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Abstract

In this paper, we tackle the problem of unsupervised seg-
mentation in the form of superpixels. Our main emphasis is
on speed and accuracy. We build on [31] to define the prob-
lem as a boundary and topology preserving Markov random
field. We propose a coarse to fine optimization technique
that speeds up inference in terms of the number of updates
by an order of magnitude. Our approach is shown to outper-
form [31] while employing a single iteration. We evaluate
and compare our approach to state-of-the-art superpixel al-
gorithms on the BSD and KITTI benchmarks. Our approach
significantly outperforms the baselines in the segmentation
metrics and achieves the lowest error on the stereo task.

1. Introduction
Superpixels have become an established image pre-

processing step to significantly reduce the complexity of
higher-level computer vision techniques. They have been
applied in a wide variety of domains such as image label-
ing [32, 25], object proposal generation [6], optical flow es-
timation [31], tracking [2], and stereo [28]. Typically their
role is to partition the image into a tractable set of “units”,
which make the consequent processing run several order
of magnitude faster while at the same time do not sacri-
fice their performance. Superpixels also serve as an effi-
cient regularizer for domains such as segmentation, stereo
or flow estimation, where pixel-level estimates are noisy or
even missing.

A useful superpixel algorithm should thus ideally run
fast, possibly real-time, and guarantee a reliable, regular,
and topologically coherent image partitioning. While a ma-
jority of existing work does not satisfy most of these re-
quirements, particularly speed [5, 21, 33, 18], some of the
recent work reported real-time running times [1, 8]. One of
the fastest approaches is SLIC [1] which performs iterative
k-means style clustering, but which does not ensure that the
final segmentation is connected. A post-processing step is
typically needed to correct for this issue, however, this step
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Figure 1. Our approach generates regular superpixels that preserve
boundary and topology. Notice how our approach better snaps to
image boundaries.

is likely to increase the overall labeling energy. This was ad-
dressed by [31] who proposed an optimization strategy that
only considers updating the boundary pixels at each itera-
tion. Their segmentation method additionally incorporates
length of the boundary as shape regularization, as well as
evidence from stereo image pairs. The final super pixel al-
gorithm then reasons jointly about the partitioning as well
as the stereo estimation in the form of slanted planes.

In this paper, we build on [31] and propose a much more
efficient optimization algorithm that results in an order of
magnitude less updates (speed-up). Inspired by the SEEDS
algorithm [8] our method uses a coarse-to-fine energy up-
date strategy, which allows the optimization to reach better
energy minima than [31] when employing even a single it-
eration.

We demonstrate the effectiveness of our approach in two
important settings: unsupervised segmentation of RGB im-
ages, as well as joint segmentation and stereo estimation
via slanted planes. Our results on BSD [19] demonstrate
that our approach significantly outperforms SLIC in all seg-
mentation metrics and SEEDS under the boundary recall
metric. Furthermore, we outperform [31] in a single itera-
tion, achieving a much better minima of the labeling energy.
We test the stereo super pixels on the autonomous driving
dataset KITTI [11], where real-time processing is of partic-
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ular importance. We show a significant improvement over
the SLIC and SEEDS baselines, and an order of magnitude
speed-up over [31] in terms of the number of boundary up-
dates needed for convergence. Importantly our approach
outperforms the state-of-the-art when taking occluded and
non-occluded pixels into account, demonstrating the power
of our slanted plane super pixel algorithm.

2. Related Work

A wide variety of superpixel methods have been pro-
posed in the last few years [1, 8, 17, 26, 12, 20]. The main
differences are in the objective function they minimize and
in the optimization technique that performs the minimiza-
tion. These are typically based on agglomerative clustering
in the color domain [9, 12, 14], k-means style energy opti-
mization [1], and coarse-to-fine optimization [7, 8]. While
speed is typically one of the most important requirements,
only a few algorithms actually run in real-time [1]. Time
however is a crucial factor, especially for application do-
mains such as robotics and autonomous driving where the
little processing time should be spent on inferring the high
order semantics and not on low level processing. Our main
focus here is on real-time running times.

