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Abstract

In traditional query languages, formulating queries requires an exact knowledge of
the schema. In particular, the user should explicitly take into account the possibil-
ity of incomplete information. Oblivious querying is an alternative approach that
alleviates the need for an exact knowledge of the schema. Specifically, oblivious
querying was devised for handling the following cases. First, when data have an
irregular structure (e.g., data collected from heterogeneous sources). Second, when
the schema of the data is complicated or is frequently changed. Third, when there
is no schema or the schema is unknown.

Our approach to oblivious querying of semistructured data is twofold and is
based on the paradigm of flexible queries and the paradigm of maximal answers.
The paradigm of flexible queries facilitates, in a novel way, easy and concise query-
ing that is independent of any particular representation of the relationships among
entities. Two different semantics, flexible and semifierible, that admit different levels
of flexibility are introduced and investigated. The complexity of evaluating queries
under the two semantics is analyzed. Query evaluation is polynomial in the size of
the query, the database and the result in the following two cases. First, a semiflexi-
ble DAG query and a tree database. Second, a flexible tree query and an arbitrary
database.

Query containment and equivalence are also investigated, as a first step towards
developing optimization techniques. For both the semiflexible and flexible semantics,
query containment and equivalence can be tested in polynomial time.

Under the semiflexible and flexible semantics, two databases could be equivalent
even when they are not isomorphic. Database equivalence is formally defined and
characterized. Moreover, the complexity of deciding equivalences among databases
is analyzed. The implications of database equivalence on query evaluation are ex-
plained. In particular, transforming a database graph into an equivalent tree is
investigated for both the semiflexible and the flexible semantics. Transforming a

database to an equivalent tree is important for representing the data as an XML



document with no references. Tree transformable databases are characterized and a
transformation algorithm is provided.

The second paradigm, in our approach, is of queries with maximal answers. This
paradigm is based on the notion of answers that are partial bindings of query vari-
ables to database objects. It facilitates a formulation of queries that is independent
of whether the data is incomplete or not. The answer to a query consists of maxi-
mal rather than complete matchings, i.e., some query variables may be assigned null
values. Answers that can be extended, by mapping more variables, are discarded
since they are not maximal. In the relational model, a similar effect is achieved by
computing the full disjunction (rather than the natural join or equijoin) of the given
relations. For two semantics that allow maximal answers, the OR-semantics and the
weak semantics, it is shown that query evaluation has a polynomial-time complexity
in the size of the query, the database and the result.

This work shows how to combine the two paradigms and their proposed seman-
tics. For combined semantics, query evaluation is polynomial in the size of the query,
the database and the result in the following two cases. First, a tree query under the
combination of the semiflexible semantics with either the weak or the OR-semantics.
Secondly, a query and a database that are arbitrary graphs, under the combination
of the flexible semantics with either the weak or the OR-semantics.

In the last part of the work, it is shown that the evaluation of full disjunctions
is reducible to query evaluation under the weak semantics and hence can be done
in polynomial time in the size of the input and the output. Complexity results are
also given for the problem of evaluating a projection of the full disjunction. In the
special case of y-acyclic relation schemes, the projection problem has a polynomial-
time algorithm in the size of the input and the output. In the general case, such an
algorithm does not exist, assuming that P # NP. Finally, it is shown how to use
full disjunction for transforming a semistructured database into a universal relation.
This transformation admits querying a single relation with a known schema as an

alternative to querying a graph whose schema may be unknown.

ii



Contents

Acknowledgement
1 Introduction

2 The Data Model
2.1 Databases . . . . . . . L . e e e e e e
2.2 Queries . ... L e e e

3 Flexible and Semiflexible Queries
3.1 Flexible and Semiflexible Matchings . . . ... ... .. ... ....
3.1.1 Examples . . . .. ... e
3.1.2 More on Semiflexible Matchings . . . ... ..........
3.2 Query Evaluation in Semiflexible Semantics . . . . . ... ... ...
3.2.1 Path Queries . ... ... ... .. ... ... ...
3.2.2 Tree and DAG Queries over a Tree Database ... ... ...
3.2.3 Cyclic Databases and Cyclic Queries . . . . . ... ... ...
3.3 Evaluating Flexible Queries . . . . . . .. ... ... ... ......
3.4 Query Containment and Query Equivalence . . . . . ... ... ...
3.5 Database Equivalence . .. ... ... .. ... ... ...
3.5.1 Removing Redundancies . . . . . . ... ... ... ......
3.5.2 Transforming a Database to an Equivalent Tree . . . . . . . .

3.6 Summary of Contributions . . . . . . . ... .. ...,

4 Queries with Maximal Answers

10
10
11

14
15
18
20
30
31
34
59
60
63
66
70
72
84

86



4.1 Query Semantics . . . . . . ... L e 86

4.1.1 Partial Matchings . . .. ... ... ... ... ... .. 86
4.1.2 Subsumption and Maximal Matchings . . . . ... ... ... 89

4.2 Computing Maximal Matchings . . . . . . ... ... ... ...... 91
4.2.1 The Product Graph . . . ... .. ... ... ......... 91
4.2.2 Computing Maximal OR-Matchings . . .. ... ... .... 93
4.2.3 Computing Maximal Weak Matchings . . . ... ... .... 100

4.3 Summary of Contributions . . . . . . . ... ... L0000 L. 101
5 Combining Flexibility with Maximal Answers 102
5.1 Queries under the Combined Semantics . . . ... ... ... .. .. 102
5.1.1 Combined Semantics . . . . . . .. ... ... L. 102
5.1.2 Examples . . . . .. ..o 105

5.2 Computing Maximal Matchings . . . . . . ... ... ... .. .... 107
5.2.1 Computing Semiflexible-OR-Matchings . . . . ... ... ... 107

5.2.2 Computing Flexible-Or Matchings and Flexible-Weak Match-

INgS . . o e 118

5.3 Summary of Contributions . . . . . . . ... .. ... ... 120

6 Full Disjunctions 121
6.1 Motivation . .. ... ... 122
6.2 Preliminaries . . . . . . . . . .. Lo e e 124
6.3 Transforming Semistructured Data to Relational . . . . ... .. .. 125
6.4 Computing Full Disjunctions . . . . . ... .. ... ... ...... 127
6.5 Projections and Restrictions of Full Disjunctions . . . . . ... ... 131
6.6 Generalizing Full Disjunctions . . . . . .. ... ... ... ...... 133
6.7 Summary of Contributions. . . . . . . ... .. ... 134

7 Conclusion 136
Bibliography 138

ii



Chapter 1

Introduction

Querying Semistructured Data and XML

Semistructured data occur in situation where information has an irregular structure
and is incomplete. Consequently, the semistructured data model is aimed at repre-
senting data that do not conform to a strict schema. The lack of a schema may be
the result of frequent changes in the structure of the data. It can also be typical
of an environment where many different users contribute data to the database, in a
variety of forms. The World-Wide Web is such an environment [1, 2, 13].

The semistructured data model is formally described in Chapter 2. In the
semistructured data model, databases are rooted labeled directed graphs. Nodes
in the graph represent objects. Relationships between pairs of objects are repre-
sented by labeled edges. Values are attached to atomic nodes, i.e., nodes that have
no outgoing edge. In many cases, the data is self describing. That is, there is no
schema that explicitly defines the structure of the data. Instead, the structure of
the data is implicitly described by the graph.

Recently, the eXtensible Markup Language (XML) [64] has become a popular
notation for semistructured data. Essentially, XML has been developed for data
exchange between applications. In data exchange, the sender and receiver do not
necessarily use the same schema, to represent data. Hence, XML documents do not
have to conform to a schema. Moreover, schemas for XML (either DTD or XML
Schema [63]) do not rigorously define the structure of conforming documents. Thus,

in many cases, even XML data that conform to a schema are incomplete or do not
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comply with a strict pattern.

Traditional query languages and traditional querying methods are not well suited
for semistructured data or XML. For one, the semistructured data model is based
on a labeled directed graph. More importantly, traditional query languages are not
adapted to data having no schema at all, nor to data whose schema may change
considerably over time or from one data instance to another. An additional consid-
eration is the size of the schema, which could be quite large compared to the size of
schemas for structured data.

When the schema is large and complicated, querying the data could be rather
difficult. An initial phase of querying the schema might be needed before the query
can be formulated. Even with this additional step, the query could be quite large
and hard to phrase, due to the need to cover many structurally similar, but not
structurally identical data instances. Furthermore, an increase in the size of the
query may cause an increase of the time complexity.

The size of the schema is not the only source of difficulties. A case in point is
an XML repository of documents with DTDs designed for machine interchange (as
well as DTDs that were actually generated by machines). In the eyes of a layperson,
such DTDs might not be easy to grasp, regardless of the size.

Traditional query languages are based on the concept of rigid matchings. In
a rigid matching there should be a perfect match between the conditions specified
in the query and the data. Rigid matchings are very sensitive to variations in the
schema and to incompleteness of the data. A query that is posed having a specific
schema in mind, is likely to yield only some of the answers or no answer at all, even
when only minor changes occur in the structure of the data while the data itself
does not change at all.

In recent years, a considerable amount of work has been done on querying
semistructured data, in general, and XML data, in particular. Many query lan-
guages for semistructured data [4, 7, 8, 15, 46, 50] and for XML [2, 9, 17, 22, 30] have
been proposed. In order to deal with the special characteristics of semistructured
data, some of these languages use regular expressions. Issues related to the evalua-

tion and optimization of query languages with regular expressions are discussed in
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[6, 51]. Additional work has been done on constraining semistructured data [14, 16],
describing the structure of the data for query formulation and optimization [36], and
extracting information on changes in the data [18].

The query languages cited above are based on rigid matchings, and some of these
languages use regular expressions to express possible variations in the structure of
the data. But the approach of relying on regular expressions is problematic in at
least two aspects. First, the ounce of responsibility is on the user, who should
phrase the regular expressions in a way that will cover the possible variations in
the structure of the data and yet will not cover too much. Secondly, the tasks of
query evaluation and optimization become more complex in the presence of regular
expressions.

An alternative approach is that of extracting the ontology from the schemas (e.g.,
DTDs). The ontology consists of the list of names given to the elements and to the
attributes of the schemas, and is much easier to comprehend than the full structural
details of the schemas. In many cases, queries can be phrased simply and succinctly

using just the ontology.

Semiflexible and Flexible Queries

In Chapter 3, we present two semantics that are suitable for ontology-based querying
of semistructured data. Similarly to existing query languages, our queries are also
represented as rooted labeled directed graphs. Thus, preserving the similarity be-
tween queries and databases. However, instead of a semantics that is based on rigid
matchings, we introduce two new semantics that are based on semiflexible matchings
and flexible matchings. We believe that these semantics capture the intended mean-
ing of many common queries. A user only needs to be familiar with the ontology
of the database in order to phrase a query, and hence query formulation is more
intuitive and simpler compared to query languages that use regular expressions.

In a rigid-matching semantics, the implicit relationships between objects are ex-

pressed by labeled edges. More complicated relationships have to be constructed
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explicitly by formulating queries in terms of labeled directed graphs. The semiflexi-
ble semantics, in comparison, also uses labeled directed graphs to describe relation-
ships between objects, but it assumes that database objects are implicitly related if
they are connected by a directed path (and not just by an edge). Thus, a path =
of the query can match a path ¢ of the database if ¢ includes all the labels of T;
however, the inclusion need not be contiguous or in the same order as in w. The
flexible semantics further extends this idea by applying transitivity to the implicit
relationships that hold under the semiflexible semantics.

In Chapter 3, we investigate query evaluation under the semiflexible and the
flexible semantics. Other topics that are included in this chapter are the follow-
ings. First, we characterize query equivalence and query containment. Secondly, a
novel concept of database equivalence is presented. We provide a characterization of
equivalent databases, for both the semiflexible and the flexible semantics. Thirdly,
it is shown that some databases could be transformed into equivalent trees. We
characterize these databases and provide an algorithm that performs the transfor-
mation. The work that is presented in Chapter 3 has been published in [43]. A
query language that can query simultaneously relations and XML documents and

uses the flexible semantics has been presented in [23].

Queries with Maximal Answers

Queries under the rigid, the semiflexible and the flexible semantics contain variables
and constraints on these variables. An answer to a query is a binding of all the
query variables to database objects, according to the query constraints. However,
when querying incomplete data, the binding of query variables should be relaxed
to allow partial answers, i.e., answers in which some of the variables do not have a
binding to a database object. Otherwise, the user might receive only some of the
answers that she expected. Alternatively, the user should know where data might
be incomplete and formulate the query accordingly. However, when the structure of
the data is unknown or when the schema is complicated, it is practically impossible

to know where data might be incomplete.
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An important issue in queries with partial answers is subsumptions among an-
swers. An answer is subsumed by another answer if the subsuming answer has all the
bindings of the subsumed answer plus some additional bindings. There is no need to
keep subsumed answers in the result. For example, if the tuple (a, b, c¢) is an answer,
then there is no need to include also the tuple (a,b, L) as an answer. If subsumption
is not handled judiciously during query evaluation, then it could add an exponential
factor to the size of the query result without adding new information. Thus, queries
should return only mazimal answers, i.e., answers that are not subsumed by any
other answer.

Several semantics for queries with maximal answers over semistructured data
were proposed in [41, 42]. The semantics differ in their degree of incompleteness.
Query formulation remains the same under all these semantics, but the user can
choose the degree of incompleteness that suits her best.

A significant issue is the complexity of evaluating queries with incomplete an-
swers. Traditionally, complexity of query evaluation is measured in terms of either
data complexity or query complexity [61]. But neither one can capture the differ-
ences in time complexity between evaluation of queries under complete semantics
versus the incomplete semantics of [41, 42]. For all these semantics, data complexity
is polynomial and query complexity is exponential.

