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Abstract
Languages differ qualitatively in their numeral systems. At
one extreme, some languages have a small set of number terms,
which denote approximate or inexact numerosities; at the other
extreme, many languages have forms for exact numerosities
over a very large range, through a recursively defined counting
system. What explains this variation? Here, we use computa-
tional analyses to explore the numeral systems of 25 languages
that span this spectrum. We find that these numeral systems all
reflect a functional need for efficient communication, mirror-
ing existing arguments in the domains of color, kinship, and
space. Our findings suggest that cross-language variation in
numeral systems is shaped by the functional need to commu-
nicate precisely, using minimal cognitive resources.
Keywords: number; semantic variation; efficient communica-
tion; functionalism; recursion; language and thought.

Numeral systems and recursion
A central question in cognitive science is why languages
partition human experience into categories in the ways they
do (Berlin & Kay, 1969; Levinson & Meira, 2003). An-
other central question concerns the basis and nature of recur-
sion (Hauser, Chomsky, & Fitch, 2002; Pinker & Jackendoff,
2005). These two questions converge in the study of numeral
systems across languages.

Languages vary in their numeral systems (Greenberg,
1978; Comrie, 2013). Moreover, there are qualitatively dis-
tinct classes of such numeral systems. Some languages have
numeral systems that express only approximate or inexact
numerosity; other languages have systems that express ex-
act numerosity but only over a restricted range of relatively
small numbers; while yet other languages have fully recur-
sive counting systems that express exact numerosity over a
very large range. This increasing precision from approxi-
mate to exact systems is reflected in child development: at
age 3 or 4, children who are learning an exact counting sys-
tem transition from an approximate to a precise understand-
ing of number words (Wynn, 1990). This “crystallization”
of discrete numbers out of an approximate base has been ar-
gued to be just what adult speakers of languages with approx-
imate numeral systems do not have, compared with those of
exact ones (Pica et al., 2004; Gordon, 2004). Instead, ap-
proximate numeral systems appear to be grounded directly
in the non-linguistic approximate number system, a cognitive
capacity for approximate numerosity that humans share with
non-human animals (Dehaene, 2011).

We seek to understand why certain numeral systems are at-
tested in the world’s languages while other logically possible
systems are not. We also seek to understand why the qualita-
tive classes of such systems – from approximate numerosity,

to exact counting over a restricted range, to fully recursive
counting – appear as they do.

Efficient communication
An existing proposal has the potential to answer these ques-
tions. It has been argued that systems of word meanings
across languages reflect the need for efficient communica-
tion. On this account, for any given semantic domain, the
different categorical partitionings of that domain observed
in the world’s languages represent different means to the
same functional end: communicating precisely, with mini-
mal expenditure of cognitive resources. This idea is sup-
ported by cross-language computational analyses in the do-
mains of color (Regier et al., 2007), kinship (Kemp & Regier,
2012), and space (Khetarpal et al., 2013) – and it also re-
flects a more general recent focus on efficient communication
as a force that explains why languages take the forms they
do (Fedzechkina et al., 2012; Piantadosi et al., 2011; Smith et
al., 2013). We ask here whether the same idea explains why
numeral systems appear as they do, from approximate to fully
recursive form.
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Figure 1: Scenario for communicating a number.

The idea of efficient communication involves a tradeoff be-
tween two competing forces: informativeness and simplicity.
An informative system is one that supports precise commu-
nication; a simple system is one with a compact cognitive
representation. A maximally informative system would have
a separate word for each object in a given semantic domain
– which would be complex, not simple. In contrast, a max-
imally simple system would have just one word for all ob-
jects in a given semantic domain – which would not support
precise communication. The proposal is that attested seman-
tic systems are those that achieve a near-optimal tradeoff be-



tween these two competing principles, and thus achieve com-
municative efficiency (Kemp & Regier, 2012).

Figure 1 illustrates these ideas. 1 Here, a speaker has a par-
ticular number in mind (4, mentally represented as an exact
point on a number line), and wishes to convey that number to
a listener. The speaker has expressed that number using the
English approximate term “a few”, rather than the exact term
“four” that is also available in English. On the basis of this
utterance, the listener mentally reconstructs the number that
the listener believes the speaker intended. Because the term
“a few” is inexact, the listener’s reconstruction of the intended
number is also inexact, and is shown as a probability distribu-
tion centered near 4 or 5 and extending to neighboring num-
bers as well. As a result, the listener’s mental reconstruction
does not match the speaker’s intention perfectly. However, if
the speaker had instead used the exact term “four”, that term
would have allowed the listener to reconstruct the speaker’s
intended meaning perfectly. We take the informativeness of
communication to be the extent to which the listener’s mental
reconstruction matches the speaker’s representation. Com-
munication is not perfectly informative in the case of “a few”
but would be perfectly informative in the case of “four”.