Most superpixel algorithms partition the image into ho-
mogeneous color regions with some regularization con-
straints that encourage the resulting regions to be smooth
and regular, yet well preserve the image boundaries [1, 31].
In order to preserve the region topology, superpixel lattices
have been used [20], or clever energy updates where only
the boundary pixels are considered at each step [31, 7]. Our
work follows this line of work. We build on the work of
Yamaguchi et al. [31], and show how a coarse-to-fine op-
timization inspired by [8] can result in an order of magni-
tude speed-up. With respect to [8], we optimize a very dif-
ferent energy function, which among other terms differ in
the regularization term, which [8] due to the nature of their
parametrization cannot handle efficiently. In our approach
regularization plays an important role as demonstrated by
our experimental evaluation.

In recent years slanted plane methods that jointly rea-
son about stereo/flow and super pixels have been proposed
[28, 29, 27]. While they perform very well in challenging
scenarios, with the exception of [31] they are however com-
putationally very expensive, limiting their applicability to
real-wold applications such as autonomous driving. Here
we build on [31] and show that by using a coarse to fine
strategy, an order of magnitude speed up can be achieved at
the same time as better stereo estimates.

3. Efficient Topology Preserving Segmentation

We start our discussion by describing our segmentation
algorithm when only a monocular image is available. In

Algorithm 1 Coarse to Fine Monocular Segmentation
Initialize the superpixel to be a regular grid;
Compute initial µ̂i and ĉi for each segment i;
for l = 1 to levelMax do

Initialize each block on level l with a regular grid;
Compute mean color and position in each block;
for iter = 1 to maxIters do

Initialize list with all boundary blocks on level l;
while list is not empty do

pop out boundary block bli from list;
if valid connectivity(bli) then
ŝbli = argmins

bl
i

Emono(s, µ̂, ĉ)

if sbli is updated then
compute µ̂ and ĉ incrementally for the two
superpixels involved;
append neighbors of bli if they are boundary
to the list end;

end if
end if

end while
end for

end for

the next section we describe our slanted plane segmentation
algorithm, when we have access to a stereo pair.

3.1. Monocular Super-pixel Estimation

Let sp ∈ {1, · · · ,M} be the assignment of pixel p to a
superpixel, and let s = (s1, · · · , sN ) be the set of all ran-
dom variables representing the segmentation, with N the
size of the image. Following [31], we formulate the seg-
mentation problem with an objective function similar to k-
means clustering, where we want superpixels that are co-
herent in appearance but that have also regular shape. We
additionally add constraints on the size of the superpixel to
prevent tiny superpixels.

Let µi be the mean position of the i-th superpixel and
let ci be its mean color. Our Markov random field (MRF)
energy is then defined as

Emono(s,µ, c) =
∑
p

Ecol(sp, csp) + λpos
∑
p

Epos(sp, µsp)

+ λb
∑
p

∑
q∈N8

Eb(sp, sq) + Etopo(s) + Esize(s)

(1)

with c = (c1, · · · , cM ), µ = (µ1, · · · , µM ) the set of cen-
ters and mean positions for all superpixels, and N8 the 8
neighborhood of pixel p. We now define the energy terms
in more detail.



Figure 2. Coarse-to-fine boundary-level updates start at the coarse level (left) and proceeds to the finest level iteratively. The final result,
defined on the finest (pixel) level, is shown on the right.

Algorithm 2 Coarse to Fine Stereo Segmentation
1: Initialize superpixels with a regular grid;
2: Compute initial µ̂i and ĉi for each segment i;
3: Compute the θi using RANSAC;
4: for l = 1 to levelMax do
5: Initialize each block on level l with a regular grid;
6: Compute µ̂ and ĉ in each block;
7: for iter = 1 to maxIters do
8: Initialize list with all boundary blocks on level l;
9: while list is not empty do

10: pop out boundary block bli from list;
11: if valid connectivity(bli) then
12: {ŝbli , f̂bli} = argminEtotal(s, µ̂, ĉ, θ̂, ô)
13: if ŝbli is updated then
14: compute µ̂ and ĉ incrementally for the two

superpixels involved;
15: append neighbors of bli if they are bound-

ary to the list end;
16: end if
17: end if
18: end while
19: for k = 1 to numIters do
20: ô = argminoEtotal(ŝ, µ̂, ĉ, θ̂,o)

21: θ̂ = argminθi Etotal(ŝ, µ̂, ĉ,θ, ô)
22: end for
23: end for
24: end for

Shape Regularization: This term imposes that the super-
pixels should be regular in shape

Epos(sp, µsp) = ||p− µsp ||22 (2)

where µsp is the superpixel centroid.