The move from the traditional complete semantics to an incomplete semantics
could potentially have two opposing effects. On one hand there are more answers,
but on the other hand finding some answer could be easier, since it is not necessary
to satisfy all the conditions of the query.

A more suitable measure of complexity is input-output complexity, in which the
time to evaluate a query is measured as a function of the size of the input (i.e., both
the query and the database) and the output. Yannakakis [65] used this complexity
measure to show that there is a polynomial-time algorithm for evaluating the natural
join of n relations if the relation schemes are a-acyclic. In the general case, deciding
non-emptiness of the natural join of n relations is NP-complete [49].

Two of the semantics, namely, the OR-semantics and the weak semantics that

were presented in [41, 42] are investigated in our work. In [41, 42], it was shown
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that for both the OR-semantics and the weak semantics, tree as well as DAG queries
(without selections and projections) can be evaluated in polynomial time in the size
of the input and output. In Chapter 4, we extend this result to queries that may

have cycles. The work that is presented in Chapter 4 has been published in [44].

Combining the Paradigms of Flexible Queries with the

Paradigm of Maximal Answers

Thus far, we discussed two paradigms. The paradigm of flexible queries and the
paradigm of maximal answers. The first paradigm has been developed for managing
data that has an irregular structure or an unknown schema. The second paradigm
handles incomplete information. As mentioned previously, semistructured data oc-
cur in situation where information has an irregular structure and is incomplete.
Hence, when querying semistructured data, the two paradigms should be combined.

In Chapter 5, four new semantics are presented. Each new semantics is a com-
bination of a semantics of the flexible-queries paradigm (i.e., the semiflexible and
the flexible semantics) with a semantics of the maximal-answers paradigm (i.e., the
weak and the OR-semantics). The new semantics facilitate the querying of data that
is both irregular and incomplete. Query evaluation is investigated under the new

semantics.

Full Disjunctions

Incomplete information may also occur in relational data. Usually, relational query
language return complete answers, that is, answers that provide bindings to all
the variables of the query. If the database has incomplete information, the user
has to formulate the query differently, e.g., by using outerjoins or conditions that
check whether some attributes are null. The need to be aware of the possibility
of incomplete information is further complicated by the fact that the semantics of
outerjoins is problematic, since outerjoins are not associative.

Galiando-Legaria [34] proposed full disjunctions, which are commutative and
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associative, as an alternative to outerjoins. Essentially, the full disjunction of a set
of relations is obtained by taking all joins of any subset of relations, excluding joins
that involve a Cartesian product, and removing subsumed tuples. Rajaraman and
Ullman [55] showed that the full disjunction of n relations can be computed by a
sequence of natural outerjoins if and only if the relation schemes form a connected
and ~y-acyclic hypergraph. Rajaraman and Ullman also enunciated full disjunctions
as a mechanism for integrating information from the Web, since the user cannot
have any a priori knowledge of where information might be incomplete.

The size of a full disjunction could be large and sometimes even exponential in
the size of the input. Thus, it is important that the computation of full disjunctions
will be performed in polynomial time, under input-output complexity. For relations
with relation schemas that form a connected and y-acyclic hypergraph, a polynomial-
time algorithm, under input-output complexity, has been proposed by Rajaraman
and Ullman [55]. For the general case, it has been unknown whether a polynomial-
time algorithm exists.

In Chapter 6, we show that computing full disjunctions is reducible to evaluating
queries under the weak semantics. Thus, it follows that full disjunctions can always
be computed in polynomial time in the size of the input and the output. We also
give complexity results for two related problems. One is evaluation of a projection
of the full disjunction. The other is evaluation of all tuples of the full disjunction
that are not null on a given set of attributes.

We also propose a novel way, for oblivious querying of semistructured data,
that is based on full disjunctions. This querying method can be applied to tree
databases that do not have repeated labels in their paths. In this querying method,
the semistructured database is transformed into a universal relation. Consequently,
the user can query a relation with a known schema, instead of querying the semistruc-
tured data. A similar approach has been used in [24, 25] for queries that are just
selection and projection over XML. Our approach is different from the approach
of [24, 25] in the following aspect. It finds connections between objects based on
paths from the root to the leaves of the database, as opposed to paths from the root

to specific objects.
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When integrating information, full disjunctions are rather limited, since they
are based solely on equalities among attributes, as in natural joins and equijoins. In
many cases, there is a need to integrate information based on conditions that are
more general than merely equalities among attributes. We show how our approach
leads to a method of integrating information by means of general types of conditions
and not just equality conditions. The work that is presented in Chapter 6 has been

published in [44].

Related Work

A somewhat similar approach to ours is the approach of searching in XML docu-
ments. Information retrieval deals with the problem of searching for relevant doc-
uments in a repository of documents. When searching in XML repositories it is
frequently not enough to find relevant documents, since documents are large and
may contain a massive amount of data. The user should receive the most relevant
fragments of documents rather then whole documents. This problem has been the
focus of several papers. These papers made an attempt to combine the paradigm
of querying with the paradigm of searching [21, 26, 38]. However, in a search, the
result does not always include all the answers to the query. In addition, the result
of a search may include items that are not an answer to the query. Thus, searching
is different from querying.

A lot of research has been done, over the years, on querying incomplete data.
The main issues that were considered are representation of missing information
and query evaluation. In logical databases, one could use either a proof-theoretic
approach [56] or a model-theoretic approach [62]. If there is some partial knowledge
about the missing information, then it could be represented in the form of conditions
that restrict the possible values of unknown data items [40]. The complexity of query
evaluation in these approaches is investigated in [3, 40, 62].

The outerjoin [20, 29, 45] was introduced in order to preserve tuples that are lost
during an ordinary join. Since outerjoins are not associative, it is rather difficult

to formulate queries that use them. Moreover, the lack of associativity restricts the
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ability to optimize queries with outerjoins. Efficient evaluation methods for outerjoin
queries is the focus of several papers [12, 19, 33, 57].

Full disjunctions were proposed by Galiando-Legaria [34] as an alternative to
outerjoins, since full disjunctions are commutative and associative. Full disjunctions
bear some similarity to the weak instances that were investigated extensively in the
framework of the universal-relation model [37, 39, 58, 59]. In both approaches,
all the tuples of the base relations are preserved. In full disjunctions, tuples are
joined together whenever possible. The joins should be connected in order to avoid
combinations of tuples that are evidently not related. In weak instances, tuples
are joined together as implied by the dependencies and queries can be evaluated by
taking the union of all lossless joins [58, 59].

Different notions of acyclicity for hypergraphs were investigated in [31], including
a-acyclicity and y-acyclicity. Properties of acyclic database schemes were investi-
gated in [11]. (Note that a set of relation schemes can be represented as a hypergraph
by viewing the attributes as nodes and viewing each relation scheme as a hyperedge.)
Acyclicity leads to another form of query evaluation over universal relations [32].

Rajaraman and Ullman [55] enunciated the importance of full disjunctions in the
context of integrating information from the Web. They showed how full disjunction
could be used to find maximal join-consistent connections in trees of the OEM model
of [53, 54]. Their main result is that a full disjunction can be evaluated by a natural
outerjoin sequence if and only if the relation schemes are connected and ~y-acyclic.
Their algorithm was implemented in the Information Manifold System [47, 48] that

integrates information from the Web.



Chapter 2

The Data Model

In this chapter, we present the data model and the query formulation of our work.

2.1 Databases

The data model that we use in this work is the semistructured data model, which is
based on the Object Exchange Model (OEM) of [53]. The data are represented by
rooted labeled directed graphs. Each node represents an object and has an identifier
(0id). Values are attached to atomic nodes (i.e., nodes without outgoing edges). For
simplicity, we assume that all atomic nodes are of type PCDATA (i.e., string). Nodes
with outgoing edges represent compler objects. A database has a root and every

node in the database is reachable from the root.

Definition 2.1 (Database) Let £ be a set of labels. A database D over L is a
4-tuple D = (O, Ep,rp,a) that satisfies the following conditions. The set O is a
finite set of objects. The set Ep is a finite set of 3-tuples (s,t,l), called labeled
edges. In an edge, s and t are objects of O, called the source and target of the edge,
respectively; and l is an element of L, called the label on the edge. The object rp is
the root, and every object of O is reachable from the root via a directed path in D.
Finally, o is a function that maps each atomic node to a value. The set of labels L

on the edges of Ep is called the ontology of D.

Example 2.2 Figure 2.1 shows a movie database. Nodes are depicted as circles

and the oid of each node appears inside the circle. The values that are attached to

10
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Movie Database

Movi Actor
ie
13
Nam
Title
ear
Kyle
Star 1977
Name wars MacL achlan
b 4

Mark Harrison Director| Natalie @ .
Hamill Ford + Portman Magnolia

4
Name

George
Lucas

Figure 2.1: A movie database with information on movies, T.V. Series, actors and
directors.

atomic nodes are shown below those nodes, in boldface. Labels appear next to the

edges. The ontology of the movie database is the set: {Movie, T.V. Series, Actor,

Director, Name, Title, Year}.

2.2 Queries

Like databases, queries are also represented as labeled directed graphs and are similar
to the queries defined in [41]. Nodes of queries represent variables rather than

objects, and no value is associated with any node.

Definition 2.3 (Query) A query is 3-tuple Q = (V, Eqg,rq), where V is a finite

set of variables, Eq is a set of labeled edges and rq is the root of the query.

Queries are posed to databases. The result of posing a query to a database
consists of assignments of database objects to query variables. Queries impose con-
straints according to their semantics. Thus, a query result comprises of assignments

that satisfy the imposed constraints.
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Actor ovie
Movi

Name

©

Year itle

(a) Query 1 (b) Query 2 (c¢) Query 3

Figure 2.2: Three different queries for finding, in the movie database, pairs of an
actor and a movie, such that the actor acted in the movie. For actors, the queries
return their names. For movies, the queries return the title and the year of produc
tion.

Definition 2.4 (Matching) Suppose that Q = (V,Eq,rq) is a query and D =
(O,Ep,rp,a) is a database. A satisfying assignment (or ¢ matching) of Q with
respect to (w.r.t.) D is a mapping u: V — O that satisfies the constraints imposed

by Q.

In the following chapters, we will presents several types of query semantics. In
each semantics, queries impose different constraints. Now, we introduce two types
of constraints for a query @. In the next two definitions, D denotes a database and

i denotes an assignment of QQ w.r.t. D.

Definition 2.5 (Root Constraint) A root constraint (rc) is satisfied by match-
ings that map the root of Q) to the root of D.

Definition 2.6 (Edge Constraint) An edge constraint (ec) is written as ulv,
where ulv is an edge of Q. The ec ulv is satisfied by the mapping u if D has
an edge labeled with | from u(u) to u(v).

The usual semantics of queries is defined in terms of rigid matchings. In a rigid
matching, two query variables that are connected by an edge with a label [ are

mapped to database objects that are also connected by an edge with the label .
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Query | The root (r) | Movie (z) | Title (y) Year (2) Actor (u) | Name (v)

Query 1 | 1 11 Star Wars (23) | 1977 (24) | 21 Mark Hamill (30)
1 11 Star Wars (23) | 1977 (24) | 21 Harrison Ford (31)

Query 2 | 1 29 Dune (35) 1984 (36) | 14 Kyle MackLachlan

Table 2.1: The rigid matchings of Query 1 and Query 2 (Figure 2.2) w.r.t. the
movie database of Figure 2.1. For Query 3, there are no rigid matchings w.r.t. the
movie database. The columns of the table are the query variables and the rows
are matchings. Under each column there are the oid’s that are assigned to the
variable that the column represents. For atomic objects, their values are presented,
in addition to the oid.

Definition 2.7 (Rigid Matching) Consider a query Q and a database D. A rigid
matching of Q w.r.t. D is an assignment that satisfies the rc and all the ec’s of Q.
The set of all rigid matchings of Q@ w.r.t. D is denoted as M, (Q, D).

Note that if p is a rigid matching of a query @ w.r.t. a database D, then there is
a subgraph G of D such that the nodes of G are the objects assigned by u to the

variables of () and G is isomorphic to .

Example 2.8 In Figure 2.2, three different queries are depicted. All the tree queries
aimed at finding pairs of an actor and a movie such that the actor acted in the movie.
For actors, the queries return their names. For movies, the queries return the title
and the year of production. Without any knowledge about the structure of the
database, it is impossible to tell whether among the three queries there is one that
returns all the required actor-movie pairs. It is also impossible to say if one of these
queries is better than the others, i.e., finds more actor-movie pairs than the other
two queries. Table 2.1 presents the matchings that are produced when the queries
of Figure 2.2 are posed to the movie database. Note that none of the queries return

all the required pairs.



Chapter 3

Flexible and Semiflexible

Queries

In this chapter, we present two new query semantics. The new semantics facilitate
querying of databases where the hierarchy between objects is unknown or irregular.
The outline of this chapter is as follows. Section 3.1 defines the flexible and the
semiflexible semantics. Section 3.2 provides complexity results for query evaluation
under the semiflexible semantics. Section 3.3 gives complexity results for query
evaluation under the flexible semantics. The running times of query-evaluation
algorithms are cast as functions of the combined size of the query, the database and
the result. This approach of analyzing the complexity w.r.t. the size of the query, the
database and the result (rather than the more common data complexity) can discern
between cases that are computationally hard, even when the result is small, and cases
where the running time is governed merely by the size of the result. Section 3.4 gives
characterizations and complexity results for containment and equivalence of queries.
Under the semiflexible and flexible semantics, two databases could be equivalent
(even in nontrivial cases) in the sense that they give the same result for all queries.
Section 3.5 characterizes equivalence of two databases. It also characterizes when a
given database is equivalent to a tree and gives an algorithm for transforming the
database to a tree. This result is important in the context of query evaluation, since
queries over tree databases can be evaluated more efficiently, as shown in Section 3.2.

Finally, in Section 3.6, we summarize the contributions of this chapter.

