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Abstract

Natural language relies on a finite lexicon to
express an unbounded set of emerging ideas.
One result of this tension is the formation
of new compositions, such that existing lin-
guistic units can be combined with emerging
items into novel expressions. We develop a
framework that exploits the cognitive mecha-
nisms of chaining and multimodal knowledge
to predict emergent compositional expressions
through time. We present the syntactic frame
extension model (SFEM) that draws on the
theory of chaining and knowledge from “per-
cept”, “concept”, and “language” to infer how
verbs extend their frames to form new com-
positions with existing and novel nouns. We
evaluate SFEM rigorously on the 1) modalities
of knowledge and 2) categorization models of
chaining, in a syntactically parsed English cor-
pus over the past 150 years. We show that mul-
timodal SFEM predicts newly emerged verb
syntax and arguments substantially better than
competing models using purely linguistic or
unimodal knowledge. We find support for an
exemplar view of chaining as opposed to a pro-
totype view and reveal how the joint approach
of multimodal chaining may be fundamental to
the creation of literal and figurative language
uses including metaphor and metonymy.

1 Introduction

Language users often construct novel compositions
through time, such that existing linguistic units can
be combined with emerging items to form novel
expressions. Consider the expression swipe your
phone, which presumably came about after the
emergence of touchscreen-enabled smartphones.
Here the use of the verb swipe was extended to
express one’s experience with the emerging item
“smartphone”. These incremental extensions are
fundamental to adapting a finite lexicon toward
emerging communicative needs. We explore the
nature of cognitive mechanisms and knowledge in
the temporal formation of previously unattested

verb-argument compositions, and how this compo-
sitionality may be understood in principled terms.

Compositionality is at the heart of linguistic cre-
ativity yet a notoriously challenging topic in com-
putational linguistics and natural language process-
ing (e.g., Vecchi et al. 2017; Cordeiro et al. 2016;
Blacoe and Lapata 2012; Mitchell and Lapata 2010;
Baroni and Zamparelli 2010). For instance, modern
views on the state-of-the-art neural models of lan-
guage have suggested that they show some degree
of linguistic generalization but are impoverished
in systematic compositionality (see Baroni (2020)
for review). Existing work has also explored the
efficacy of neural models in modeling diachronic
semantics (e.g., Hamilton et al., 2016; Rosenfeld
and Erk, 2018; Hu et al., 2019; Giulianelli et al.,
2020). However, to our knowledge, no attempt has
been made to examine principles in the formation
of novel verb-noun compositions through time.

We formulate the problem as an inferential pro-
cess which we call syntactic frame extension. We
define syntactic frame as a joint distribution over a
verb predicate, its noun arguments, and their syntac-
tic relations, and we focus on tackling two related
predictive problems: 1) given a novel or existing
noun, infer what verbs and syntactic relations that
have not predicated the noun might emerge to de-
scribe it over time (e.g., to drive a car vs. to fly a
car), and 2) given a verb predicate and a syntactic
relation, infer what nouns can be plausibly intro-
duced as its novel arguments in the future (e.g.,
drive a car vs. drive a computer).

Figure 1 offers a preview of our framework by
visualizing the process of assigning novel verb
frames to describe two query nouns over time. In
the first case, the model incorporated with percep-
tual and conceptual knowledge successfully pre-
dicts the verb drive to be a better predicate than fly
for describing the novel item car that just emerged
at the time of prediction where linguistic usages
are not yet observed (i.e., emergent verb compo-
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Figure 1: Preview of the proposed approach of syntactic frame extension. Given a query noun (circled dot) at
time t, the framework draws on a combination of multimodal knowledge and cognitive mechanisms of chaining to
predict novel linguistic expressions for those items. The left panel shows via PCA projection how a newly emerged
noun (i.e., car in 1920s) is assigned appropriate verb frames by comparing the learned multimodal representation
of the query nouns with support nouns (non-circled dots) that have been predicated by the frames. The right panel
shows a similar verb construction for a noun that already existed at the time of prediction (i.e., computer in 1980s).

sition with a novel noun concept). In the second
case, the model predicts that hold is a better predi-
cate than wear for describing the noun computer,
which already existed at the time of prediction (i.e.,
emergent verb composition with an existing noun).