Appearance Coherence: This term encourages color ho-
mogeneity of each superpixel:

Ecol(sp, csp) = (I(p)− csp)2 (3)

where csp is the mean color descriptor for superpixel sp.

Boundary Length: We further impose regularization by
encouraging the superpixels to have small boundary length

Eb(sp, sq) =

{
1 if sp 6= sq

0 o.w.
(4)

Topology Preservation: This term forces the superpixels
to form a connected component and penalizes∞ otherwise.

Minimum size: We force the superpixels to be at least
1/4 size of their initialization. This potential has value ∞
if this constraint is not satisfied.

3.2. Coarse-to-Fine Optimization

SLIC superpixels [1] minimize the sum of appearance
homogeneity and shape regularization using coordinate de-
scent, where the algorithm iterates between estimating the
assignments s for all pixels, and computing the mean po-
sition and color µ, c for all superpixels. Estimating µ and
c can be done in closed form, by computing the empirical
mean of the positions and colors of the pixels belonging to
each superpixel. The superpixel assignments are computed
by iterating over each pixel in a sequential fashion. The
latter process is not very efficient, as the algorithm iterates
across all pixels even though at each iteration only a sub-
set change assignment. Furthermore, the result of this al-
gorithm is not topologically correct (i.e., superpixels might
contain holes as well as discontinuities). This can be en-
forced by encoding it in terms of the boundary pixels, but
the optimization of which is very difficult to solve when
employing a k-means style optimization.

In [31], the optimization was done by maintaining a
queue, which is initialized with the pixels at the bound-
ary. The pixels in the queue are then iteratively popped
out and discarded if minimizing the energy does not change
their current assignment. If the assignment changes, the
new boundary pixels are pushed to the top of the priority
queue. As a consequence, if there is no boundary length
energy, [31] typically gets stuck and runs in vein.

In this paper, we propose both a coarse-to-fine optimiza-
tion algorithm for the pixel assignment as well as a FIFO
strategy for the priority queue. As shown in our experimen-
tal evaluation this will allow us to estimate segmentation in
a fraction of the time required by SLIC [1] or [31].
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Figure 3. Forbidden cases: Changing the middle block from blue
to red violates connectivity.

Our algorithm starts by initializing the superpixels to
a regular grid, and computing the initial estimates for the
mean position and color for each superpixel. We then it-
eratively optimize every level (from coarse to fine). This
allows us to make fast moves (at coarser levels) reaching a
much better local optimum of our objective function. Dur-
ing the computation at each level, we first initialize each
block to a regular grid and compute mean color and position
for each block. We initialize the priority list with all blocks
that form a boundary. We then take a boundary block from
the list, and check if changing the label will violate connec-
tivity (see Fig. 3). If it does not violate, we solve optimally
for the block assignment by minimizing the energy in Eq.
(1). This is done by simply trying all assignments from the
4-neighboring blocks. If the block has changed assignment,
we update the mean position and color using the incremen-
tal mean equation for the two superpixels involved (the one
that this block belonged to before, as well as the one in the
new assignment). Given the previous estimate mn−1 and a
new element an, the mean can be computed incrementally

mn = mn−1 +
an −mn−1

n

with n the size of the k-th superpixel after the update. Fi-
nally, we push the neighbors of the block if they are at the
boundary at the bottom of the priority queue (having low-
est priority). We repeat this process until the list is empty,
at which point we switch to the new level. Note that at the
finest level a block is the same as a pixel, and at coarser
level a block is a set of pixels. We summarize our algorithm
in Algo 1 and refer the reader to Fig. 2 for an illustration of
the results for each level (from coarse-to-fine).

4. Efficient Joint Segmentation and Stereo

In this section we tackle the problem of joint segmenta-
tion and stereo estimation when a stereo pair is available.

4.1. Holistic Energy

Following slanted-plane methods [31, 28, 4], we rep-
resent the disparity of a superpixel with a slanted plane
θi = (Ai, Bi, Ci) and reason about segmentation in the left
image. The disparity of a pixel belonging to the i-th super-

pixel can then be computed by

d(p, θi) = Aipx +Bipy + Ci, (5)