14
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3.1 Flexible and Semiflexible Matchings

Before we define the new semantics, we need to introduce two new types of con-

straints. In the next two definitions, let () be a query and D be a database.

Definition 3.1 (Weak Edge Constraint) A weak edge constraint (wec) is writ-
ten as lv, where variable v of QQ has an incoming edge labeled with . The wec lv is

satisfied by a mapping p if p(v) has an incoming edge labeled with 1.

Definition 3.2 (Quasi Edge Constraint) A quasi edge constraint (gec) is writ-
ten as ulv, where u and v are variables of Q@ and [ is the label of an edge from wu to
v. The gec ulv is satisfied by a mapping p if D either has a path from p(u) to p(v)

or vice-versa.

Other types of constraints also include filtering constraints which are essentially
selections. Considering filtering constraints is beyond the scope of this work. Some
of the techniques developed in [41] could be used to extend our results also to queries
with filtering constraints.

We introduce some notations. An edge from node u to node v that is labeled
with [ is denoted as ulv. A path from node u to node v that ends with a label [
is denoted as uxlv. This notation is generalized in the natural way. For example,
ulvkkw denotes a path that starts at u, continues to v through an edge labeled with
[, and then continues to w through a path that ends with the label k.

Next, we introduce two new notions of matchings. The assignment y is a semi-

flexible matching if it satisfies the rc of @ as well as the following two conditions.

1. For each finite path vglivilovs - - - l,v, of @, where vy is the root, the images
u(v;) (0 <1i < n) lie on some path ¢ of D, such that for all 7 (1 <7 < n), the
edge of ¢ that enters u(v;) is labeled with /;. Note that u(vg) is the root of D
and, hence, is the first node on ¢, but the rest of the u(v;) are not necessarily
arranged on ¢ in the order p(v1),...,u(v,). Moreover, other nodes could be

on ¢ between the p(v;).

2. For every strongly connected component C in @), the image of C is a strongly

connected component in D.
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A strongly connected component in a graph is a set of nodes, such that between
every two nodes there is a path in both directions. The preservation of the strongly
connected components is needed in order to deal with paths that have cycles.

Condition 1 above can be defined equivalently as follows.

Definition 3.3 (SF-Condition) A path volivilovs - - - lyv, of Q satisfies the SF-
Condition w.r.t. p if there is a permutation o of 0,...,n, such that (0) =0 and D
has a path of the following form:

N(UG(O))*la(l)M(Ua(l))*lU(Q),u(va(Q)) T *la(n),u(va(n))'
Now we can give an equivalent definition of a semiflexible matching.

Definition 3.4 (Semiflexible Matching) An assignment p of a query Q w.r.t. a

database D is a semiflexible matching if the next three conditions hold.
1. The assignment u satisfies the rc of Q.

2. Fvery finite path volivilovs ---l,v, of Q, where vy is the root, satisfies the

SF-Condition w.r.t. p.

3. For every set C = {v;,,...,v;, }, if C is a strongly connected component in Q,

then the set {p(vi,),--.,p(vi,, )} is a strongly connected component in D.
We denote the set of all semiflexible matchings of Q w.r.t. D as My (Q, D).

The second new notion of matchings that we introduce in this chapter is the

notion of flexible matching that is defined next.

Definition 3.5 (Flexible Matching) A flexible matching of a query Q w.r.t. a

database D is an assignment p for which the following three conditions hold.
1. The rc is satisfied by p.
2. All the wec’s of Q are satisfied by p.
3. All the qec’s of Q are satisfied by p.

We denote the set of all flexible matchings of Q w.r.t. D as M(Q, D).
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Intuitively, in both the semiflexible and flexible semantics, we assume that nodes
of D that are connected by a path are semantically related. The difference is that in
the flexible semantics, we also assume that this relationship is transitive. This dif-
ference entails another important difference between the semiflexible and the flexible
semantics. In the flexible semantics, cycles in the query are not necessarily mapped
to cycles in the database. Semiflexible matchings, however, require strongly con-
nected components in the query to be mapped to strongly connected components in

the database.

Proposition 3.6 (Increasing Flexibility) Given a database D and a query Q,
the following holds: M,(Q, D) C M (Q,D) C Ms(Q, D).

Proof. Let p be a rigid matching of @@ w.r.t. D. It is easy to see that y is also a
semiflexible matching of @ w.r.t D. First, u satisfies the rc of (). Second, consider
a finite path ¢ in @ that starts at the root. By taking the identity permutation, it

is easy to see that ¢ satisfies the SF-Condition w.r.t. u because y satisfies all the

ec’s of ). Third, if C = {v;,,...,v;,, } is a strongly connected component in @, then
{p(vi,),---,p(vi, )} is a strongly connected component in D, because p satisfies all
the ec’s of Q.

Let 4 be a semiflexible matching of Q w.r.t. D. We show that p is also a flexible
matching of @ w.r.t. D. First, u satisfies the rc of Q). Secondly, we show that u
satisfies all the wec’s in (). Given a wec [v, since v is reachable from the root of
Q, there is a path vgliv1,---l,v, in @ such that vy is the root of Q, I, is [ and v,
is v. This path satisfies the SF-Condition w.r.t. u. Thus, there is a permutation o
such that D contains the path (v, (0))*lo(1)(Vo(1))*lo@2) (Vo(2))  * * *¥lo(n) 1(Vo(n))-
In this path, l(;u(ve(:)), where 1 <4 < n and o(i) = n, shows that u satisfies the
wec [v.

Thirdly, we show that u satisfies all the gec’s in ). Given a gec ulv in @, since
u is reachable from the root of (), there is a path vglivy, - l,—1Vn—1l,v, in @ such
that vy is the root of ), v,_1 is u, I, is | and v, is v. This path satisfies the SF-
Condition, so there is a path in D that contains both u(v) and p(u). Thus, either

there is a path in D from p(v) to p(u) or vice-versa. O
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Movie Database

Movie Database Movie Database

Actor Acto/ \Actor
Movie M ov&4 Movie

&

(a) Query 1 (b) Query 2 (c) Query 3

Figure 3.1: Three queries over the movie database.

Some languages for semistructured data use regular expressions as a tool for
formulating queries when the structure is not completely known to the user. In
principle, the expressive power of regular expressions subsumes the semiflexible and
flexible semantics. However, in addition to regular expressions, one may also need
unions and joins in order to fully express these semantics. In any case, the semiflexi-
ble and flexible semantics facilitate a much more succinct and easier style of writing
queries. Moreover, we will show that evaluation and optimization of semiflexible and
flexible queries are easier than evaluation and optimization of queries with regular

expressions.

3.1.1 Examples

A movie database that holds information on movies, T.V. series, actors and directors
is depicted in Figure 2.1. Suppose that Alice wants to query the data. She is
familiar with the ontology of the database, but does not know how the information

is organized. We examine a few cases.

Example 3.7 Alice tries to look in the database for information on movies. She
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Matchings | 7 | v | v (Actor Name) w | « (Movie Title) | y z (Director Name)
1 | 21 | Mark Hamill (30) 11 | Star Wars (23) | 41 | George Lucas (51)
1 | 22 | Harrison Ford (31) 11 | Star Wars (23) | 41 | George Lucas (51)
1 | 14 | Kyle MacLachlan (27) | 29 | Dune (35) 42 | David Lynch (52)

Table 3.1: The flexible matchings for Query 3 of Figure 3.1(c) and the database
of Figure 2.1.

assumes that the information on each actor includes the movies in which the actor
participated. Thus, she formulates Query 1 of Figure 3.1(a). There are no rigid
matchings of Query 1 w.r.t. the movie database. However, under the semiflexible
semantics, the answer of Query 1 will include a mapping of r, v and z to 1, 14
and 29, respectively, even though 14 and 29 are not adjacent. The answer will also
include a mapping of r, u and x to the next object triplets: (1) to 1, 21 and 11;
(2) to 1, 22 and 11; and (3) to 1, 25 and 12. Note that in the last three mappings

the movie is above the actor while in the query the actor is above the movie.

Example 3.8 Alice wants to find two actors who played in the same movie. She
formulates Query 2 of Figure 3.1(b). Obviously, there are no rigid matchings in this
case since the database is a tree and the query is a dag. However, under either the
semiflexible or the flexible semantics, Alice will find Mark Hamill and Harrison Ford
as two actors who played in the same movie (Star Wars). This is due to the fact that
assigning 7, u, v,z to 1,21,22, 11, respectively, is a semiflexible (and, hence, also a

flexible) matching of the query w.r.t. the movie database.

Example 3.9 When Query 3 of Figure 3.1(c) is posed to the movie database as
a rigid query, there are no matchings of the query w.r.t. the database. Under the
semiflexible semantics, the query has only a single matching (r, u, v, w, z, y and
z are mapped to 1, 14, 27, 29, 35, 42 and 52, respectively), although the database
has two movies with a director. However, under the flexible semantics, we get the
assignments that are shown in Table 3.1. For atomic nodes, the value is presented

in addition to the oid.
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3.1.2 More on Semiflexible Matchings

Consider a query @, a database D and an assignment y of () w.r.t. D. Obviously,
checking whether p is a flexible matching can be done in polynomial time in the
size of the query and the database. This follows from the next three facts. First,
the number of gec’s and the number of wec’s, in a query, is equal to the number of
query edges. Second, checking satisfaction of the root constraint and satisfaction of
the wec’s is immediate, i.e., in O(1). Third, checking satisfaction of a qec requires
to check that two database nodes are connected by a path and this can be done in
linear time in the size of the database.

It is not obvious how to check in polynomial time whether an assignment to the
variables of a query @ is a semiflexible matching. The reason is that all the paths
of @ have to be considered. If @ is a dag (directed acyclic graph), the number of
paths could be exponential, and if () has a cycle, then there are infinitely many
paths. In this section, we show that for any given query @), checking whether an
assignment is a semiflexible matching could be done in polynomial time in the size of
@ and D. For the case of a cyclic query, we first show that it is sufficient to consider
only simple paths and simple cycles in order to check whether a given assignment
is a semiflexible matching. Based on this result, we provide sufficient and necessary
conditions that can be checked in polynomial time in the size of the query and
the database, such that if the conditions hold then the assignment is a semiflexible
matching. Note that as a matter of terminology, a cyclic query (database) has at
least one cycle. Thus, the class of cyclic queries (databases) does not include any
dag query (database). A tree query (database), however, is a special case of a dag
query (database).

Consider a query @), a database D and an assignment y of @) w.r.t. D. The next
definition provides a characterization for satisfiability of the SF-Condition w.r.t. p

by simple paths of ). This characterization holds even when the database is cyclic.

Definition 3.10 (Connectivity-Preserving Mapping) Let Q be a query and D
be a database. We say that the assignment u: V — O is a connectivity-preserving

mapping if it satisfies the following conditions.
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e For all labels 1, all nodes v and the root r of Q, if Q has a simple path of the

form rxlv, then D has a path of the form p(r)*lu(v); and

e For all labels | and k, and all nodes u, v and w of Q, if Q has a simple path of
the form ulvkkw, then D either has a path of the form u(v)*ku(w) or a path

of the form p(w)xlu(v).

the next lemma shows that the conditions in Definition 3.10 are necessary and

sufficient for satisfiability of the SF-Condition w.r.t. ;1 by simple paths of Q.

Lemma 3.11 (The SF-Condition for Simple Paths) Consider a query Q, a
database D (that may have cycles) and an assignment pu: V. — O of Q w.r.t. D.
Every simple path in Q satisfies the SF-Condition w.r.t. p if and only if p is a

connectivity-preserving mapping.

Proof. It is easy to see that if every simple path in ) satisfies the SF-Condition
w.r.t. g, then y is a connectivity-preserving mapping.
Before proving the other direction, we present and prove a claim regarding the

existence and non-existence of specific paths in a strongly connected component.

Claim 3.12 Consider n wec’s lyv1,...,lyv,, a database D and a mapping p of
V1,...,Up to objects of D such that u(vi),...,u(vy) are all in a strongly connected
component of D. Suppose that for each two wec’s l;v; and ljv;, D either has a path
of the form p(v;)xljp(v;) or a path of the form p(v;)*liu(v;). If there are vq and vy,
among vi, - .., vy, such that D has no path of the form u(vy)*lav, then the following

three assertions will hold.
1. For each 1 < i <n, D has no path of the form p(v;)*lop(ve).
2. For each 1 <1i <mn, D has a path of the form p(vy)*l;u(v;).

3. For each1 <i<mand1l<j<m, if v; # v, then D has a path of the form

p(v;)*lipn(v;).-

We show correctness of the first assertion. Suppose that there was 1 <4 < n such

that D has a path of the form p(v;)*lsp(vg). This path can be combined with a path
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from p(vp) to p(v;) (such a path must exists in a strongly connected component)
and this yield a contradiction to the assumption that D has no path of the form
1(vp) *lgVq-

The correctness of the second assertion follows from the first assertion and the
assumption that for each two wec’s [;u; and [jv;, D either has a path of the form
p(vi)*lip(v;) or a path of the form p(v;)*lip(v;).

We show the correctness of the third assertion. For each 1 < 5 < n, D has
a path from p(v;) to u(ve), since p(v;) and p(v,) are two objects on a strongly
connected component. According to the second assertion, D has a path of the form
p(va)*lipp(v;). Combining these two paths yield a path of the form pu(v;)*l;pu(v;).

In the notations of Claim 3.12, we call u(v,) the entry point of p(v1),. .., u(vy,).
It is easy to see that under the conditions of the claim, p(v1), ..., u(vy,) cannot have
more than one entry point. Specifically, if one of the objects, u(v,), is the database
root, then for each v; other than the root, D has a path of the form p(v,)*l;u(v;).
In this case, u(v,), i.e., the database root, is the entry point of u(v1),. .., u(vy).