Clearly, an exact numeral system that picks out specific in-
tegers is more informative than an approximate system - but it
is less simple. A system of approximate numerals can span a
given range of the number line using very few terms, whereas
many exact integer terms would be needed to span the same
range. Thus the high informativeness of an exact numeral sys-
tem comes at a high cognitive cost. Importantly, however, a
recursive exact system would be specifiable using a relatively
small number of generative rules, rather than separate lexical
entries for each exact numeral. Thus, recursive numeral sys-
tems may be a cognitive tool (Frank et al., 2008) that enables
highly informative communication about number at the price
of only modest cognitive complexity.

We wish to know whether these ideas can account for
which numeral systems, and which classes of such systems,
are attested across languages. To test this, we require: (1) a
dataset of cross-language numeral systems, (2) a formal spec-
ification of our theory, and (3) a test of the theory against
the data. We specify each of these in turn below, and then
present our results. To preview those results, we find that
numeral systems across languages strongly tend to support
near-optimally efficient communication, and that the drive for
efficient communication also helps to explain why the differ-
ent classes of numeral systems appear as they do. Our re-
sults suggest that the different types of numeral system found
across languages all support the same functional goal of effi-
cient communication, in different ways.

Data
We considered the numeral systems of 25 languages. All but
one were from Comrie (2013), a survey of numeral bases

1The symbols S(i) and L(i) in the figure are explained in our
formal presentation below.

in the World Atlas of Language Structures (WALS). This
survey includes references to grammars for individual lan-
guages, each of which describes that language’s numeral sys-
tem. Comrie (2013) draws a distinction between “restricted”
numeral systems, which he defines as those that do “not ef-
fectively go above around 20”, and other numeral systems,
which cover a larger range, often through recursion. We
focused on all 20 languages that Comrie had listed as “re-
stricted”, together with several representative languages from
the same source that have numeral systems over a larger
range. These numeral systems from WALS were supple-
mented by a description of the Mundurukú numeral system
from Pica et al. (2004); the data from this latter source are
more detailed than those from the grammars.

These languages span the spectrum from approximate, to
exact restricted, to fully recursive numeral systems. 2 We
have used these class designations loosely up until now; we
now define them precisely. We took a language’s numeral
system to be approximate if the grammar or other description
on which we relied for that language explicitly states that the
meanings of the numerals in the system are approximate or
inexact. All such systems in our data were restricted in Com-
rie’s sense. We took a language’s numeral system to be ex-
act restricted if the system covers a restricted range (again
in Comrie’s sense) but the description of the system does not
explicitly state that the meanings were approximate or inex-
act; thus we assumed exactness unless there was evidence to
the contrary. Finally, we took a language’s numeral system
to be recursive if the numeral system was listed by Comrie as
having a base: e.g. the English numeral system is recursive
with base 10. 3 These categories do not entirely exhaust the
space of attested systems. For example, Comrie lists several
extended body-part numeral systems, which use body parts
beyond the 10 fingers to enumerate, and can reach well above
20, and there are some restricted languages that use recursion
within a limited range. However, the three broad classes we
use do pick out major types of numeral system.

Formal presentation of theory
We have seen that the notion of efficient communication in-
volves a tradeoff between the competing forces of simplicity
and informativeness. We first formalize each of these two
forces in turn, and then the tradeoff between them. This for-
malization builds on that of Kemp & Regier (2012).

Simplicity
Simplicity is the opposite of complexity, and we define the
complexity of a numeral system to be the number of rules

2Approximate: Pirahã, Wari (3 terms); Gooniyandi (5 terms);
Mundurukú (6 terms). Exact restricted: !Xóõ, Achagua, Araona,
Baré, Hixkaryána, Mangarrayi, Martuthunira, Pitjantjatjara (4
terms); Awa Pit, Kayardild (5 terms); Barasano, Hup, Imonda,
Rama, Yidiny (6 terms); Waskia, Wichı́ (11 terms). Recursive: Chi-
nese, English (base-10); Ainu (base-20); Georgian (base-10 & 20).

3We focus on the most fine-grained set of numeral terms avail-
able in each language, ignoring for now approximate terms in lan-
guages with an exact numeral system, e.g. “a few” in English.



needed to specify it (Kemp & Regier, 2012). We specify nu-
meral systems as grammars, based on the primitive compo-
nents listed in Table 1.

Table 1: Components for representing numeral systems.