Our approach connects two strands of research
that were rarely in contact: cognitive linguistic
theories of chaining and computational representa-
tions of multimodal semantics. Work in the cogni-
tive linguistics tradition has suggested that frame
extension is not arbitrary and involves the compari-
son between a new item to existing items that are
relevant to the frame (Fillmore, 1986). Similar pro-
posals lead to the theory of chaining postulating
that linguistic categories grow by linking novel ref-
erents to existing ones of a word due to proximity
in semantic space (Lakoff, 1987; Malt et al., 1999;
Xu et al., 2016; Ramiro et al., 2018; Habibi et al.,
2020; Grewal and Xu, 2020). However, such a
theory has neither been formalized nor evaluated
to predicting verb frame extensions through time.
Separately, computational work in multimodal se-
mantics has suggested how word meanings war-
rant a richer representation beyond purely linguis-
tic knowledge (e.g., Bruni et al. 2012; Gella et al.
2016, 2017). However, multimodal semantic rep-
resentations have neither been examined in the di-
achronics of compositionality nor in light of the
cognitive theories of chaining. We show that a
unified framework that incorporates the cognitive

mechanisms of chaining through deep models of
categorization and multimodal semantic represen-
tations predicts the temporal emergence of novel
noun-verb compositions.

2 Related work

Our work synthesizes the interdisciplinary areas of
cognitive linguistics, diachronic semantics, mean-
ing representation, and deep learning.

2.1 Cognitive mechanisms of chaining
The problem of syntactic frame extension concerns
the cognitive theory of chaining (Lakoff, 1987;
Malt et al., 1999). It has been proposed that the his-
torical growth of linguistic categories depends on
a process of chaining, whereby novel items link to
existing referents of a word that are close in seman-
tic space, resulting in chain-like structures. Recent
studies have formulated chaining as models of cat-
egorization from classic work in cognitive science.
Specifically, it has been shown that chaining may
be formalized as an exemplar-based mechanism of
categorization emphasizing semantic neighborhood
profile (Nosofsky, 1986), which contrasts with a
prototype-based mechanism that emphasizes cate-
gory centrality (Reed, 1972; Lakoff, 1987; Rosch,
1975). This computational approach to chaining
has been applied to explain word meaning growth
in numeral classifiers (Habibi et al., 2020) and ad-
jectives (Grewal and Xu, 2020). Unlike these pre-
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vious studies, we consider the open issue whether
cognitive mechanisms of chaining might be gener-
alized to verb frame extension which draws on rich
sources of knowledge. It remains critically undeter-
mined how “shallow models” such as the exemplar
model can function or integrate with deep neural
models (Mahowald et al., 2020; McClelland, 2020),
and how it might fair with the alternative mecha-
nism of prototype-based chaining in the context of
verb frame extension. We address both of these the-
oretical issues in a framework that explores these
alternative mechanisms of chaining in light of prob-
abilistic deep categorization models.

2.2 Diachronic semantics in NLP
The recent surge of interest in NLP on diachronic
semantics has developed Bayesian models of se-
mantic change (e.g., Frermann and Lapata, 2016),
diachronic word embeddings (e.g., Hamilton et al.,
2016), and deep contextualized language models
(e.g., Rosenfeld and Erk, 2018; Hu et al., 2019;
Giulianelli et al., 2020). A common assumption
in these studies is that linguistic usages (from his-
torical corpora) are sufficient to capture diachronic
word meanings. However, previous work has sug-
gested that text-derived distributed representations
tend to miss important aspects of word meaning,
including perceptual features (Andrews et al., 2009;
Baroni and Lenci, 2008; Baroni et al., 2010) and
relational information (Necşulescu et al., 2015). It
has also been shown that both relational and per-
ceptual knowledge are essential to construct cre-
ative or figurative language use such as metaphor
(Gibbs Jr. et al., 2004; Gentner and Bowdle, 2008)
and metonymy (Radden and Kövecses, 1999). Our
work examines the function of multimodal seman-
tic representations in capturing diachronic verb-
noun compositions, and the extent to which such
representations can be integrated with the cognitive
mechanisms of chaining.