Now, we can prove the other direction of the lemma. Suppose that u is a
connectivity-preserving mapping and consider a simple path © = vglivilove - - - lv,

of (). We need to show that for some permutation o, the database D has a path of

the form
1(V5(0)) o (1) 11(Ve(1)) ¥lo(2) 1(Ve(2)) * * * o (n) (Ve (n))-
As a preliminary step, we partition the nodes u(vg), u(v1),- .., u(v,) according to
the maximal strongly connected components of D. Let C,...,C,, be the maximal

strongly connected components sorted topologically (see [27] for topological-sort
algorithms).

We choose a permutation ¢ of 0,...,n that has the following properties. First,
a(0) = 0. Second, the sequence of objects 1(vs(0)); 14(V5(1)),- - - s #(Vy(n)) conforms
to the topological ordering of C1, ..., Cp,. That is, if u(v,3)) € Cty, p(vg(j)) € Chy
and i < j then #; < 5. Third, if p(vs(,)),---,#(vs(,)) are objects in a strongly
connected component of D and p(v,(;)) is an entry point of p(vg(iy)); - -, (Vo))

then 4; < i, for each 1 < h < k. That is, among the objects 1(vg(i;)); - - - » 1(Vo(iy)),
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,u(va(ij)) appears first in the path that is defined by p and o. The order of the other
objects is chosen arbitrarily. If there is no entry point of p1(v,(;,)), - - - , #(V5(s,)) then
the order of all these objects is chosen arbitrarily, i.e., there can be any order for
i1,...,%5. Note that we can choose such o because C1,...,C,, are maximal strongly
connected components and they are sorted topologically.

Note that v,y and p(vs(g)) are the roots of @ and D, respectively. Moreover,
if both p(vs(i—1)) and p(vs()) (1 <4 < n) lie on the same path ¢ of D, then one of

the next two conditions must be true.
e The path ¢ is from p(v(;—1)) to u(ve())-

e The objects (1(vy(;—1)) and p1(ve(;)) both belong to the same strongly connected

component of D.

We claim that D has a path of the form

1(Ve(0)) ¥l (1) 11 (V1)) ¥lo2) 11 (Ve (2)) - ¥l () 1 (Vo (n) ) -

To prove the claim, we show that for all 1 < ¢ < n, D has a path of the form
(Vo (i—1)) ¥l (i) (vs(i))- For i =1, node v,y is the root of @), and so, @ has a path
of the form v, () *l5(1)v5(1)- Thus, by the first part of the condition in Definition 3.10,
D has a path of the form (v, (o)) *lo(1) 1 (Vo(1))-

For 7 > 1, there are three cases to be considered. First, we consider the case
where (1(vg(;_1)) and p(v,(;)) belong to the same strongly connected component.
According to the construction of o, 14(v,(;)) is not the entry point of the nodes in the
strongly connected component. This is because the entry point appears in the path
before all the other nodes of the strongly connected component. Hence, according to
the third assertion of Claim 3.12, D has a path of the form p(vy(i—1))*ls@) 1 (Vo())-

In the next two cases, 14(vy(;—1)) and p(vs(;)) do not belong to the same strongly
connected component. In one case, v,(;—1) appears before v,(;) on the path 7 of Q.
In the other case, v,(;_1) appears after v,(; on .

If vy(;—1) appears first, then @) has a path of the form v,(; 1)*l;(;yvs(;)- Thus,
according to the second part of the condition in Definition 3.10, D must have a path

of the form p(vy(i—1))*ly(i)14(ve(iy)- Alternatively, if v, ;) appears first, then there is
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aj (0 <j<n-—2),such that @ has a path of the form v;l; () Vo) *lg(i—1)Vo(i—1)-
Thus, according to the second part of the condition, D must have a path of the form

(Vo (i—1))*lo (i) (Vo (i) )- O

Consider a query @), a database D and an assignment of QQ w.r.t. D. Lemma 3.11
provides a test for checking if a simple path 7 in @ satisfies the SF-Condition. In
this test, we just need to check that the conditions of Definition 3.10 are satisfied
w.r.t. . It is easy to see that the test can be done in polynomial time in the size of

7 and D.

Corollary 3.13 (DAG Queries) Consider a dag query Q and a database D that
may have cycles. The assignment u: V — O is a semiflexible matching of Q w.r.t. D
if and only if (1) p is a connectivity-preserving mapping, and (2) u maps the query

root to the database root.

Proof. If p is a semiflexible matching of @) w.r.t. D then, by Lemma 3.11, u is
a connectivity-preserving mapping; and from the first condition of Definition 3.4
follows that p maps the query root to the database root.

For the other direction, since () is a dag, we only need to show that u satisfies
the first two conditions of Definition 3.4. Condition 1 of Definition 3.4 requires
satisfaction of the rc. The condition holds because y maps the query root to the
database root. Condition 2 requires satisfaction the SF-condition w.r.t. yu, for every

finite path in @ and Lemma 3.11 proves that this condition holds. O

From Corollary 3.13 it follows that when @ is a dag, the complexity of check-

ing whether 4 is a semiflexible matching is in polynomial time in the size of () and D.

Next, we will consider cyclic queries. Since cyclic queries have infinitely many
paths, a naive test based on the definition of a semiflexible matching does not ter-
minate. The following lemma alleviates this difficulty.

The path vglivilovs - - - I, v, (Where vy is not necessarily the root) is a simple path
if all the v; are distinct. It is a cycle if vg = v, and it is a simple cycle if vg = vy,

and vq,vo,...,v, are distinct.
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Lemma 3.14 (Condition for Cyclic Queries) Let Q) be a cyclic query and D be
a cyclic database. The assignment p is a semiflexible matching of Q w.r.t. D if and

only if the following conditions are satisfied.
1. The assignment u satisfies the rc of Q.
2. All the simple paths of Q) that start at the root satisfy the SF-Condition w.r.t. .

3. For all the simple cycles ugliuy - - - lyug, of Q (where ug is not necessarily the

root), D has a cycle (which is not necessarily a simple cycle) of the form

p(uo) #lyp(u) -« - #lp(u).

Proof. If u is a semiflexible matching, then, by Definition 3.4, Condition 1 and
Condition 2 hold. Next, we will show the necessity of Condition 3.

Let u be a semiflexible matching of QQ w.r.t. D, and let C = uglyuy - - - [pug, where
ug = ug, be a simple cycle of Q.

According to the definition of a semiflexible matching (Definition 3.4), the set
{u(ug), ..., u(ug)} is contained in a strongly connected component of D, because
{ug,...,ur} is contained in a strongly connected component of ). Therefore, there
is a path from p(u;) to p(ui+1) (0<i<k-—1).

The second observation is that D has a path of the form p(u;)*l;p(u;) (1 < i < k).
In proof, for each node u; (1 < i < k) in C, there is a path that starts at the root
of ), continues to a node in C' and then goes to u; through the edge u;_1l;u;. This
path can be extended by going around the cycle C' from u; back to itself. Thus, Q
has a path of the form rg*l;u;*l;u;, where rqg is the root of (). This path satisfies
the SF-Condition (Definition 3.3), since p is a semiflexible matching. Therefore, D
must have a path of the form p(u;)*l;p(u;) (1 <i <k).

By combining the path from p(u;—1) to p(u;) with the path p(u;)*lp(u;) (1 <
i < k), it follows that D has a path of the form p(u;—1)*lu(u;) (1 < i < k).
Therefore, D also has a path of the form Cp = p(ug)*lipu(ui) - - *lgpu(ug). Since
ug = ug, it follows that p(ug) = p(ug) and, thus, Cp is a cycle in D. Thus, we have
shown that Condition 3 is satisfied.

For the other direction, suppose that p is a mapping of the variables of @ to
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objects of D, such that conditions 1-3 are satisfied. By Condition 3, ;4 maps strongly
connected components of () to strongly connected components of D. Next, we will
show that finite paths of @ satisfy the SF-Condition w.r.t. u.

Let m = wglyvy - - - l,v, be a path of (Q, where vy is the root of (). We will show
by induction on n that 7 satisfies the SF-Condition w.r.t. u.

For n = 1, 7 is either a simple path (if vy # v1) or a simple cycle (if vg = v1).
In the first case, 7w satisfies the SF-Condition by Condition 2, and in the second
case—by Condition 3.

Next, suppose that the claim holds for paths of length less that n, where n > 1.
We have to show that the claim holds for the path .

Once again, if 7 is a simple path or a simple cycle, then either Condition 2 or
Condition 3 implies that 7 satisfies the SF-Condition.

If 7 is neither a simple path nor a simple cycle, then it must have variables v; and
vg (i < k), such that the path 7, = v;l;11vi4+1 - - - [gvg is a simple cycle, i.e., v; = vg.
By Condition 3, D has a cycle of the form ¢, = p(v;)*ljr1p(vig1) -« - *lgp(vg)-

By the induction hypothesis, the path

Tp = vol1v1 - - LiVilg 10Uk 11 -~ lnvn

satisfies the SF-Condition. Thus, there is a permutation o, 0f 0,1,...,4,k+1,...,n,

such that 0,(0) = 0 and D has a path of the following form.

o = 1(ve,(0)*o, 1) (Ve, (1)) -
oy (i) (Ve (5)) ¥ oy (k1) (Vo (k1)) -+

*lap(n),“'('vap (n))

We will now show that the cycle ¢. and the path ¢, can be combined into a
single path ¢ that shows that 7« satisfies the SF-Condition. Intuitively, this is done
by inserting the cycle ¢. into the path ¢, starting at an occurrence of v; in ¢,. To
do that, we need to define a permutation o of 0,1,...,n that combines the effect of
the permutation o, with the effect of the identity permutation of : + 1, ..., k, which

relates the simple cycle 7. to the cycle ¢..
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The permutation ¢, is defined over 0,1,...,4,k + 1,...,n, ie., it has a gap
between i + 1 and k. However, this gap is not necessarily the place to put the cycle
¢c. Therefore, we first have to shift some positions in order to create the gap in the
right place.

Formally, there is a j, such that o,(j) = 7. Note that j is the position of u(v;)
in the path ¢,. There are two cases for creating the gap, starting at position j + 1,
and for each case o is defined differently.

If 741 < ¢, then the gap has to be created by shifting right; that is, for
Jj+1<m <1, we define o(m + k — i) = gp(m).

If £+ 1 < 7, then the gap has to be created by shifting left; that is, for £k + 1 <
m < j, we define o(m — (k — 1)) = op(m).

Now, we fill the gap with the cycle ¢, by defining o(j+m) =i+m for 1 <m <
k —i. Finally, we complete the definition of ¢ by defining o(m) = o,(m), for all
other values of m.

It thus follows that D has a path ¢ of the form

,u'('UJ(O))*la(l)#(va(l))*10(2)1‘(”0(2)) T *la(n)ﬂ'(va(n))
and this path shows that 7 satisfies the SF-Condition. O

Lemma 3.14 shows that when @ is a cyclic query, verifying that a matching is a
semiflexible matching is decidable. However, the verification requires to check that
the image of every simple cycle in @) is on a cycle in D. Since the number of simple
cycles in a query can be exponential in the size of the query, verification according to
Lemma 3.14 may require exponential time. The next definition provides a condition
that can be verified in polynomial time in the size of the query and the database.
This condition will assist in checking if simple cycles of the query are mapped to

cycles in the database.

Definition 3.15 (Cycle-Preserving Mapping) Let Q be a cyclic query, D be a
cyclic database and u : Q — D be an assignment of Q w.r.t. D. We say that p is a
cycle-preserving mapping if for every pair of variable v and u, if Q has a path of the
form uxlv and a path of the form vxl'u, then D has a path of the form u(u)*lp(v)
and a path of the form p(v)*l'u(u).
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The next lemma shows that the condition in Definition 3.15 is sufficient and
necessary for mapping simple cycles of the query into cycles of the database. Note

that the two variables u and v in Definition 3.15 could be equal.

Lemma 3.16 (Cycle Preserving) Let Q be a cyclic query, D be a cyclic database
and p : Q@ — D be an assignment of Q w.r.t. D. The following conditions are

equivalent.

1. For every simple cycle ugliuy - - lyug of Q (where ug is not necessarily the

root), D has a cycle (which is not necessarily a simple cycle) of the form

pluo)*lyp(ur) - - - wlgp(u).

2. The assignment u is a cycle-preserving mapping.

Proof. Assume that Condition 2 holds and let ugliu - - - [xuy be a simple cycle in Q.
Then ,for each pair of nodes u; and u;+1 (0 <i <k —1), @ has a path u;*l;11u;41
and a path w;1*l;u; (note that ug = uyg, thus ly = ;). By Definition 3.15, in D
there is a path of the form p(u;)*lj+1p(u;r1). This shows that D has a cycle of the
form pu(wo)*lyp(ur) - - - *lgp(ug)-

For the other direction, we start by proving the following claim.

Claim 3.17 Given that Condition 1 holds, for every pair of variables u and v that
are on a cycle (not necessarily a simple cycle), the images of u and v, i.e., p(u) and

wu(v), are on a cycle in D.

The proof of the claim is by an induction on the number of nodes in the cycle
that contains u and v. First, we consider the case where u and v are equal and the
cycle is a loop, i.e., contains only one edge. In this case, the cycle is simple and has
the form ulu. By Condition 1, D has a cycle u(u)*lu(u) and the claim holds.