Component Description
1 Primitive concept of 1

m(w) Meaning of form w
g(x) Gaussian with mean x

s(w,n) Successor of w with length n
S = {} Specification of set S

+ Addition
- Subtraction
× Multiplication

Two of these primitives require explanation. g(x) is a Gaus-
sian centered at position x on a number line that scales in ac-
cord with the non-linguistic approximate number system; it
is intended to ground approximate numerals directly in that
cognitive system. s(w,n) is a generalization of the stan-
dard successor function (successor(w)= m(w)+1); it de-
fines a line segment that begins at m(w)+1 and continues
for some exactly specified length n, picking out the interval
[m(w)+1,m(w)+n]. Although in attested systems this length
n is generally 1, the more general case is used for hypothetical
numeral systems against which we compare attested ones.

Table 2 presents grammars for the numeral systems of three
languages, one from each of the three classes we consider
here, and indicates the complexity of each. Here and else-
where in this paper, we restrict our attention to numerals over
the range 1-100.

Informativeness
Informativeness of communication was illustrated in the com-
municative scenario of Figure 1. Returning to that scenario,
we may represent the speaker’s intended meaning as a prob-
ability distribution S(i) over numbers i, and analogously rep-
resent the listener’s mental reconstruction of that meaning
as a distribution L(i) over numbers i. We assume that the
speaker has certainty: S(t) = 1 for the intended target num-
ber t. We assume moreover that the character of the listener
distribution L(i) depends on the number term produced by the
speaker. If the speaker has produced a word w that is semanti-
cally grounded in the approximate number system (Dehaene,
2011) via a rule involving the primitive g(·), we assume that
the listener distribution takes the form:

L(i) ∝ f (i|w) = exp [−( |i−µw|√
2v
√

i2 +µ2
w
)2] (1)

This equation is derived from the first equation on p. S6 of the
supporting online materials for Pica et al. (2004), who present
it as a formalization of the comparison of two numerosities,
both represented as Gaussians, in the non-linguistic approxi-
mate number system, which obeys Weber’s law. f (i|w) cap-
tures the similarity of the number i to the mean µw of the cate-

Table 2: Grammars for sample approximate, exact restricted,
and recursive numeral systems over the range 1-100. The
specification of each rule adds a unit complexity of 1.

Approximate: Pirahã Complexity: 3
Number Form Rule
1 ‘hói’ g(1)
∼2-4 ‘hoı́’ g(2)
∼5-100 aibaagi g(7)

Exact: Kayardild Complexity: 7
Number Form Rule
1 ‘warngiida’ 1

2 ‘kiyarrngka’ s1(‘warngiida’)
3 ‘burldamurra’ s1(‘kiyarrngka’)
4 ‘mirndinda’ s1(‘burldamurra’)
5-100 ‘muthaa’ s∞(‘mirndinda’)

s1(w) = s(w,1)
s∞(w) = s(w,∞)

Recursive: English Complexity: 24
Number Form Rule
1 ‘one’ 1

2 ‘two’ s1(‘one’)
3-12 ‘three’...‘twelve’ s1(‘two’)...s1(‘eleven’)
20 ‘twenty’ m(‘two’)×m(‘ten’)
100 ‘hundred’ m(‘ten’)×m(‘ten’)
13...19 w‘teen’ : w ∈ones\1,2 m(w) + m(‘ten’)
30...90 w‘ty’ : w ∈ones\1,2 m(w)×m(‘ten’)
{21...29 u-v : u ∈tens, v ∈ones m(u) + m(v)

91...99}
s1(w) = s(w,1)
ones\1,2 = {’thir’,’for’,’four’,

’fif’,’six’...’nine’}
‘thir’ = ‘three’
‘for’ = ‘four’
‘fif’ = ‘five’
ones = {‘one’...‘nine’}
tens = {‘twenty’...‘ninety’}

gory named by the word w, under the assumptions of Weber’s
law. v is the empirically determined Weber fraction, which we
take to be 0.17 in our analyses, following Pica et al. (2004). 4

In contrast, if the speaker has used an exact number term w
grounded in exact primitives such as s(·,·), we assume that
the listener distribution is given by the size principle (Tenen-
baum, 1999):

L(i) = p(i|w) = 1
|w|

(2)

4We also repeated our analyses with v = 0.3 at the suggestion
of Stanislas Dehaene (personal communication); the results did not
differ qualitatively from those we report below.



where |w| is the number of integers contained in the exact in-
terval named by the number word w. 5 In the case of most at-
tested systems, an exact numeral such as “nine” will pick out
just a single integer, so that p(9|“nine”) = 1

1 = 1. However
the formula also generalizes to hypothetical exact numerals
defined as longer exact intervals of the number line.