2.3 Multimodal representation of meaning
Computational research has shown the effective-
ness of grounding language learning and distri-
butional semantic models in multimodal knowl-
edge beyond linguistic knowledge (Lazaridou et al.,
2015; Hermann et al., 2017). For instance, Kiros
et al. (2014) proposed a pipeline that combines
image-text embedding models with LSTM neural
language models. Bruni et al. (2014) identifies dis-
crete “visual words” in images, so that the distribu-
tional representation of a word can be extended to

encompass its co-occurrence with the visual words
of images it is associated with. Gella et al. (2017)
also showed how visual and multimodal informa-
tion help to disambiguate verb meanings. Our
framework extends these studies by incorporating
the dimension of time into exploring how multi-
modal knowledge predicts novel language use.

2.4 Memory-augmented deep learning

Our framework also builds upon recent work on
memory-augmented deep learning (Vinyals et al.,
2016; Snell et al., 2017). In particular, it has been
shown that category representations enriched by
deep neural networks can effectively generalize to
few-shot predictions with sparse input, hence yield-
ing human-like abilities in classifying visual and
textual data (Pahde et al., 2020; Singh et al., 2020;
Holla et al., 2020). In our work, we consider the
scenario of constructing novel compositions as they
emerge over time, where sparse linguistic informa-
tion is available. We therefore extend the existing
line of research to investigate how representations
learned from naturalistic stimuli (e.g., images) and
structured knowledge (e.g., knowledge graphs) can
reliably model the emergence of flexible language
use that expresses new knowledge and experience.

3 Computational framework

We present the syntactic frame extension model
(SFEM), which is composed of two components.
First, SFEM specifies a frame as a joint probabilis-
tic distribution over a verb, its noun arguments, and
their syntactic relations and supports temporal pre-
diction of verb syntax and arguments via deep prob-
abilistic models of categorization. Second, SFEM
draws on multimodal knowledge by incorporating
perceptual, conceptual, and linguistic cues into flex-
ible inference for extended verb frames over time.
Figure 2 illustrates our framework.

3.1 Chaining as probabilistic categorization

We denote a predicate verb as v (e.g., drive) and
a syntactic relation as r (e.g., direct object of a
verb), and consider a finite set of verb-syntactic
frame elements f = (v, r) ∈ F . We define the
set of nouns that appeared as arguments for a verb
(under historically attested syntactic relations) up
to time t as support nouns, denoted by ns ∈ S(f)(t)

(e.g., horse appeared as a support noun—the direct
object—for the verb drive prior to 1880s). Given
a query noun n∗ (e.g., car upon its emergence in
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Figure 2: Illustration of the syntactic frame extension model for the emerging query car. The model integrates
information from visual perception and conceptual knowledge about cars to form a multimodal embedding (h(t)n ),
which supports temporal prediction of appropriate verb-syntax usages via deep categorization models of chaining.

1880s) that has never been an argument of v under
relation r, we define syntactic frame extension as
probabilistic inference in two related problems:

1. Verb syntax prediction. Here we predict
which verb-syntactic frames f are appropriate
to describe the query noun n∗, operationalized
as p(f |n∗) yet to be specified.

2. Noun argument prediction. Here we predict
which nouns n∗ are plausible novel arguments
for a given verb-syntax frame f , operational-
ized as p(n∗|f) yet to be specified.