Secondly, we consider the case where the cycle contains only two nodes. In this
case, the cycle has an edge from u to v and vice-versa. Thus, there is a simple cycle
that contains w and v. According to Condition 1, the image of this cycle w.r.t. u is

on a cycle in D.
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Next, we show that if the claim holds for each u and v that are on a cycle with
less than k nodes then the claim also holds for each v and v that are on a cycle with
k nodes. Let u and v be nodes on a cycle C' with k& nodes. If C is a simple cycle
then, according to Condition 1, the nodes in the set {y(w) | w on C} are on a cycle
in D and, in particular, y(u) and p(v) are on a cycle in D. If C is not a simple
cycle then there is a node w, such that w appears twice in C. At least one of the

following three cases must hold.
1. C is a path of the form uxwxw*v+u;
2. C is a path of the form uxv*w*xw*u;
3. C is a path of the form uxw*vxw*u;

In all three cases, C is a composition of two smaller cycles. In the first case, Q
has a cycle of the form uxws*v*u with less than k& nodes and thus, by the induction
hypothesis, p(u) and p(v) are on a cycle in D. The second case is similar to the
first case. In the third case, C' contains the following two sub-cycles: A cycle C
of the form uxw*u and a cycle Cy of the form vxw*v. The size of each one of the
two cycles is smaller than k. Thus, according to Condition 1, D has a cycle that
contains p(u) and p(w) and D also has a cycle that contains u(v) and p(w). Since
these two cycles have a shared node, u(w), they can be combined to form a cycle
that contains p(u) and u(v). This complete the proof of the claim.

Now, assume that Condition 1 holds and let u and v be variables of @, such that
there are paths of the form uxlv and v*l'u, in . It must hold that @ has (1) a
simple cycle vxlv; (2) a simple cycle uxl'u; and (3) a cycle vku*v. The reason for
having the first (second) cycle is that v (u) is on a cycle that goes into v (u) through
an edge labeled with [ (I'). From the existence of the first two cycles and from
Condition 1, it follows that D has a path of the form p(v)*lu(v) and a path of the
form p(u)*l'p(u). From the third cycle and the claim above, it follows that D has
a cycle p(v)*u(u)*u(v). Combining these cycles yields a cycle p(v)*lp(u)*lp(v).
Therefore, D has a path of the form p(u)*lu(v) and a path of the form u(v)xl'u(u).
O
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Using the above lemmas, we can introduce a condition that is both necessary
and sufficient for an assignment p of a cyclic query w.r.t. a cyclic database to be
a semiflexible matching. The condition requires local tests in the sense that only
pairs of nodes are checked each time and the check for each pair can be done in

polynomial time in the size of the query and the database.

Corollary 3.18 (Cyclic Queries) Suppose that Q is a cyclic query and D is a
cyclic database. The assignment p is a semiflexible matching of Q w.r.t. D if and

only if the following conditions are satisfied.
1. The assignment u satisfies the rc of Q.
2. The assignment u is a connectivity-preserving mapping.

3. The assignment p s a cycle-preserving mapping.

Proof. This consequence follows from Lemma 3.11, Lemma 3.14 and Lemma 3.16.

O

Based on the above condition we get the next theorem.

Theorem 3.19 (Polynomial-Time Verification) Deciding whether a given as-
signment p of a query w.r.t. a database is a semiflexible matching is in polynomial

time in the size of the query and the database.

In summary, Theorem 3.19 states that for all types of queries, testing whether
is a semiflexible matching has a running time that is polynomial in the size of the

query and the database.

3.2 Query Evaluation in Semiflexible Semantics

In data complezity, query evaluation is measured in terms of the size of the database.
That is, we assume that the size of the query is fixed. Query evaluation has a
polynomial-time data complexity under either the semiflexible or flexible semantics.

In combined complexity, both the query and the data are considered as input.

The combined complexity of query evaluation under either the semiflexible and the
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flexible semantics is exponential, since the size of the result could be exponential in
the size of the query and the data.

A better approach is to analyze the input-output complexity that is measured in
terms of the size of the query, the database and the result. The motivation for using
input-output complexity is that it allows us to distinguish between the following
two cases. First, a case where the runtime of the algorithm is exponential simply
because the size of the result is exponential. Secondly, a case where the runtime
of the algorithm is exponential even though the size of the result is small (i.e., less
than exponential in the size of the input). The second case could be a consequence
of having a naive algorithm, i.e., an algorithm that does a lot of redundant work. A
different cause could be that the problem is NP-hard.

Recall that in the relational case, merely checking whether a join of n relations is
not empty is NP-complete [49]; hence, the input-output complexity is exponential.
However, for the important case of acyclic joins, the input-output complexity is
polynomial [65]. In this section, we will discuss the input-output complexity of

query evaluation under the semiflexible semantics.

3.2.1 Path Queries

In this section we consider path queries. A path query has the form vglivilovs . .. [ v,
where vy is the root and all the v; are distinct. First, we will discuss the case of
evaluating a path query over a database that is also a path. Note that even in
this case, the result could be exponential in the size of the query and the database
(provided that some labels are repeated along paths of the database). However, the
input-output complexity is polynomial.

For a query node v, the correspondence set of v, denoted C), is the set of all
database objects o, such that o satisfies some wec of v (i.e., there is a label [, such
that both o and v have incoming edges labeled with /). The correspondence set of

the root rg of @ consists of the root rp of the database.
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Proposition 3.20 (Path Query and Path Database) Let Q be a path query of
the form volivilovs ... lyvy,, and D be a path database over a set of objects O. Con-

sider the set M that the next equation defines.
M={p:V = 0| pv) € Cy for 0 <i<n, and p(v;) # p(vj) fori#j}. (3.1)

Then the set Mg (Q, D) of the semiflexible matchings of Q w.r.t. D is equal to M.

Computing My (Q, D) has linear-time input-output complezity.

Proof. First, we show that M = M(Q, D). Consider a mapping p in M. Ob-
viously, p satisfies the root constraint because the correspondence set of the root,

C

rq»> contains only the database root. In addition, 4 maps the variables of @) into a

database path. Thus, u is a connectivity-preserving mapping (see Definition 3.10)
and according to Corollary 3.13, u is a semiflexible matching. For the other direction,
suppose that p is in Mg (Q, D). The single path in @ satisfies the SF-Condition
w.r.t. u. Thus, for each query variable v;, p(v;) € Cy,. Furthermore, p(v;) # p(vj)
for every ¢ # j. Consequently, u satisfies the condition in Equation 3.1, and hence,
W is in M.

To show that the computation can be done in linear time, let |Q|, |D| and |M|
be the sizes of the query, the database and the result, respectively.

Computing M (Q, D) is done as follows. First, we verify that for each label [
in @ if [ is attached to k edges of @), then there are at least k different nodes in D
with an incoming edge labeled with [. If this test fails, then M (Q, D) is empty.
The test requires a runtime of O(|Q| + |D|), since counting the labels can be done
in a single pass over () and D.

Next, the correspondence sets C,; (1 <14 < n) are constructed. Using a suitable
data structure, such as a hash table, this construction can be done in O(|Q| + |D|).

Finally, the matchings are created. A matching is constructed by choosing a
single object from each correspondence set, verifying that no object is chosen twice.
This can be done using nested iterations over the sets C,, (1 < i < n). Constructing
M from the correspondence sets requires O(|M|) runtime. Thus, the runtime of the

algorithm is in O(|Q| + |D| + |M|). O
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Next, we investigate the case where the database is a tree. A simple evaluation
algorithm for a path query @ w.r.t. a tree database D would be as follows. For
each path 7 in D, from the root to a leaf, evaluate Q w.r.t. w. Consider the sets of
semiflexible matchings that are the result of evaluating () w.r.t. the different paths.
The union of these sets is the result of evaluating () w.r.t. the whole database.
Evaluating @) w.r.t. the paths of D can be done as described in Proposition 3.20.

The runtime complexity of such evaluation will be a function of |D|®. This is
because the number of paths in D, from the root to a leaf, could be O(|D]). In
addition, the size of such paths could be O(|D|).

The simple evaluation algorithm that was described in the last paragraphs could
be improved so that the runtime will not be a function of |D|?. The algorithm is

presented in Appendix C.

Theorem 3.21 (Path Query and Tree Database) Let ) be a path query and
D be a tree database. There is an algorithm that computes the semiflexible matchings
of Q w.r.t. D in O(|Q||D| + |M|) runtime, where |Q|, |D| and |M| are the sizes of

the query, the database and the result, respectively.

The proof of Theorem 3.21 is presented in Appendix C.

Next, we show that query evaluation, under the semiflexible semantics, is not
likely to have a polynomial-time input-output complexity when the database is a
dag. We use a reduction of 3SAT. A formula ¢ is in 3CNF if ¢ is a conjunction
of clauses ci, ..., ¢, where each clause ¢; is a disjunction of three literals I;,,1;,,;,
and a literal is either a propositional letter or a negation of a propositional letter.

Deciding whether a formula in 3CNF has a satisfying assignment is NP-complete [35].

Lemma 3.22 (Reduction of 3SAT) Consider a 3CNF formula ¢ over a set of
propositional letters U. One can construct in polynomial time a path query Q and

a dag database D such that the following are equivalent:
e There is a semiflexible matching of Q w.r.t. D.

o There is an assignment for the propositional letters in U that satisfies .
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The proof of Lemma 3.22 is given in Appendix C.

Theorem 3.23 (NP-Completeness) Given a path query Q and a dag database
D, deciding whether Mg (Q, D) is not empty is NP-complete.

Proof. NP-hardness follows from Lemma 3.22. Membership in NP is because one
can guess in polynomial time a mapping from the variables of @) to the objects of D

and verify, by Corollary 3.13, that this mapping is a semiflexible matching. O

Proposition 3.24 (Path Query and Cyclic Database) Given a path query Q
and a cyclic database D, query evaluation has an O(|D|'%7YQ|?) runtime under

input-output complezity.

Proof. As a preliminary step, we compute a table that holds an entry for each
pair of nodes 0, and o9 in D. The entry for 0; and 09 contains the set of labels [
such that D has a path of the form o;*lo,. If there is no path in D from o1 to oo,
then the entry contains an empty set. In addition, we topologically sort the nodes
of D and compute the strongly connected components of D in O(|D|) (see in [27]
how to compute strongly connected components in linear time). All together, the
preliminary step is done in O(|D|?).

Next, we iteratively test all the possible assignments. For each assignment it
is checked whether it is a semiflexible matching. Since the root of the query is al-
ways mapped to the root of the database, there are |D|‘Q‘71 possible mappings to
check. Verifying that an assignment is a semiflexible matching is done as described
in Corollary 3.13. According to Corollary 3.13, it should be checked that the assign-
ment is a connectivity-preserving mapping (see Definition 3.10); and this requires a

test w.r.t. each pair of query variables, i.e., O(|Q|2) tests. O

3.2.2 Tree and DAG Queries over a Tree Database

XML documents are frequently trees. Thus, querying tree databases has a particular

importance. In this section, we show that, over a tree database, evaluation of tree
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and dag queries can be done in polynomial time, in the size of the input and the
output, provided that labels are not repeated in query paths.

When both the query and the database are acyclic, queries that have repeated
label on a path are not practical, for the following reasons. Acyclic databases sel-
dom have the same label repeated on a path, since it may cause semantic confusion.
In the rare cases, when the database does have repeated label on a path, the se-
mantic meaning of objects with the same incoming label is defined by the order of
their appearance on the path. In semiflexible matchings, however, this order is not
preserved.

We say that a query is plain if there are no repeated labels on query paths.
Consider a plain tree query and a tree database. In the first part of this section,
we will present an algorithm that computes the semiflexible matchings of the query
w.r.t. the database, in polynomial time in the size of the input and output. In the
second part of this section, we will show how to modify the algorithm in order to
compute, in polynomial time, semiflexible matchings of a simple dag query w.r.t. the

database. We start by presenting some definitions and notations.

Preliminaries

Suppose that a tree or a dag query is posed to a tree database. If there is a variable
in the query that has two different incoming labels (on two different edges), then
there are no semiflexible matchings of the query w.r.t. the database. This is because,
in a tree database, an object (other than the root) has exactly one incoming edge
and a single incoming label. Thus, we will consider queries in which the mapping
of nodes to their incoming labels is a function, i.e., for each node, all the edges that
enter the node have the same label. We denote by label(v) the label on the edges
that enter v. The same notation will also be used for the mapping of objects to
labels in a tree database. We assume that for the root of the query and for the root
of the database, the label() function returns the unique label ROOT.

In a tree database D, the topological order of the nodes is a partial order that
can be used to distinguish between pairs of nodes that are connected by a path and

pairs of nodes that are not connected by a path. We say that a node o7 is above 09
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and 09 is below o1, denoted 01 > 09, if there is a path in D from o; to 09.1 By
01 = 0o we denote the case where 01 = 09 or 01 = 02. Note that rp > o for the root
of the database rp and any object o. Moreover, if 0 # rp then rp > 0. Two nodes
01 and 09 are on a path in D if o1 is either above 09 or below 0. For acyclic queries,
“above” and “below” are defined similarly.

Consider a set of objects O in a tree database D. Suppose that O are all the
objects in D that are on a path with each object of O. The following lemma shows

how to find O'.

Lemma 3.25 Let D be a tree database.

1. Let o1,...,0} be objects that are all on one path in D and let o be the lowest
node among o1, ... ,0, i.e., the object that is the farthest from the root. Then
an object o in D is on one path with all the nodes o01,...,0; if and only if

(0 =20)) V(0> o0}, ie.,oisin the set {x | (x 20)) V(x> o0))}.

2. Letoq,...,or, where k > 2, be objects such that no pair, among these objects, is
connected by a path. Let oy be the lowest common ancestor of o1,...,0. Then,
an object o of D is connected by a path to each one of the objects o1,...,0; if

and only if o = o4, i.e., 0 is in the set {x | x > o4}.

Proof. We start with Part 1 of the lemma. If o0 is below o (i.e., 0 < o) then for
each 1 <7 < k there is a path from o; to o) and a path from o; to o. Thus, there is
a path to o from each one of the k objects. If o is above o, (i.e., 0 > 0]) then there
is a path from o to o;. If there was a node among o1,...,0; that did not have a
path to o and was not reachable by a path from o, then there would be two different
paths in D from the root to oj. This would be a contradiction to the fact that D is
a tree. For the other direction, if (0 Z o) A (0 # o}) then there is no path from o to
o, and there is no path from o to o. That is, o is not on one path with o;. (Recall
that o| is one of the nodes o,...,0;.)

