← cm)] (6)

and a similar expression is used for the hearer data. We fit theweightsαS andβS by maximizing the
log likelihood in Equation 6. Since this likelihood term is convex and there is a single free parameter
(αS+βS = 1), the global optimum can be found by a simple line search overthe range0 < αS < 1.
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Figure 3: (a) Fitted mixture weights for the speaker (S) and hearer (H) models based on boot-
strapped normal (N) and lightning (L) rounds.α andβ are weights on the forward and backward
strengths. (b) Log-ratios ofα andβ weights estimated from bootstrapped normal and lightning
rounds. (c) Average response times for speakers choosing clues and hearers choosing guesses in
normal and lightning rounds. Averages are computed over 30 rounds randomly sampled from the
game show.

We ran separate analyses for normal and lightning rounds, and ran similar analyses for the hearer
data. 1000 estimates of each mixture weight were computed by bootstrapping game show rounds
while keeping tallies of normal and lightning rounds constant.

Consistent with our predictions, the results in Figure 3a suggest that all four mixure weights for
the normal rounds are relatively close to0.5. Both speaker and hearer appear to weight forward
associates slightly more heavily than backward associates, but0.5 is within one standard deviation
of the bootstrapped estimates in all four cases. The lightning rounds produce a different pattern
of results and suggest that the speaker now relies much more heavily on forward than backward
associates. Figure 3b shows log ratios of the mixture weights, and indicates that these ratios lie close
to 0 (i.e.α = β) in all cases except for the speaker in the lightning rounds.Further confidence tests
show that the percentage of bootstrapped ratios exceeding0 is 100% for the speaker in the lightning
rounds, but85% or lower in the three remaining cases. Consistent with our previous analyses, this
result suggests that coordinating with the hearer requiressome effort on the part of the speaker,
and that this coordination is likely to break down under timepressure. The fitted mixture weights,
however, do not confirm the prediction that time pressure makes it difficult for the hearer to consider
backward associations. Figure 3c helps to explain why mixture weights for the speaker but not the
hearer may differ across normal and lightning rounds. The difference in response times between
normal and lightning rounds is substantially greater for the speaker than the hearer, suggesting that
any differences between normal and lightning rounds are more likely to emerge for the speaker than
the hearer.

5 Conclusion

We studied how speakers and hearers communicate in a very simple context. Our results suggest
that both parties take the other person’s perspective into account, that both parties make accurate
assumptions about the strategy used by the other, and that the burden of communication is equally
divided between the two. All of these conclusions support the idea that human communication
is relatively efficient. Our results, however, suggest thatefficient communication is not trivial to
achieve, and tends to break down when speakers are placed under time pressure.

Although we worked with simple models of the speaker and hearer, note that neither model is in-
tended to capture psychological processing. Future studies can explore how our models might be
implemented by psychologically plausible mechanisms. Forexample, one possibility is that speak-
ers sample a small set of words with high forward strengths, then choose the word in this sample
with greatest backward strength. Different processing models might be considered, but we believe
that any successful model of speaker or hearer will need to include some role for inferences about
the other person.
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