We solve these inference problems by model-
ing the joint probability p(n∗, f) for a query noun
and a candidate verb-syntactic frame incrementally
through time as follows:

p(n∗, f)(t) = p(n∗|f)(t)p(f)(t) (1)

= p(n∗|S(f)(t))p(f)(t) (2)

Here we construct verb meaning based on its ex-
isting support nouns S(f)(t) at current time t. We
infer the most probable verb-syntax usages for de-
scribing the query noun (Problem 1) as follows:

p(f |n∗) =
p(n∗, f)(t)∑

f∈F p(n
∗, f)(t)

(3)

=
p(n∗|S(f)(t))p(f)(t)∑

f ′∈F p(n
∗|S(f ′)(t))p(f ′)(t)

(4)

In the learning phase, we train our model incremen-
tally at each time period t by minimizing the log

joint probability p(n∗, f)(t) in Equation 1 for every
frame f and each of its query noun n∗ ∈ Q(f)(t):

J = −
∑

f∈F(t)

∑
n∗∈Q(f)(t)

log p(n∗, f)(t) (5)

For each noun n, we consider a time-dependent
hidden representation h(t)

n ∈ RM derived from
different sources of knowledge (specified in Sec-
tion 3.2). For the prior probability p(f)(t), we con-
sider a frequency-based approach that computes
the proportion for the number of unique noun argu-
ments that a (verb) frame has been paired with and
attested in a historical corpus:

p(f)(t) =
|S(f)(t)|∑

f ′∈F |S(f ′)(t)|
(6)

We formalize p(n∗|f) (Problem 2), namely
p(n∗|N(f))(t), by two classes of deep categoriza-
tion models motivated by the literature on chaining,
categorization, and memory-augmented learning.

Deep prototype model (SFEM-DPM). SFEM-
DPM draws inspirations from prototypical network
for few-shot learning (Snell et al., 2017) and is
grounded in the prototype theory of categorization
in cognitive psychology (Rosch, 1975). The model
computes a set of hidden representations for every
support noun ns ∈ S(f)(t), and takes the expected
vector as a prototype c(t)f to represent f at time t:

c(t)f =
1

|S(f)(t)|
∑

ns∈S(f)(t)
h(t)
ns

(7)
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The likelihood of extending n∗ to S(f)(t) is then
defined as a softmax distribution over l2 distances
d(·, ·) to the embedded prototype:

p(n∗|S(f)(t)) =
exp (−d(h(t)

n∗ , c
(t)
f ))∑

f ′ exp(−d(h(t)
n∗ , c

(t)
f ))

(8)

Deep exemplar model (SFEM-DEM). In contrast
to the prototype model, SFEM-DEM resembles
the memory-augmented matching network in deep
learning (Vinyals et al., 2016), and formalizes the
exemplar theory of categorization (Nosofsky, 1986)
and chaining-based category growth (Habibi et al.,
2020). Unlike DPM, this model depends on the l2
distances between n∗ and every support noun:

p(n∗|S(f)(t)) =

∑
ns∈S(f)(t)

exp (−d(h(t)
n∗ ,h

(t)
ns ))∑

f ′

∑
n′s∈S(f ′)(t)

exp (−d(hn∗ ,h
(t)

n′s
))

(9)

3.2 Multimodal knowledge integration
In addition to the probabilistic formulation, SFEM
draws on structured knowledge including percep-
tual, conceptual, and linguistic cues to construct
multimodal semantic representations h(t)

n intro-
duced in Section 3.1.

Perceptual knowledge. We capture perceptual
knowledge from image representations in the large,
taxonomically organized ImageNet database (Deng
et al., 2009). For each noun n, we randomly sample
a collection of 64 images from the union of all Im-
ageNet synsets that contains n, and encode the im-
ages through the VGG-19 convolutional neural net-
work (Simonyan and Zisserman, 2015) by extract-
ing the output vector from the last fully connected
layer after all convolutions (see similar procedures
also in Pinto Jr. and Xu, 2021). We then average the
encoded images to a mean vector xp(n) ∈ R1000

as the perceptual representation of n.
Conceptual knowledge. To capture conceptual