We now prove Part 2 of the lemma. If o = oy then there is a path from o to o4.

There is a path from oy to each one of the objects o1,..., 0k, since o is an ancestor

Tn some places we use the terms “ancestor” and “descendent” instead of the terms “above” and
elow”. efinition, 01 is an ancestor (descendent) of o2 when o1 is above (below) o2.
“below”. By definition, tor (d dent) of h b bel
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of all these objects. So, o is on a path with each one of the k objects. For the other
direction, assume that o 7 oy. There are three possible cases to consider. The first
case is that o is below oy and there is a path from o to all the objects o1,..., 0.
This would be a contradiction to o being the least common ancestor. The second
case is that o is below o4 and it is also below the object o;, for some 1 <7 < k. In
this case, there cannot be an o, j # 4, such that o is also below o0;, because D is a
tree and there is no path between o; and 0;. So, o is below 0; and o; is below o. This
contradicts the condition that no pair of objects among o1, ..., 0, are connected by

a path. The third case is when o is not on the same path with oy. In this case, there

is no path from any of the objects 01, ...,0; to 0. There cannot be a path from o to
any of the nodes o4, ...,0, because D is a tree and there is exactly one path from
the root to each node. O

The partial ordering > is used for defining SF-properties.

Definition 3.26 (SF-Property) Suppose that Q is a query and D is a database.
A matching property w.r.t. Q@ and D is a 4-tuple P = (v,0,Vp,S,) where v is a
variable of Q, o is an object of D, Vp is a set of variables of Q and Sp is a set of
objects of D. The matching property P is an SF-property if the following holds. For
every semiflexible matching u of Q w.r.t. D, if u maps v to o, then p maps each

variable of Vp to an object in the set Sp.

Later in this section, we will present an algorithm that computes semiflexible
matchings of a tree query w.r.t. a tree database. In the algorithm, there are two
phases. In the first phase, the algorithm computes SF-properties w.r.t. the given
query and database. The SF-properties are expressed using the partial ordering >.

This is demonstrated in the following two examples.

Example 3.27 Consider a query ) and a variable v in (). suppose that v is mapped
to a database node o by a semiflexible matching . Then, y maps all the ancestors
of v to nodes that are either above o or below o in the database, i.e., to nodes in the

set {z | (z = 0) V(z < 0)}.
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Example 3.28 Consider a variable v that has two children v; and vy in a query Q.
Suppose that v; and vy are mapped by a semiflexible matching u to the objects 01
and o9, respectively, where 01 ¥ 02 and 0y ¥ 01. Let o be the least common ancestor

of 0; and 02 in the database. Then y maps v to an object in the set {z | z > o}.

SF-properties are defined by abstract mappings. Note that the following defini-

tion of an abstract mapping is recursive.

Definition 3.29 (Abstract Mapping) Let Q be an acyclic query, D be a tree
database and v be a variable in Q. Consider a pair (o,S), where o is an object of D
and S is a set of objects of D. The pair (0,S) is an abstract mapping of v w.r.t. D
if the following three conditions hold.

1. label(v) = label(o0).
2. All the objects in S are on a path with o.

3. Suppose that v has children v1,...,v in Q. Then there are abstract mappings
(01,51)y .-, (0k, Sk) of vi,...,vk, respectively, such that, for each 1 < i <k,
SCS;, and o € S;.

Proposition 3.30 (Completeness) Suppose that Q is an acyclic query and D is a
tree database. Let u be a semiflexible matching of Q w.r.t. D and let v be a variable
in Q. Then, (u(v),S), where S = {u(u) | v > v}, is an abstract mapping of v
w.r.t. D.

Proof. We need to show that (u(v),S) satisfies the three conditions of Defini-
tion 3.29. According to Corollary 3.13, p is a connectivity-preserving mapping
(Definition 3.10) and, thus, Condition 1 and Condition 2 are satisfied.

Satisfaction of Condition 3 is shown by induction on the structure of (). If v is a
leaf, then Condition 3 holds in a trivial way since v has no children. The inductive
hypothesis is that (u(v'), {u(u) | u = v'}) satisfies Condition 3 of Definition 3.29,
for every variable v’ that has less than n descendents.

Consider a variable v that has n descendents in (). Let v1, ..., v be the children

of v. For each 1 < ¢ < k, the variable v; has less then n descendents. Thus, according
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to the inductive hypothesis, (u(v;),S;), where S; = {u(u) | u = v;}, is an abstract
mapping of v; w.r.t. D. Then, for each 1 < i < k, S C S; and u(v) € S;. Hence,
(u(v), {p(u) | u > v}) satisfies Condition 3 of Definition 3.29. O

Consider an acyclic query @, a tree database D and a variable v of ). Let o
be an object in D such that label(o) = label(v). We say that an abstract mapping
(0,8) of v is mazimal if S’ C S holds for every abstract matching (0, S’) of v. The
goal of the next proposition is to show that if a variable v has an abstract matching

then v also has a maximal abstract matching.

Proposition 3.31 (Applying Union) Suppose that Q is an acyclic query, D is
a tree database and v is a variable of Q. If (0,S') and (0,5%) are two abstract

mappings of v, then also (0, S' U S?) is an abstract mapping of v.

Proof.  Because (0,S') and (0,5?) are abstract mappings of v, Condition 1 in
Definition 3.29 is satisfied. Condition 2 is satisfied w.r.t. S' and S2. Thus, it is
satisfied w.r.t. S U S2.

We complete the proof of the proposition by induction on the structure of ). If
v is a leaf then Condition 3 is satisfied in a trivial way, i.e., v has no children. Thus
the proposition holds for v.

The inductive hypothesis is that the proposition holds for all the nodes v in Q)
that have a height of at most n — 1. In the following we show that if the inductive
hypothesis is true then the proposition holds for nodes that have a height of n.

Consider a node v in @ that has a height of n and let (0,S') and (o, 5?) be
abstract mappings of v. We need to show that Condition 3 in Definition 3.29 is
satisfied w.r.t. (0, S' U S?).

Suppose that vi,...,v; are the children of v. Since (0,87) (j = 1,2) is an
abstract mappings of v, there are abstract mappings (o, S{), —ey (o, Si) of v1,...,vk,
respectively, such that S/ C Sf , for each 1 <4 < k. By the inductive hypothesis,
(0,51US?),..., (o, S,i U S,%) are abstract mappings of v1, ..., vk, respectively. These

abstract mappings show that Condition 3 is satisfied w.r.t. (o, S' U S2). O

Suppose that (0, S1),..., (0, Sy) are all the abstract mappings of v in which the

first element is 0. Let S04 = U™ S, Then, from Proposition 3.31, it follows that
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(0, S™A7) is an abstract mapping of v. Furthermore, S; C S™% foreach 1 < i < m.
Thus, S™% is a maximal abstract mapping of v.

Next, we show that a maximal abstract mapping (0,S) of v defines an SF-
property P = (v,0,{z | x > v}, S) w.r.t. @ and D. Note that {z | z > v} are the

ancestors of v in Q.

Proposition 3.32 (Abstract Mappings Define SF-Properties) Suppose that
Q is an acyclic query, D is a tree database and v is a variable of Q. If (0,5)
is a mazimal abstract mapping of v w.r.t. D then P = (v,0,{z | z > v},S) is an

SF-property w.r.t. Q and D.

Proof. We need to show that P is an SF-property w.r.t. ) and D. That is, if a
semiflexible matching of ) w.r.t. D maps v to o then it also maps each ancestor of
v to an object of S.

Counsider a semiflexible matchings y of Q w.r.t. D. Suppose that g maps v to o
and 9 > v, i.e., 0 is a variable above v. Then, we need to show that u(?) is in S.

Consider the pair (u(v), Sy), where S, = {u(w) | w > v}). According to Propo-
sition 3.30, (u(v),S,) is an abstract mapping of v. In addition, S, contains u(?),
because ¥ is above v. Since (0,S5) is a maximal abstract mapping w.r.t. v and

p(v) = o, it holds that S, C S. Hence, u(9) € S. O

Computing Abstract Mappings

Now, we will show how to compute abstract mappings in polynomial time in the
size of the query and the database. The next proposition is a first step towards

computing abstract mappings.

Proposition 3.33 (Bottom-Up Evaluation) Suppose that Q is an acyclic query,
D is a tree database, v is a variable of Q and vy, ...,vy are the children of v (if there
are any). Then (0,8S) is an abstract mapping of v if and only if the following two

conditions hold.

1. label(o) = label(v).
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2. There are abstract mappings (01,851),---,(0g, Sk) of v1,...,vg, respectively,

such that

(a) 0o € S;, for each 1 <1i <k, and

() SCSiNSenN---SgN{z |z 0Vz =o}. (Ifvisalef of Q, then
SC{z|z=20oVz*o}.)

Proof. Suppose that Conditions 1 and 2 of the proposition hold. We need to
show that (o0,S) is an abstract mapping. We show that the three conditions in
Definition 3.29 hold. Condition 1 of Definition 3.29 is the same as Condition 1 in
the proposition. Thus, it holds.

We show that Condition 2 of Definition 3.29 holds. The set S is contained in
the set Sp = {z | £ < oV z > o}, because S is the intersection of S, with other sets.
The set S}, is the set of objects that are on a path with o. Thus, all the objects in S
are on a path with o, which is what we needed to show. To prove that Condition 3
of Definition 3.29 holds, we need to show that S C S;, for each 1 <4 < k. Since S is
an intersection of S; with other sets, obviously, S C S;. From Condition 2 it follows
that o € S;, for each 1 < i < k.

For the other direction, suppose that (0,S) is an abstract mapping of v. We
need to show that Conditions 1 and 2 of the proposition hold. Condition 1 of the
proposition is equal to Condition 1 in Definition 3.29. Thus, it holds.

We claim that Condition 2 of the proposition follows from Condition 2 and
Condition 3 of Definition 3.29. Since (o, S) is an abstract mapping w.r.t. v, there
are abstract mappings (01, S51),..., (0g, Sk) of v1,...,vg, respectively, such that for
each1 <i<k, SCS;ando€ S;. Thus, S C S1NSyN...S;. Theset S, = {z |
z R 0oV z » o} contains all the objects that are on a path with o. Thus, because
of Condition 2 in Definition 3.29, § C §,. That is, § € S1NS2 N ... S NS,. This

proves our claim. O

Corollary 3.34 (Maximal Elements) In Proposition 3.33, if (0,S) is a mazimal
abstract mapping of v then there are (01,51), ..., (0k, Sk) that satisfy the conditions

of the proposition and are mazimal abstract mappings of v1,..., v, respectively. In
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addition, the equality S = S1NSeN---SgN{x |z <0V z > o} holds (if v is a leaf,
S={z|z=<0oVz>o}).

Proof. If v is a leaf then (o,{z | z < 0V z > 0}) is a maximal abstract mapping of
v and the conditions of Proposition 3.33 are satisfied. Suppose that v is not a leaf.
Let v1,...,v; be the children of v. Consider a maximal abstract mapping (o, S).
According to Proposition 3.33, there are abstract mappings (01, S1),..., (0g, Sk) of
v1,...,Uk, respectively, such that o € S;, foreach 1 <4 < k,and S C §1 NS N
- SpgN{z|z<o0oVz¥* o}

Let (01,87"), ..., (0, S;*) be maximal abstract mappings. Let S™ be S* N.S5* N
- SP'N{z | £ < oVz > o}. Then, S; C S/, for each 1 <7 < k and, hence, S C S™.

According to Proposition 3.33, (0,S™) is an abstract mapping of v. Because
(0, S) is a maximal abstract mapping of v, it holds that S O S™. Therefore, S = S™,

i.e., S is the intersection of sets in maximal abstract mappings. O

Consider an abstract mapping (0, S) w.r.t. some variable v in a query. The set
S has O(|D|) size, where D is the size of the database. However, we will show that
it is not necessary to actually compute S. Instead, for each set S in an abstract
mapping, we compute an abstract set which is a notation of a definition of S. Such
a notation is essentially a constraint such that S contains all the database objects

that satisfy this constraint.

Definition 3.35 (Abstract Sets) Let o be a database object. A path abstract set
(pas) is a set notation of the form {z | z > o}. A tree abstract set (tas) is a set
notation of the form {x | x R oV z = o}. A basic abstract set is a set notation that

is either a pas or a tas.

Two abstract sets are equivalent (denoted =) if the sets that they represent are
equal. The following proposition shows that over a tree database, every conjunction

of basic abstract sets can be written as an equivalent basic abstract set.

Proposition 3.36 (Equivalence Rules for Conjunction) The following equiv-

alences hold in a tree database D.
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Procedure combine(S1, S2);
Input Two basic abstract sets S; and Ss;

Output A basic abstract set that is equivalent to S; N So;

if S1 is a pas and S5 is a tas then swap S7 and Sy;
let 01 and 09 be the objects that appear in S and Ss, respectively;
if 01 > 09 or 09 > 01 then
let op, be the highest of 01 and 0 (0, = 01 if 01 = 02);
let o; be the lowest of 01 and 0 (0, = 03 if 01 = 09);
case S ={z |z Vz>=o}and So ={z|z<02Vz¥>o}:
S={z|=20V o}
case S1 ={z |z >o1}and Sy ={z |z = 02}:
S={z|z=on};
case S1 ={z |z 2 oVz>=o}and So ={z |z > on}:
S={z|z>on};
case S1 ={z |z opVz=op}and So={z |z > o}
S={z|z= o)
else (* 01 # 09 and 02 # 01 *)
let o, be the least common ancestor of 01 and 09;
S={z|z* o}

return S;

Figure 3.2: For a conjunction of two basic abstract sets, combine computes an
equivalent basic abstract set (without conjunction), according to the seven rules of
Proposition 3.36.