Given these specifications of the speaker (S) and listener
(L) distributions, we define the communicative cost C(i) of
communicating a number i under a given numeral system to
be the information lost in communication – that is, the infor-
mation lost in the listener’s reconstruction L when compared
to the speaker’s distribution S. We model this information
loss as the Kullback-Leibler (KL) divergence between distri-
butions S and L. In the case of speaker certainty (S(i) = 1 for
the target number i), this reduces to surprisal:

C(i) = DKL(S||L) = ∑
i

S(i) log2
S(i)
L(i)

= log2
1

L(i)
(3)

We model the communicative cost for a numeral system as a
whole as the expected value of C over all numbers i:

E[C] = ∑
i

N(i)C(i), (4)

Here, N(i) is the need probability of target number i. We
estimated need probabilities by the normalized frequencies
of English numerals in the Google ngram corpus (Michel et
al., 2011) for the year 2000, smoothed with an exponential
curve via log-linear regression (Pearson correlation with un-
smoothed data = 0.97). 6

Tradeoff
We take a numeral system to be simple to the extent that it ex-
hibits low complexity, and we take it to be informative to the
extent that it exhibits low communicative cost E[C]. Given
this, we consider a numeral system to be near-optimally effi-
cient if it is more informative (i.e. exhibits lower communica-
tive cost) than most logically possible hypothetical systems of
the same complexity.

Testing the theory
We test our theory against the data in two steps. We first test
whether the model of the approximate number system rep-
resented by Equation 1 accommodates fine-grained linguis-
tic data from the one language for which we have such data,
Mundurukú. We then test whether all numeral systems in our
dataset are near-optimally efficient in the sense defined above.

Mundurukú and the approximate number system
Pica et al. (2004) showed that their formalization of the ap-
proximate number system, governed by Weber’s law, ac-
counted well for non-linguistic numerosity judgments by the

5L(i) = 0 if i lies outside the category named by w.
6N(i) decays roughly exponentially with increasing i. Data from

spoken English (Leech et al., 2001) show a similar trend.

Mundurukú. They also collected fine-grained data on the way
the Mundurukú name different numerosities, but they did not
directly test whether their formalization of the approximate
number system also accommodates those linguistic data.
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Figure 2: Modeling Mundurukú naming data.

Figure 2(a) shows, for numerosities 1 to 15, the fraction of
times each numerosity i was named with a given Mundurukú
word or locution w (Pica et al., 2004).7 We modeled this frac-
tion p(w|i) using Bayes’ rule: p(w|i) ∝ f (i|w)p(w), where
f (i|w) is given by Equation 1, based on Weber’s law, and the
prior p(w) is given by the relative frequency of word w in the
data, over all numerosities. We fit this model to the data in
Figure 2(a) by finding placements of category means µw that
minimize the mean-squared-error (MSE) between model and
data. The model fit was good (MSE = 0.004), and is shown
in Figure 2(b). A variant of this model based instead on exact
numeral representation (Equation 2) performed much more
poorly (MSE = 0.03, fit not shown). These findings suggest
that the model of the approximate number system given by
Equation 1 provides a reasonable basis for grounding approx-
imate numeral systems.

Near-optimal efficiency of numeral systems
To test whether the attested numeral systems in our dataset
are near-optimally efficient, we assessed their simplicity and
informativeness relative to a large set of logically possible
hypothetical systems. These hypothetical systems fell in the
same three classes as our attested systems: approximate, ex-
act restricted, and recursive.

We generated approximate hypothetical systems that have
k = 3 through k = 20 numeral categories, and that place these
categories at the lower end of the number line, specifically
in the interval [1,20]. We did this because these specifica-
tions also accommodate the attested systems in our dataset,
and we wanted to generate hypothetical systems that were
broadly comparable to actual ones. For each k, we exhaus-
tively enumerated all possible placements of k means for a
k-term system in the interval [1,20], producing

(20
k

)
systems

7The data for a given numerosity i do not always sum to 1.0 be-
cause some infrequent terms were not reported. In our model, we
accommodated this fact by introducing an unnamed dummy cate-
gory corresponding to these unreported terms.
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Figure 3: (a) Near-optimal tradeoff between communicative cost and complexity across 25 attested numeral systems, compared
with hypothetical approximate (a), exact restricted (e) and recursive (r) systems. ‘Chi’, ‘Ain’, ‘Geo’, ‘Eng’ stand for ‘Chinese’,
‘Ainu’, ‘Georgian’ and ‘English’. (b) Comparison of sample attested systems to optimal systems of the same complexity.

for each k. The grammar for each such system was simply
a list of Gaussians g(·) centered at these means, by analogy
with the Pirahã grammar in Table 2.