knowledge beyond perceptual information (e.g.,
attributes and functions), we extract information
from the ConceptNet knowledge graph (Speer et al.,
2017), which connects concepts in a network struc-
ture via different types of relations as edges. This
graph reflects commonsense knowledge of a con-
cept (noun) such as its functional role (e.g., a car
IS_USED_FOR transportation), taxonomic infor-
mation (e.g., a car IS_A vehicle), or attributes (e.g.,
a car HAS_A wheel). Since the concepts and their

relations may change over time, we prepare a di-
achronic slice of the ConceptNet graph at each
time t by removing all words with frequency up
to t in a reference historical text corpus (see Sec-
tion 4 for details) under a threshold kc which we
set to be 10. We then compute embeddings for
the remaining concepts following methods recom-
mended in the original study by Speer et al. (2017).
In particular, we perform singular value decom-
position (SVD) on the positive pointwise mutual
information matrix M(t)

G of the ConceptNet G(t)

truncated at time t, and combine the top 300 di-
mensions (with largest singular values) of the term
and context matrix symmetrically into a concept
embedding matrix. Each row of the resulting row
matrix of SVD will therefore serves as the concep-
tual embedding xc(n)(t) ∈ R300 for its correspond-
ing noun.

Linguistic knowledge. For linguistic knowl-
edge, we take the HistWords diachronic word em-
beddings x(t)l ∈ R300 pre-trained on the Google
N-Grams English corpora to represent linguistic
meaning of each noun at decade t (Hamilton et al.,
2016).

Knowledge integration. To construct a unified
representation that incorporates knowledge from
different modalities, we take the mean of the uni-
modal representations described into a joint vector
xn ∈ R300, and then apply an integration function
g : R300 → RM parameterized by a feedforward
neural network to get the multimodal word rep-
resentation h(t)n .1 Our framework allows flexible
combinations of the three modalities introduced,
e.g., a full model would utilizes all three types of
knowledge, while a linguistic-only baseline will
directly take HistWords embeddings x(t)l as inputs
of the integration network.

4 Historical noun-verb compositions

To evaluate our framework, we collected a large
dataset of historical noun-verb compositions de-
rived from the Google Syntactic N-grams (GSN)
English corpus (Lin et al., 2012) from 1850 to
2000. Specifically, we collected verb-noun-relation
triples (n, v, r)(t) that co-occur in the ENGALL
subcorpus of GSN over the 150 years. We focused
on working with common usages and pruned rare
cases under the following criteria: 1) a noun n

1For ImageNet embeddings, we apply a linear transfor-
mation to project each x(t)

p into R300 so that all unimodal
representations are 300-d vectors before taking the means.
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Decade
Verb syntactic frame

Support noun Query noun
Predicate verb Syntactic relation

1900 drive direct object horse, wheel, cart car, van
1950 work prepositional object via as mechanic, carpenter, scientist astronaut, programmer
1980 store prepositional object via in fridge, container, box supercomputer

Table 1: Sample entries from Google Syntactic Ngram including verb syntactic frames, support and query nouns.

should have at least θp = 64 image representa-
tions in ImageNet, θc = 10 edges in the contem-
porary ConceptNet network, and θn = 15, 000
counts (with POS tag as nouns) in GSN over the
150-year period; 2) a verb v should have at least
θv = 15, 000 counts in GSN. To facilitate feasi-
ble model learning, we consider the top-20 most
common syntactic relations in GSN, including di-
rect object, direct subject, and relations concerning
prepositional objects.

We binned the raw co-occurrence counts by
decade ∆ = 10. At each decade, we define emerg-
ing query nouns n∗ for a given verb frame f if
their number of co-occurrences with f up to time
t falls below a threshold θq, while the number of
co-occurrences with f up to time t+ ∆ is above θq
(i.e., an emergent use that conventionalizes). We
define support nouns as those that co-occurred with
f for more than θs times before t. We found that
θq = 10 and θs = 100 are reasonable choices. This
preprocessing pipeline yielded a total of 10,349
verb-syntactic frames over 15 decades, where each
frame class has at least 1 novel query noun and
4 existing support nouns. Table 1 shows sample
entries of data which we make publicly available.2

5 Evaluation and results

We first describe the details of SFEM implemen-
tation and diachronic evaluation. We then provide
an in-depth analysis on the multimodal knowledge
and chaining mechanisms in verb frame extension.