1. If 09 = 01 then

(a) {z|(z 01V =o)AN(z20eVr=o0)={z|z=01Vz o}
(b)) {z|z>=01 ANz =0} ={z|z > o0}
(c) {z|(x 201V >=o0)) ANz >0} ={z |z > 02}

(d) {z|(zr20eVz=0)ANz=01}={z|z >0}
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2. If o is the least common ancestor of o1 and oo and (02 ¥ 01) A (02 A 01), i.e.,

01 and o2 are not on the same path, then

(a) {z|(z 201V =o)AN(z 202V =09} ={z|z> o0}
(b)) {z|z=01 ANz =0} ={z|z > o0}

(c) {z|z=01A(z 202Vz =09} ={z |z > 0}

Proof. All the equivalences directly follow from the definition of the partial order

> and the properties of D as a tree. O

We use the equivalence rules of Proposition 3.36 to write a conjunction of basic
abstract sets as a basic abstract set. A function combine that applies the rules of
Proposition 3.36 to a conjunction of two basic abstract sets is presented in Figure 3.2.

Our goal is to compute maximal abstract matchings. This requires discarding
the non-maximal elements from the sets of abstract matchings that the algorithm
computes.

Let D be a tree database. We say that an abstract set So contains an abstract
set S1 w.r.t. D, denoted S7 C So, if the set of objects that S; defines is contained in
the set of objects that Sy defines. The following proposition presents containment

rules.

Proposition 3.37 (Containment Rules) Let D be a tree database and let o1 and

09 be objects in D such that oo = o1. The following containment rules hold.
L. {z|z>0} C{z |z =202V o0}
2 {z|lz20Vzr=o}C{z|z<02Vz > o0}
3 {z|z=0}C{z|z >0}
4. {z|z>0} C{z|z201VT>o1}

Proof. All the containment rules directly follow from the definition of the partial

order > and the properties of D as a tree. O

The following proposition shows that the set of containment rules in Proposi-

tion 3.37 is complete.
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Proposition 3.38 (Containment Rules, Completeness) Consider a tree database
D. Let 51 and Sy be basic abstract sets such that S1 T Ss. Let o1 and oy be the
objects that appear in the definitions of S1 and So, respectively. Then, one of the

following two cases is true.

o [t holds that oo > 01 and the containment S1 C So has the form of Rule 1 or
Rule 2 in Proposition 3.37.

o [t holds that 01 = 0o and the containment S1 C So has the form of Rule 8 or
Rule 4 in Proposition 3.37.

Proof. 1If 09 # 01 and 01 ¥ 092, then the containment S; C S does not hold. When

02 > 01 Or 01 = 09, a simple case analysis proves the claim. O

In Figure 3.3, a procedure remove-non-maximal is presented. The procedure
receives a database D and a set A of abstract mappings of a variable v w.r.t. D.
In the procedure, if A contains two abstract matchings (o, S1) and (o, S2) such that
S1 C S, according to one of the rules in Proposition 3.37, then (o0, S7) is removed

from A.

Computing Abstract Mappings

Now, we show how to compute the maximal abstract mappings of variables in an
acyclic query @@ w.r.t. a tree database D. Procedure MAMA computes the set of
maximal abstract mappings of each variable in (). The computation is performed
in a bottom-up fashion, starting with the leaves of the query and rising towards the
root (i.e., an order that is inverted to the topological order of Q). For each node v,
MAMA computes a set A, that consists of all the maximal abstract mappings of v.

In the following, we describe how to compute the sets A,. The computation is
divided into several cases. The cases are according to the the number of children

that v has.

Case 1 Suppose that v is a leaf of (). Then, for each object o in D such that
label(o) = label(v), the abstract mapping (o,{z | z < 0V z » 0}) is added to A4,.

Note that there are no non-maximal elements that should be removed.
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Procedure remove-non-maximal(A, D);
Input A database D and a set of abstract mappings A
of a variable v w.r.t. D;
Output The set A after removing abstract matchings (o, S) for which

there is another abstract matching (0,S’) in A such that S C §'.

for each two abstract mappings (01, S1) and (02,S2) in A such that 01 = 0y
let o, and o, be the objects in S; and S2, respectively;
if o,, < 0., then
if So has the form {z |z < 0., V& = 0., } then
remove (01, S1) from A;
else if S, has the form {z | z > o.,} then
remove (02, S2) from A;
else if 0., < 0., then
if S; has the form {z |z < 0., V2 = 0., } then
remove (02,S2) from A;
else if S; has the form {z | z > o, } then

remove (01, S1) from A;

Figure 3.3: The procedure receives a set of abstract mappings and removes abstract
mappings that are not maximal. The removal is according to the four containment
rules of Proposition 3.37.

Case 2 Suppose that v has exactly one child v; and A,,, has already been computed.
Initially, the algorithm finds all the objects o in D such that label(o) = label(v). If
there is a pair (01,S51) in A4,,, such that o € S; and label(0) = label(v), then the
abstract mapping (o, combine(S1,Sp)), where S, = {z | £ < oV = > o}, is added
to A,. By executing remove-non-maximal(A,, D), the non-maximal elements of A,

are removed.

Case 3 Suppose that v has two or more children vy,...,v; and Ay,,..., A, have
already been computed. The computation of A, is performed in k steps.

In the first step, a set A} is computed from A,, in exactly the same way as the
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computation of A, from A,, in Case 2. In the ith step (2 <7 < k), AL is computed

7

from A} _; and A,,, as described next.
1. Tteratively, all the elements (o, S) of A}, are considered.

2. For each (0;,S;) in A,,; such that o € S; and label(0) = label(v), the abstract

mapping (o, combine(S, S;)) is added to A.

3. By executing remove-non-maximal(A], D), the non-maximal elements of A}

are removed.

The set A, is the set Aj.

Proposition 3.39 (Correctness) Consider a dag query and a tree database. For
each variable v of the query, the procedure MAMA computes the set of mazimal

abstract mappings of v w.r.t. D.

Proof. Consider a variable v and the set A, that was computed by MAMA for
the variable v. Corollary 3.34 shows that the set A, contains all the maximal
abstract mappings of v. Proposition 3.33 shows that all the elements of A, are
abstract mappings. Finally, since non-maximal elements are removed, A, contains

only maximal abstract mappings. O

Proposition 3.40 (Complexity) Consider a dag query Q and a tree database D.
Let q and d be the number of nodes in QQ and D, respectively. FEach set A, that is
computed by MAMA has at most d elements. The time complezity of MAMA is in
O(g%d?).

Proof. The set A, consists of maximal abstract mappings of v. For an object o of
D, there can be at most one maximal abstract mapping of v. Thus, the size of 4,
cannot exceed the number of objects in D.

Now, we analyze the time complexity of MAMA. First, note that in O(d?) it is
possible to construct a data structure that can tell in O(1) whether two database

objects are on a path. This is required for testing in O(1) if a given object is an
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element of an abstract set, i.e., an element of the concrete set that the abstract set
represents.

Consider a set A with z abstract mappings. Removing the non-maximal elements
from A with the procedure remove-non-maximal is in O(z) runtime. This is because,
in one pass over A the elements of A can be inserted into a hash table, where the
search keys of the hash table are the objects of the abstract mappings. Then, in
each step, a pair of abstract mappings (0, S1), (0, S2) are picked. For each such pair,
one of the two abstract mapping is removed, according to the test in the procedure
remove-non-maximal. Since in each removal step, a single element is removed, there
can be at most x removal steps. Thus, the runtime for the removal of the non-
maximal elements is in O(z).

Consider a node v in Q. MAMA computes A,, according to three different cases.
In all the three cases, searching D for objects that have the same label as v is in
O(d) runtime.

We now consider the three cases in MAMA for constructing A,. If v is a leaf
(i.e., Case 1 of MAMA) then at most d abstract mappings are added to A, and the
evaluation is in O(d).

Suppose that v has a single child v; (i.e., Case 2 of MAMA). In the algorithm
there is a loop over the objects of D and a nested loop over the objects of 4,,. In
each inner loop, there is a test that checks if an object o is contained in a set Sj.
There are at most d objects in D with the same label as v. The set A,, has at most
d elements. Thus, there are at most d? tests. Testing that o is in S is in O(1),
using the data structure we described above. Thus, the evaluation of this case is in
O(d?) runtime.

Suppose that v has k > 1 children. Then A, is computed in k steps as described
in Case 3 of MAMA. Each intermediate set A;-_l has at most d objects because
non-maximal elements are removed at the end of each step. Thus, in each step,
two sets A, and A,,, with at most d elements, are combined. Combining the two
sets is in O(d?) because of the same reasons that were given in the analysis of the
runtime of Case 2. Since k < g, the evaluation of this case is in O(gd?) runtime.

All together, there are g sets to compute. Each set is computed in O(qd?)
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runtime. Thus, the whole computation is in O(g2d?) runtime. O

Algorithm SFTT

So far, we described how to compute the maximal abstract mappings of variables
in a tree query w.r.t. a tree database. Now, we will present Algorithm SFTT that
actually computes semiflexible matchings of a plain tree query w.r.t. a tree database.
We will also show that the algorithm has polynomial time complexity, in the size of
the input and the output.

Before presenting the algorithm, we need to introduce a new definition. In
Definition 3.26, matching properties were defined. We now define compliance with

matching properties.

Definition 3.41 (Compliance) Suppose that Q) is a query and D is a database.
Consider a matching property P = (v,0,Vp,Sp) w.r.t. Q and D. Let i be an as-
signment to Vp w.r.t. D. We say that p complies with P if p(u) € Sy for each u in
Vp.

We now provide a description of SF'T'T. SFT'T computes the semiflexible match-
ings using a top-down traversal over the query. Matchings are computed by a series
of extension steps. In each step, the algorithm descends to a new variable and
matchings that were computed in a previous step are extended w.r.t. the new vari-
able. Maximal abstract mappings are being used as SF-properties and they make
sure that the created matchings are semiflexible matchings.

Consider a tree query @ and a tree database D. Algorithm SFTT computes a

set M of the semiflexible matchings of @) w.r.t. D as follows.

1. In the first phase of the algorithm, the sets of maximal abstract mappings A,
are computed by MAMA for all the variables v of Q.

2. The variables of () are sorted topologically. Let vg,v1,...,v, be the variables

of @ ordered according to the topological sort. Note that vy is the root of Q.

3. Tteratively, n + 1 sets MO, ..., M™ are computed as described next.



Chapter 8 Flexible and Semiflexible Queries 50

4. If Ay, is not empty, then the set MO consists of a single mapping po =
{(vo,rD)}, i.e., o is the mapping of the query root (vg) to the database root.
If A,, is empty, then the algorithm stops and returns an empty set M.

5. In step 4, the set M°® is constructed from M*~! by extending the matchings in

ML wort. v, as follows.

(a) Iteratively, each matching y;_1 in M*~! and each abstract mapping (o, S)

in A,, are considered.

(b) Let P = (vj,0,{u | u > v;},S) be a matching property that the abstract
mapping (o, S) defines. If y;_1 complies with P then u; = p;—1U{(v;,0)},
i.e., pi_1 is extended by mapping v; to o, and p; is added to M®.

6. Let M be the set M™. The set M is returned.

The following propositions prove the correctness of SF'T'T and analyze its time

complexity.

Proposition 3.42 (Correctness) Suppose that Q is a plain tree query and D is
a tree database. The set M that SFTT returns is the set of all the semiflexible
matchings of Q w.r.t. D.

Proof. There are two things to show. One thing to show is that all the matchings
in M are semiflexible matchings of Q w.r.t. D. The second thing to show is that all
the semiflexible matchings of @ w.r.t. D are in M.

First, we show that all the matchings in M are semiflexible matchings of @
w.r.t. D. We show this by showing that all the matchings in M are connectivity-
preserving mappings (Definition 3.10). This will prove what we want, according to
Corollary 3.13 and the fact that in all the mappings in M the query root is mapped
to the database root.

Consider a matching p in M. We show that the first condition of Definition 3.10
holds. Let v; be a variable of (). Suppose that @) has a simple path of the form
vo*lv;. Then, the object p(v;) is reachable from the root and has a single incoming

label. This label must be [ because all the objects in A,, have an incoming label
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that is equal to the incoming label of v. Thus, there is a path in D of the form
rp*xlp(v;).

We show that the second condition of Definition 3.10 holds. Let v; and v; be
two variables of () such that there is a path in @ of the form vpl;v;*l;v;. Consider
step 7 in the algorithm, where the assignments of M’~! are extended w.r.t. vj.

Because p is created by the algorithm the following three assertions must be
true. First, there is a matching p;_1 in M7 ! such that p;_1(v;) = p(v;), for each
1 <1 < j. Second, there is an abstract mapping (u(v;),S) in Ay;. Third, pj—1
complies with the matching property P = (vj, u(v;), {u | u > v;}, S).

The variable v; is above v; in Q. Hence, v; is in the set {u | u > v;}. From the
compliance of p;_1 with P, it follows that p;_i(v;) is in S. We showed earlier that
pi—1(v) = p(vy), for each 1 <1 < j. In particular, pj_1(v;) = p(v;). So, p(v;) € S.

The pair (u(v;), S) is an abstract mapping of v;. According to the definition of
abstract mappings (Definition 3.29), all the object in S are on a path with p(v;).
Since p(v;) is in S, p(v;) and p(v;) are on a path in D. The label that enters p(v;)
and the label that enters p(v;) are l; and I;, respectively, because p(v;) and p(vj)
are in abstract mappings of 4,, and A,,, respectively. Thus, D either has a path
of the form p(v;)*l;u(v;) or a path of the form p(vj)*l;u(v;). This shows that the
second condition of Definition 3.10 holds and p is a semiflexible matching.