We further define oi,j ∈ {co, hi, lo, ro} to be a discrete
variable that reasons about the type of occlusion boundary
between adjacent superpixels i and j, with the states rep-
resenting whether the boundary is co-planar, hinge, the i-th
plane is in front, or behind. Let θ = (θ1, · · · , θM ) be the set
of plane parameters for all superpixels and let o be the set of
all occlusion variables. Additionally, let fi be an outlier flag
for the i-th pixel, and let f the set of flags for all pixels. We
define the energy of the joint segmentation and stereo esti-
mation as the sum of energies encoding the monocular en-
ergy as well as consistency with the stereo image evidence,
a prior on the complexity of the boundaries and smoothness
between slanted planes of neighboring super pixels. Thus

Etotal(s,µ, c,θ,o, f) = Emono(s,µ, c) + Estereo(s,θ,o, f)
(6)

with the energy related to stereo defined as

Estereo(s,θ,o, f) = λdisp
∑
p∈F

Edisp(sp, θsp , fp)

+ λsmo
∑

(i,j)∈Nseg

Esmo(s, θi, θj , oi,j)

+ λprior
∑

(i,j)∈Nseg

Eprior(oi,j) (7)

with Nseg the set of superpixels that form a boundary, and
F the set of pixels where SGM returns an estimate. We now
describe the stereo energy terms in more details.

Disparity Coherence: This term encodes the fact that the
disparity of the slanted plane should be consistent with the
image evidence. Towards this goal, we make use of semi-
global block matching (SGM) [15] to provide an initial es-
timate. This allow us to speed-up the slanted plane formu-
lation inference to be real time. Note that real-time imple-
mentations of SGM exist in both CPU and GPU [3, 24].
In particular, we use a truncated quadratic function which
makes the estimation of disparity plane parameters more ro-
bust to outliers.

Edisp(sp, θsp , fp) =

{
d(p, θsp)− d̂(p))2 if fp = 0

λd otherwise
(8)

with β a scalar, and d̂(p) the SGM disparity estimate.

Occams Razor: This term encodes a prior over the com-
plexity of the model, which prefers simpler explanations,
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Figure 4. BSD: In this experiment we use the position weight to be 0 for both our approach and SLIC to mimic SEEDS that does not use
regularization. Note that our approach outperforms both baselines. Speed: SEEDS( 30Hz), SLIC( 5HZ), OURS( 30HZ)
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Figure 5. BSD: Comparison to [31] as a function of the number of boundary updates.

i.e., coplanar over hinge, hinge over occlusion.

Eprior(oi,j) =


λocc if oi,j = lo ∨ oi,j = ro

λhinge if oi,j = hi

0 if oi,j = co

(9)

where λocc, λhinge are constants and λocc > λhinge > 0.

Spatial Smoothing: The smoothness term imposes the
planes of adjacent superpixels to have similar disparity in
the shared boundary if they form a hinge and all over the
superpixel if they are co-planar.

Esmo(s, θi, θj , oi,j) =


φocc(oi,j) if oi,j = occ

q(θi, θj ,Bi,j) if oi,j = hi

q(θi, θj ,Si ∪ Sj) if oi,j = co
(10)

with Bi,j the set of pixels in the boundary of the two super-
pixels, Si∪Sj the pixels in the union of the two superpixels,
and

q(θi, θj ,Ω) =
1

|Ω|
∑
p∈Ω

(d(p, θi)− d(p, θj))
2

Note that φocc(oi,j) forces the labeling of oi,j to pick the
plane in front if there is an occlusion.

4.2. Coarse-to-Fine Optimization

Similarly to the monocular case, we can optimize jointly
over segmentation and stereo variables using block coordi-
nate descent. This algorithm iterates between solving for
the plane parameters, the occlusion variables, the color and
position means as well as the assignments. Similarly to the
monocular case, we extend [31] to have a FIFO priority
queue as well as a coarse-to-fine strategy to minimize the
objective. As shown in our experimental evaluation, this re-
duces the computation time by an order of magnitude while
achieving better performance.

Let bl be the set of blocks at level l. Note that at the finer
level, the number of blocks is the number of pixels. Our
coarse to fine algorithm proceeds as follows: we first ini-
tialize the superpixels to a grid and compute the initial esti-
mates of mean color and position for each segment. We then
use RANSAC to initialize the plane parameters for each su-
perpixel. The algorithm then iterates for each level, from the
coarser to the finer. For each level, we initialize the blocks
to a regular grid, the mean positions and colors to their re-
spective empirical estimates as well as the boundary list to
contain all blocks which are in the boundary. We then fol-
low the monocular case, and re-estimate the local variables
using incremental updates whenever a boundary is changed.
When the boundary list is empty, the algorithm computes



the occlusion variables in a sequential manner. The bound-
ary variables are optimized one at a time by selecting the
label with minimum cost. The outlier flags are optimized
given the current plane parameters. The planes are then fit-
ted using least squares taking into account the non-outlier
pixels only. Our coarse-to-fine algorithm is summarized in
Algo 2. As shown in our experimental evaluation, both by
using a FIFO priority queue and a coarse to fine strategy,
our approach speeds up inference significantly over other
efficient slanted plane algorithms, e.g., [31].