5.1 Details of model implementation
We implemented the integration network g(·) of
SFEM as a three-layer feedforward neural network
with an output dimension M = 100, and keep pa-
rameters and embeddings in other modules fixed
during learning.3 At each decade, we randomly
sample 70% of the query nouns with their associ-
ated verb-syntactic pairs as training data, and take

2Data and code are deposited here: https://github.
com/jadeleiyu/frame_extension

3See Appendix A for additional implementation details.

the remaining examples for model testing such that
there is no overlap in the query nouns between
training and testing. We trained models on the neg-
ative log-likelihood loss defined in Equation 5 at
each decade. To examine how multimodal knowl-
edge contributes to temporal prediction of novel
language use, we trained 5 DEM and 5 DPM mod-
els using information from different modalities.

5.2 Evaluation against historical data
We test our models on both verb syntax and noun
argument predictive tasks with the goals of assess-
ing 1) the contributions of multimodal knowledge,
and 2) the two alternative mechanisms of chaining.
We also consider baseline models that do not im-
plement chaining-based mechanisms: a frequency
baseline that predicts by count in GSN up to time t,
and a random guesser. We evaluate model perfor-
mance via standard receiver operating characteris-
tics (ROC) curves that reveal cumulative precision
of models in their top m predictions. We compute
the standard area-under-curve (AUC) statistics for
the ROC curves to get the mean precision over all
values of m from 1 to the candidate set size. Fig-
ure 3 summarizes the results over the 150 years.
We observe that 1) all multimodal models perform
better than their uni-/bi-modal counterparts, and
2) the exemplar-based model performs dominantly
better than the prototype-based counterpart, and
both outperform the baseline models without chain-
ing. In particular, a tri-modal deep exemplar model
that incorporates knowledge from all three modali-
ties achieves the best overall performance. These
results provide strong support that verb frame ex-
tension depends on multimodal knowledge and an
exemplar-based chaining.

To further assess how the models perform in pre-
dicting emerging verb extension toward both novel
and existing nouns, we report separate mean AUC
scores for these predictive cases where query nouns
are either completely novel (i.e., zero token fre-
quencies) or established. (i.e., above-zero frequen-
cies) at the time of prediction. Table 2 summarizes

https://github.com/jadeleiyu/frame_extension
https://github.com/jadeleiyu/frame_extension
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Figure 3: Area-under-curves of SFEM and baseline models from 1850s to 1990s. Top row: AUCs of predicting
extended syntax frames for query nouns. Bottom row: AUCs of predicting extended nouns for query verb frames.

these results and shows that model performances
are similar under four predictive cases. For predic-
tion with novel query nouns, it is not surprising that
linguistic-only models fail due to the unavailabil-
ity of linguistic mentions. However, for prediction
with established query nouns, the superiority of
multimodal SFEMs is still prominent suggesting
that our framework captures general principles in
verb frame extension (and not just for predicting
verb extension toward novel nouns).

Table 3 compares sample verb syntax predictions
made by the full and linguistic-only DEM models
that cover a diverse range of concepts including
inventions (e.g., airplane), discoveries (e.g., mi-
croorganism), and occupations (e.g. astronaut). We
observe that the full model typically constructs rea-
sonable predicate verbs that reflect salient features
of the query noun (e.g., cars are vehicles that are
drive-able). In contrast, the linguistic-only model
often predicts verbs that are either overly generic
(e.g., purchase a telephone) or nonsensical.

5.3 Model analysis and interpretation

We provide further analyses and interpret why both
multimodality and chaining mechanisms are funda-
mental to predicting emergent verb compositions.