We generated exact restricted hypothetical systems anal-
ogously. For k = 3 through k = 20, we exhaustively enu-
merated all possible partitions of the range [1,20] into k non-
overlapping exact intervals, and took each such partition to
be a hypothetical system. The grammar for each such system
represented these intervals using the s(·,·) primitive. As in
the Kayardild grammar in Table 2, we required an additional
separate rule to define each interval length used in the gram-
mar. As a result, exact numeral system grammars that use
intervals of many different lengths are penalized in complex-
ity. Systems with numerals that pick out specific integers are
included in this class: in this case the interval size is 1.

Finally, we generated hypothetical recursive systems by
considering the full space of canonical base-n recursive nu-
meral systems (Hurford, 1999) for n = 2 to 30. We took a
canonical base-n system to be one in which there are distinct
lexical items for the numerals 1 through n, and all numer-
als beyond that are constructed by generative rules according
to the pattern xn+ y for some already-defined numerals x,y
(Comrie, 2013). In these systems, all numerals correspond
to specific integers. The English grammar in Table 2 is not
perfectly canonical because the teens are part of a separate
subsystem from other high numerosities, but it is an example
of a recursive base-10 system.

Figure 3(a) shows all hypothetical and attested systems
plotted according to their complexity and communicative
cost. Colored circles denote attested systems. Light gray bars
denote the range of costs exhibited by approximate hypothet-
ical systems of a given complexity; dark gray bars denote
the range of costs exhibited by exact restricted hypothetical
systems of a given complexity; and the extent of the black
horizontal line (not including the light gray portion of that
line) at communicative cost 0 denotes the range of complexi-

ties exhibited by hypothetical recursive systems, all of which
have communicative cost 0. It can be seen that in general,
attested numeral systems in our dataset tend to be more in-
formative (show lower communicative cost) than most hy-
pothetical alternatives of the same complexity. Thus, these
attested systems do support near-optimally efficient commu-
nication about number. Figure 3(b) shows sample systems
from our dataset compared with the theoretically optimally
informative (lowest cost) systems of the same complexity –
in all cases color-coded such that a numeral corresponds to
a colored region of the number line. It can be seen that the
attested systems resemble these theoretical optima.

These results support a functional account of why the dif-
ferent classes of numeral system in the world’s languages ap-
pear as they do, namely as different ways of navigating the
tradeoff between simplicity and informativeness. Approxi-
mate numeral systems (e.g. Wari, with 3 terms) represent
one extreme on a continuum: they are simple (non-complex),
requiring only a minimal cognitive investment in communi-
cating about number. These systems support near-optimally
informative communication for that level of cognitive invest-
ment – but they do not closely approach perfectly informative
(0 cost) communication. Exact restricted systems (e.g. Ka-
yardild, with 5 terms) are slightly more complex – and they
support somewhat more informative communication. Finally,
recursive systems represent the informative extreme of this
continuum: these systems support perfectly informative com-
munication, because there is a (recursively generated) sepa-
rate name for each integer within a large range. Such fine-
grained naming would be prohibitively expensive under an
exact non-recursive or an approximate system: one lexical
rule per integer in the range. But a recursive system can be
seen as a cognitive tool that supports perfectly informative
communication over a large range, at the cost of only mod-
est complexity. Interestingly, our exploration of hypothetical
recursive systems revealed (although not shown in the figure)



that base-10 and base-20 systems are near-optimally simple,
whereas base-2 systems are quite complex – which could ex-
plain the cross-linguistic prominence of base-10 and base-20
systems, and the very low frequency of base-2 recursive sys-
tems over a large range.

Conclusions
We have seen that the need for efficient communication helps
to explain why numeral systems across languages take the
forms they do, by analogy with recent demonstrations in other
semantic domains – and that the same functional need helps
to explain the qualitatively different classes of numeral sys-
tem found across languages. At the core of this explanation
is the idea that attested numeral systems near-optimally trade
off the competing demands of informativeness and simplicity.

Several questions are left open by these findings. Will
the results generalize to other languages? Are these findings
themselves dependent on simplifying assumptions we have
made? What sort of evolutionary process produces these pat-
terns? Future studies should address these questions, to place
our present findings in their proper context. For now, how-
ever, we hope that the evidence we have presented helps to
explain the diversity of numeral systems in the world’s lan-
guages, in terms of the functional drive for efficient commu-
nication.
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