5. Experiments

To evaluate our approach in the monocular setting, we
use the Berkeley Segmentation Dataset (BSD500) [19],
which provides multiple ground truth contours and segmen-
tations. All our results are evaluated on the test set which
contains 200 images. For the stereo setting, we use the
KITTI stereo dataset [11] which has 194 pairs of images
in training and 195 in test. The ground truth is semi-dense
and has been captured using a Velodyne LIDAR.

We use standard metrics to evaluate the performance for
both unsupervised segmentation and stereo. For unsuper-
vised segmentation, we use: Corrected Undersegmentation
Error (CUE), Boundary Recall (BR) and Achievable Seg-
mentation Accuracy (ASA). Let S = {s1, · · · , sm} be our
segmentation and let the ground truth be G = {g1, · · · , gn}.
We define the Corrected Under Segmentation as

CUE(S,G) =

∑
j |sj − argmaxgi∈G |sj ∩ gi||∑

i |gi|

Our second metric is the Boundary Recall defined as:

BR(S,G) =

∑
i[minj |BjS −BiG | < ε]

|BG |

where BG and BS are the set of boundary pixels from the
ground truth and the segmentation respectively. The super-
script indicates the element in the boundary set, and ε is a
constant. Finally, the achievable segmentation accuracy is
defined as:

ASA(S,G) =

∑
j maxi |sj ∩ gi|∑

i |gi|

To measure the accuracy of the stereo estimation we use
the percentage of erroneous pixels which disparity estimate
is farther than a fixed number of pixels. We do so both
in non-occlusion areas (Out-NOC) as well as in all pixels
(Out-All). We additionally report average disparity error in
non-occluded areas (Avg-Noc) and in all pixels (Avg-All).
These are the standard metrics in the KITTI dataset.

Comparison on BSD500: We first compare our method
to SLIC, SEEDS as well as the methods of [21, 10]. Fig 4
shows performance as a function of the number of super-
pixels. SEEDS is also a coarse-to-fine algorithm and thus is
a good baseline. Note that each plot corresponds to a differ-
ent metric. Our method significantly outperforms SLIC un-
der all metrics. We outperform SEEDS significantly in the
Boundary Recall metric, and perform on-par with SEEDS
for Corr. Undersegmentation Error and Achievable Seg-
mentation Accuracy, although our approach is more stable.
We show a few qualitative results in Fig. 6. One can notice
that our superpixels better snap to the image boundaries.
We also compare to [31], denoted as SPSS, in Fig. 5. The
curves show different metrics as a function of the number of
boundary updates. We can see that already in the first itera-
tion our algorithm has almost converged, and there is little
change in further iterations. SPSS ranks much lower than
our approach in the first iteration, and remains significantly
below our curve even after many iterations. This shows that
our optimization technique is able to achieve a lower en-
ergy much faster than [31], and attains a better minimum
overall. Note that our algorithm, similar to SEEDS runs at
30Hzs in this setup, while SLIC is only 5Hzs.

Comparison to the state-of-the-art on KITTI: We re-
port the test errors for our model and competing approaches
in Table 1. Our result uses 1000 superpixels and has been
run for a single iteration. Note that our reported time,
1.7 seconds per image is dominated by the computation of
SGM. However, there exists real-time GPU and CPU imple-
mentations of SGM which will make our full approach real-
time. Our approach is also agnostic to which stereo algo-
rithm takes as input, so other real time alternatives are also
possible. In that case, our joint segmentation and slanted
plane estimation will run in a fraction of [31]. Note also
that our approach is the best performing one for all All set-
tings, and on pair in the NOC settings. We also compare
our approach SLIC and SEEDS in Fig. 7. Since SLIC and
SEEDS do not tackle joint segmentation and stereo like us,
we simply ran both methods on a single (left) RGB image,
and robustly fit a slanted plane to their resulting superpixels
using RANSAC. Both methods perform significantly lower
than our approach.