5.3.1 The function of multimodal knowledge
To understand the function of multimodal knowl-
edge, we compute, for each modality, the top-
4 verb compositions that were most degraded in

joint probability p(f, n) after ablating a knowledge
modality from the full tri-modal SFEM (see Ta-
ble 4). A drop in p(f, n) indicates reliance on
multimodality in prediction. We found that lin-
guistic knowledge helps the model identify some
general properties that are absent in the other cues
(e.g., a monitor is buy-able). Importantly, for the
two extra-linguistic knowledge modalities, we ob-
serve that visual-perceptual knowledge helps pre-
dict many imaged-based metaphors, including “the
airplane rolls" (i.e., based on common shapes of
airplanes) and “the tree stands" (based on verti-
cality of trees). On the other hand, conceptual
knowledge predicts cases of logical metonymy
(e.g., “work for the newspaper”) and conceptual
metaphor (e.g., “kill the process”). These examples
suggest that multimodality serves to ground and
embody SFEM with commonsense knowledge that
constructs novel verb compositions for not only lit-
eral language use, but also non-literal or figurative
language use that is extensively discussed in the
psycholinguistics literature (Lakoff, 1982; Radden
and Kövecses, 1999; Gibbs Jr. et al., 2004).

We also evaluate the contributions of the three
modalities in model prediction by comparing the
AUC scores from the three uni-modal DEMs. Fig-
ure 4 shows the percentage breakdown of examples
on which one of the modalities yields the highest
score (i.e., contributes most to a reliable prediction).
We observe that conceptual cues explain data the
best in almost 2/3 of the cases, followed by percep-
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Model
AUC – verb syntax prediction AUC – noun argument prediction

novel items existing items combined novel items existing items combined

DPM (linguistics) 0.642 0.690 0.681 0.641 0.653 0.650
DPM (perceptual) 0.632 0.666 0.657 0.650 0.624 0.629
DPM (conceptual) 0.772 0.722 0.733 0.727 0.705 0.711
DPM (perceptual+conceptual) 0.809 0.754 0.767 0.725 0.719 0.721
DPM (perceptual+linguistics) 0.645 0.669 0.661 0.655 0.669 0.665
DPM (conceptual+linguistics) 0.753 0.774 0.766 0.776 0.768 0.770
DPM (perceptual+conceptual+linguistics) 0.848 0.810 0.815 0.799 0.786 0.788
DEM (linguistics) 0.652 0.690 0.686 0.641 0.625 0.632
DEM (perceptual) 0.737 0.674 0.684 0.659 0.650 0.655
DEM (conceptual) 0.854 0.784 0.788 0.736 0.724 0.729
DEM (perceptual+conceptual) 0.858 0.792 0.797 0.750 0.744 0.748
DEM (perceptual+linguistics) 0.712 0.759 0.753 0.698 0.710 0.708
DEM (conceptual+linguistics) 0.902 0.866 0.870 0.837 0.822 0.824
DEM (perceptual+conceptual+linguistics) 0.919 0.872 0.878 0.856 0.820 0.827
Baseline (frequency) 0.573 0.573 0.573 0.536 0.536 0.536
Baseline (random) 0.500 0.500 0.500 0.500 0.500 0.500

Table 2: Mean model AUC scores of verb syntax and noun argument predictions from 1850s to 1990s.

Query noun Decade Predicted frames (linguistic-only DEM) Predicted frames (tri-modal DEM)

telephone 1860
roll-nsubj, load-dobj,
play-pobj_prep.on

purchase_dobj, pick-dobj,
remain-pobj_prep.on

microorganism 1900
decorate-pobj_prep.with,
play-pobj_prep.on, spread-dobj

feed-pobj_prep.on,
mix-pobj_prep.with, breed-dobj

airplane 1930
load-dobj, mount-pobj_prep.on,
mount-dobj, blow-dobj, roll-nsubj

fly-dobj, approach-nsubj,
drive-dobj, stop-nsubj

astronaut 1950
spin-dobj,work-pobj_prep.in,
emerge-pobj_prep.from

work-pobj_prep.as, talk-pobj_prep.to,
lead-pobj_prep.by

computer 1970
purchase-dobj, fix-dobj,
generate-dobj, write-pobj_prep.to

store-pobj_prep.in, move-pobj_prep.into,
display-pobj_prep.on, implement-pobj_prep.in

Table 3: Example predictions of novel verb-noun compositions from the full tri-imodal and linguistic-only models.

Ablated modality Most affected compositions

Language

buy a monitor, find a disk (*),
a resident dies,
specialized in nutrition (*),
point to the window

Percept

an airplane rolls,
talk to an entrepreneur (*),
the tree stands, the doctor says,
topped with nutella (*)

Concept

perform in the film (*),
work as a programmer (*),
work for the newspaper,
expand the market, kill the process

Table 4: Top-4 ground-truth compositions with most
prominent drops in joint probability p(f, n) after ab-
lation of one modality of knowledge from SFEM.
Phrases marked with ‘*’ include novel query nouns.

21.9%

64.3%

13.7%

roll an airplane 
talk to an entrepreneur

drive a car 
work as an astronaut

drain a battery 
wear a microphone

Perceptual (N=3612)
Conceptual (N=10605)
Linguistic (N=2265)

Figure 4: Percentage breakdown of the three modalities
in model prediction, with annotated examples.

tual and linguistic cues. These results suggest that
while conceptual knowledge plays a dominant role
in model prediction, all three modalities contain
complementary information in predicting novel lan-
guage use through time.

5.3.2 General mechanisms of chaining
We next analyze general mechanisms of chaining
by focusing on understanding the superiority of
exemplar-based chaining in SFEM. Figure 5 illus-
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Figure 5: Illustrations of two mechanisms of chaining (left: exemplar; right: prototype) in verb frame prediction
for query supercomputer. Nouns are PCA-projected in 2D, with categories color-coded and in dashed boundaries.

trates the exemplar-based and prototype-based pro-
cesses of chaining with the example verb frame
prediction for the noun “supercomputer". For sim-
plicity, we only show two competing frames “to
store in a ___” and “to wear a ___”. In this case,
the query noun is semantically distant to most of
the prototypical support nouns in both categories,
and is slightly closer to the centroid of the “wear”
class than to that of the “store” class. The prototype
model would then predict the incorrect composi-
tion “to wear a supercomputer”. In contrast, the
exemplar model is more sensitive to the seman-
tic neighborhood profile of the query noun and
the aprototypical support noun “computer” of the
“store in ___” class, and it therefore correctly pre-
dicts that “supercomputer” is more likely to be
predicated by “to store in”. Our discovery that the
exemplar-based chaining accounts for verb com-
position through time mirrors existing findings on
similar mechanisms of chaining in the extensions
of numeral classifiers (Habibi et al., 2020) and ad-
jectives (Grewal and Xu, 2020), and together they
suggest a general cognitive mechanism may under-
lie historical linguistic innovation.

6 Conclusion

We have presented a probabilistic framework for
characterizing the process of syntactic frame exten-
sion in which verbs extend their referential range
toward novel and existing nouns over time. Our
results suggest that language users rely on extra-
linguistic knowledge from percept and concept to
construct new linguistic compositions via a process

of exemplar-based chaining. Our work creates a
novel approach to diachronic compositionality and
strengthens the link between multimodal semantics
and cognitive linguistic theories of categorization.
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A Additional details of SFEM
implementation

We implemented the integration network g(·) as
a three-layer feedforward neural network using
PyTorch, where each layer has a dimension of
300, 200 and 100 respectively. For models that
incorporates less than three modalities, we replace
the missing embeddings with a zero vector when
computing the mean vectors before knowledge in-
tegration.

During training, except for network weights in
g(·), we keep parameters in every modules (i.e., the
VGG-19 encoder and every unimodal embedding)
constant, and optimize SFEM by minimzing the
negative log-likelihood loss function specified in
Equation 5 via stochastic gradient descent (SGD).

Each training batch consists of B = 64 syntac-
tic frames with their associated query and support
nouns. We train each model for 200 epochs and
save the configuration that achieves the highest val-
idation accuracy for our evaluation described in
Section 5.