Importance of the number of Superpixels: We compare
our method to the baseline [31] in Fig 8, and a function of
the number of superpixels per image. We run both meth-
ods for a single iteration. One can see that in the lower-
superpixel regime our method significantly outperforms the
baseline. The difference is smaller for larger number of su-
per pixels (1000), yet still persist.



Figure 6. BSD: Qualitative results. Left to Right: Ours, SEEDS [7], SLIC [1]. Our approach better snaps to the image boundaries.

> 2 pixels > 3 pixels > 4 pixels > 5 pixels End-Point
timeNOC All NOC All NOC All NOC All NOC All

ALTGV [16] 7.88 % 9.30 % 5.36 % 6.49 % 4.17 % 5.07 % 3.42 % 4.17 % 1.1 px 1.2 px 20s
iSGM [13] 7.94 % 10.00 % 5.11 % 7.15 % 3.84 % 5.82 % 3.13 % 5.02 % 1.2 px 2.1 px 8s
ATGV [22] 7.08 % 9.05 % 5.02 % 6.88 % 3.99 % 5.76 % 3.33 % 5.01 % 1.0 px 1.6 px 360s
wSGM [23] 7.27 % 8.72 % 4.97 % 6.18 % 3.88 % 4.89 % 3.25 % 4.11 % 1.3 px 1.6 px 6s
PCBP [28] 6.08 % 7.62 % 4.04 % 5.37 % 3.14 % 4.29 % 2.64 % 3.64 % 0.9 px 1.1 px 300s

StereoSLIC [30] 5.76 % 7.20 % 3.92 % 5.11 % 3.04 % 4.04 % 2.49 % 3.33 % 0.9 px 1.0 px 2.3s
PCBP-SS [28] 5.19 % 6.75 % 3.40 % 4.72 % 2.62 % 3.75 % 2.18 % 3.15 % 0.8 px 1.0 px 300s

SPS-St [31] 4.98 % 6.28 % 3.39 % 4.41 % 2.72 % 3.52 % 2.33 % 3.00 % 0.9 px 1.0 px 2s
Ours 5.06 % 5.09 % 3.41 % 4.09 % 2.72 % 3.26 % 2.32 % 2.79 % 0.9 px 1.0 px 1.7s

Table 1. KITTI Stereo: Comparison with the state-of-the-art on the test set of KITTI. We report test errors for our model with 1000
superpixels run for a single iteration. Note that our time is totally dominated by the computation of SGM. We achieve the best result for all
All settings, that is, when taking all pixels including the occluding ones into account.
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Figure 7. KITTI stereo results: Comparison to using SLIC and SEEDS to do segmentation follow by fitting a slanted plane via RANSAC.
Results are reported for varying number of super pixels.
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Figure 8. Performance as a function of number of superpixels on KITTI: comparison with [31] after running both algorithms for 1
iteration.

Importance of different features: We evaluate the effect
of different features in the model. As shown in Fig. 9, a
steady improvement in error exist every time a feature is
added, and the best result is achieved when using all poten-
tials. This justifies all the potentials used in our model.

Energy Optimization: As shown in Fig. 10, our coarse-
to-fine approach converges very fast, as the updates are not
local. faster than pixel level approach.
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Figure 9. KITTI: Importance of the features: Evaluating the effect of different features on our results. All plots are for 400 superpixels.
Different curves represent different combinations of the energy terms. We denote, C: color, R: Position (Shape Regularization), D:
Disparity, S: Smoothing, P: Prior, and B: Boundary Length. Note that CRD and CRDS overlap in almost all plots.
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Figure 10. Energy decrease as a function of outer loop iterations and number of boundary updates in both BSD and KITTI.

Figure 11. KITTI: Our results on the KITTI dataset. Top row shows the image, second row the super pixels, third row the disparity
estimates while the errors are displayed in the last row.

Qualitative Results: Qualitative results are shown in
Fig. 11. Our approach estimates correct disparity even for
difficult cases with shadows and uniform intensity.

6. Conclusion
In this paper, we tackled the problem of unsupervised

segmentation with superpixels with the emphasis on speed
and accuracy. We build on the work of [31], and pro-
pose an efficient coarse to fine optimization technique

that is able to converge to a better minimum of the la-
beling energy in a single iteration. This makes our ap-
proach significantly faster. We outperform past work
on the BSD dataset, and achieve the lowest NOC er-
ror for stereo estimation on the popular KITTI bench-
mark.
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