Now, we show that all the semiflexible matchings of Q w.r.t. D are in M. First,
we show that the abstract mappings are not too restrictive.

Suppose that u is a semiflexible matching of @ w.r.t. D. Let v be a variable of
Q. Then, according to Proposition 3.30, there is an abstract mapping of (u(v), S)
is A, such that if u is an ancestor of v then u(u) € S.

Let p; (0 < i < n) denote a matching that is defined for the variables vy, . .. ,v;,
where p1;(vj) = p(v;) for each 0 < j <. We complete the proof by induction on i.

The inductive hypothesis is that p; is in M. For i = 0 the claim holds, since
Proposition 3.30 implies that A,, is empty only if there are no semiflexible matchings
of Q w.r.t. D.

Suppose that the inductive hypothesis holds for i. We want to show that it also
holds for i + 1, i.e., pi 1 is in ML,
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According to the inductive hypothesis, y; is in M*. As was shown above, there is
an abstract mapping (u(vi41),S) in A, ,, such that ;; complies with the matching
property P = (vit1, p(vit1),{u | u > vit1},S). Thus, y; is extended by adding to it
(viy1, u(viy1)). Hence, p;yq is in M1, This completes the proof of the induction.

and completes the proof of the proposition. O

In the following, we analyze the time complexity of SFTT. First, we show that in
the second phase of the algorithm there are no dangling matchings. (A matchings u;
in M' is considered dangling if in the i + 1st step of the algorithm it is not extended

with any assignment to v;.)

Lemma 3.43 (No Dangling Matchings) In SFTT, |M!| < |[M*Y| for each 0 <

1 <n—1.

Proof. We prove the lemma by showing that for every matching p; in M? there is
a matching p;,; that extends p; and belongs to M1,

Suppose that p; is in M?. Consider the variable v;;1. Let vy be the parent of
vit1 in Q.

In Step h of the algorithm, the mapping up 1 was extended by assigning p;(vp)
to vp. Thus, there is an abstract mapping (u;(vp), Sp) in A, , such that p(u) € Sy,
holds for each variable u above vy,.

As was claimed, (u;(vp), Sp) is an abstract mapping w.r.t. vy. In addition, v;4q
is a child of v,. Hence, according to the definition of the abstract mapping (Def-
inition 3.29), there is an abstract mapping (0, S) of v;11, such that S, C S and

wi(vp) € S. Thus, in A,,_, there is (¢, S’) that is either equal to or contains (o, S).

i1
Let u be a variable above v;11 in Q. If u is vp, then u;(u) € S. If u is above vy,
then p;(u) € Sp and S, C S, so again p;(u) € S. Consider the matching property
P = (vi41,0,{u | u > v;31},5"). Then, pu; complies with P and, hence, pu; is
extended in the i + Ist step of the algorithm. That is, y; U {(v;11,0)} is in M*TL.
This shows that there are no dangling matchings. Thus, the size of the sets M?*

monotonically increases. O
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Proposition 3.44 (Complexity) Suppose that SFTT is computed w.r.t. a plain
tree query Q and a tree database D. SFTT has O(|Q|*|D|(|D|+|M)|)) time complez-
ity, where |Q|, |D| and | M| are the sizes of the query, the database and the result,

respectively.

Proof. The first phase of the algorithm is in O(|Q|*|D|?), according to Proposi-
tion 3.40.

Consider extension step ¢ in the second phase of the algorithm. In this step,
there is an iteration over the |M?| matchings of M and the abstract mappings of
Ay,;. By Lemma 3.43, |[M?| < [M|. By Proposition 3.40, the size of A,, is at most
|D|. Thus there are O(|M||D]) iterations. It each iteration, an abstract mapping
(0,S) is tested w.r.t. the assignment to the O(|Q|) variables that are above v; in Q.
Recall that it is in O(1) runtime to test if an object is in a set that is defined by a
basic abstract set (assuming that a suitable data structure is initially constructed).

In the second phase of the algorithm there are |Q| extension steps. Accord-
ing to the above arguments, each step is in O(]M||D||Q|). Thus, the second
phase of the algorithm is in O(|Q|?|D||M|) runtime. The two phases together have
O(IQI’|D|(|D| + |M])) time complexity. O

Evaluating a DAG query over a Tree Database

Consider a plain dag query @) and a tree database D. In this section, we show
how to compute the semiflexible matchings of ) w.r.t. D in polynomial time, under
input-output complexity.

SFTT was presented in the previous section as an algorithm for computing
matchings of a semiflexible tree query w.r.t. a tree database. SFTT remains sound
and complete when the query is a dag. That is, SFTT can compute the semiflexible
matchings of a dag query @ w.r.t. a tree database D. However, for dag queries,
SFTT does not have a polynomial-time input-output complexity. The cause of this
is that in extension steps w.r.t. variables with more than one incoming edge, there
could be dangling matchings.

Next, we describe how to modify SF'T'T so that the input-output time complexity
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will be polynomial for plain dag queries. We start by presenting some required

notations and definitions.

Definition 3.45 (Intersection Node, Origin, Middlenode) A variable v, in a
dag query @, is an intersection node if there are two or more edges in @ that enter
v. A node ug is a source of v if all the paths from the root to v go through us. The
origin of v is the lowest source of v, i.e., a source of v that has no source of v below
it. A mode w is a middlenode of v if it is between us and v. That is, there is a
path from ug to w and a path from w to v. The origin of v is also considered a

middlenode of v.

It is easy to see that in a dag query, an intersection node has exactly one origin but
a node can be the origin of several intersection nodes.

The following observation shows why evaluation of dag queries w.r.t. a tree
database is not computationally hard. In a semiflexible matching of a dag w.r.t. a
tree, for each intersection node v, either all the nodes above v or all the nodes below

v are mapped to a single database path. This is proved in the next proposition.

Proposition 3.46 (Mapping Intersection Nodes) Let Q be a dag query, D be
a tree database and p be a semiflexible matching of Q w.r.t. D. If v is an intersection

node of @ then one of the next two statements must be true.

e For each pair of nodes uy and uy above v, their images p(u1) and u(uz) are

connected by a path.

e For each pair of nodes wi and we below v, their images p(wy) and p(ws) are

connected by a path.

Proof. Consider a case where u; and ug are nodes above v such that u(u;) and
p(ug) are not connected by a path. In addition, w; and we are nodes below v such
that p(wy) and p(wsy) are not connected by a path. We show that the assumptions
of this case lead to a contradiction.

In the query, there is a path from u; to v and a path from v to w;. Thus, there
is a path, in @, from u; to wy. Similarly, we can show that @) has a path from u; to

w2, a path from us to w1 and a path from us to ws.
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Because there is a path in @ from u; to wq, either D has a path from u(u1) to
p(wi) or vice versa. Similarly, there must be a path from p(u1) to p(ws) or vice
versa. We assumed that p(wp) and p(ws) are not connected by a path. Hence,
p(wr) and p(we) must be below p(uy), in D.

By replacing the roles of u; and uy with w; and ws, we can show, in the same
way, that u(u1) and p(uz) must be below p(wp), in D. However, D is a tree, so
it impossible that, simultaneously, u(wi) is below p(ui) and p(u1) is below p(wi).

This contradiction completes the proof. O

We will show how to construct mappings of () to D according to the restriction
that Proposition 3.46 imposes. Consider a dag query () and a tree database D. Let
v, - .- ,Un be the variables of ) and A,,,...,A,, be the sets of maximal abstract

mappings that the procedure MAMA computes.

Definition 3.47 (Restriction of Abstract Mappings) Suppose that (0;,S;) is
an abstract mapping of an intersection node v;. The restriction of A,y,..., Ay, to

(0i, 8;) and v; are the sets A, ,..., A, such that the following holds.
1. The set A, contains (0;,S;) and no other element.

2. Consider a middlenode v; of v;. The set A;,j satisfies the next three conditions.

(a) AL, C Ay,

(b) For every (0;,S;) in Al , it holds that o; € S;.

vj 2
(¢) Suppose that v; has children v{,...,vi in Q. Then there are abstract
mappings (0{,5{),...,(0%,5,{) of v{,...,vi, respectively, such that, for

each 1 <1<k, S; C Slj, 0j ESlj and (of,Sl]) is in A'vj.
1

3. For v; that is not a middlenode of v;, A;j is equal to Ay;.

Consider the case where in Definition 3.47, S; has the form of {z | z < o'V > 0'}.
Then, the sets of abstract mappings in the restriction correspond to mappings in
which the middlenodes of v are mapped to database objects on the path from the

database root to o'. Suppose that S; has the form of {z | z > o'}. Then, the sets
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of abstract mappings in the restriction correspond to mappings in which the nodes
below v are mapped to objects of D that are above o'.

Consider a plain dag query @, a tree database D and a semiflexible matching y
of Q w.r.t. D. Let vg,...,v, be the variables of () and v; be an intersection node.

In addition, let v;,,...,v;, be the middlenodes of v;.

Proposition 3.48 (Completeness) Suppose that (u(v;), Si) is an element of Ay,.
Let A, ,..., A, be the restriction of Ay,..., Ay, to (u(vi),S;). Then, for each

1 <1<, there is (u(v), 1) in A, such that for every variable u above vy, p(u) is

n Sl.

Proof. If v; is not an intersection node of v;, then A;l is equal to A,,. In this case,
the claim follows from Proposition 3.30.
If v; is an intersection node of v;, then p(v;) satisfies S;. Thus, a simple induction

shows that each maximal abstract mappings (u(v;)S;) of Ay, is also in 4j, . O

Definition 3.49 (Dangling Abstract Sets) Suppose that (0;,S;) is an abstract
mapping of an intersection node v;. We say that (0;,S;) is dangling if in the restric-

tion of Ay,,--., Ay, to (0;,5;) and v;, one (or more) of the sets is empty.

In order to avoid dangling assignments, the extensions of assignments in the
algorithm should be computed w.r.t. abstract mappings that are not dangling, as
will be explained when we will describe the algorithm.

Consider a dag query @ and a tree database D. Let vy, ...,v, be the variables
of @) ordered topologically. Let v; be an intersection node and wv;,,...,v;,, be the
middlenodes of v;. Let A,,,...,A4,, be the sets of maximal abstract mappings of
0, - - -, U, respectively. Finally, let (0;,S;) be an abstract mapping in A,, and let

Al A, be the restriction of A,,..., Ay, to (0;,5;) and v;.

vo?rt v
Definition 3.50 (Compliance) Suppose that p is a mapping of vi,,...,v;, (I <

m) to D. We say that p(v;,),...,p(v;,) comply with (0;,S;) and v; if there are
((viy), 81), - -5 ((v3), 1) in Ay, ..., Ay, , respectively.
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Now, we show how to modify algorithm SFTT for dealing with dag queries. We
call the modified algorithm SFDT. (Notice that the difference in the names of the
algorithms is in the third letter, where D replaces T.)

Consider a plain dag query. Let vy, ..., v, be the variables of (). Let D be a tree

database. SFDT performs the following steps.

1. As a preliminary step, for each intersection node v;, it is verified that v; does
not have two incoming edges with different labels. In addition, the origin of v;,

denoted v,, is discovered and the set M,, of the middlenodes of v; is computed.
2. A topological order vy, ..., v, of the nodes of @) is computed.
3. The sets A,,,...,A,, are computed using MAMA.

4. Consider an intersection node v; and an abstract mapping (o;, S;) of v;, in A,,.
The restriction of Ay, ..., Ay, to (0, S;) and v; is computed. The computation
is similar to the computation of the sets A,,,...,A,,, except that for the
middlenodes of v;, abstract mappings are computed merely w.r.t. nodes that
are in S;. If, at the end of the computation, (0;,S5;) is dangling then it is

discarded from A,,.

5. The sets M, ..., M™ are computed as in SFTT with the following difference.

Consider an assignment p;_; in M7~! and an abstract mapping (o0, S) in Ay, -

(a) Suppose that v; is a middlenode of an intersection node v;. In addition, let
Uiy, - - - , U, be the middlenodes of v; that appear before v; in a topological
order of Step 2. Then, u;_; is extended by mapping v; to o only if p;_1
complies with the matching property that (o, S) defines and, in addition,
pw(viy), ..., 1(vs,) and p(v;) comply with (o, S) and v;.

(b) If v; is not a middlenode of any node, then the extension is computed as

in SFTT.

Proposition 3.51 (Correctness) Suppose that Q is a plain tree query and D is
a tree database. Algorithm SFDT returns the set of semiflexible matchings of Q
w.r.t. D.
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Proof. First, we claim that all the matchings returned by the algorithm are semi-
flexible matchings. This is proved in a similar way to the proof of Proposition 3.42.
Essentially, the proof shows that in each extension step the assignments comply with
the SF-Property that the abstract matchings define. Thus, the created assignments
are semiflexible matchings.

Secondly, we claim that all the semiflexible matchings of @ w.r.t. D are com-
puted by the algorithm. The difference between SFDT and SFTT is in adding
a condition of compliance with the abstract matchings of the intersection nodes.
Proposition 3.48 shows that this condition does not discard semiflexible matchings.

The rest of the proof is similar to the proof of Proposition 3.42. O

Before we can show that SFDT has polynomial input-output time complexity,
we need to show that there are no dangling matchings, and thus, each intermediate

set M is not larger than the output of the algorithm.

Proposition 3.52 (Monotonic Increase) In Algorithm SFDT, |M?| < |[M*1,

for each 0 < i <mn.

Proof. We show that the algorithm does not produce dangling matchings. Consider
a matching p; in M*. We need to show that there is a matching p; 1 in M**! such
that p;(vp) = pit1(vp), for each 1 < h < n.

If v;41 is not an intersection node then the proof is similar to the proof of 3.43,
with the next addition. The condition of compliance with the abstract matchings of
the intersection nodes does not prevent extending u; with an assignment of v;41 to
pi+1(viy1) due to Proposition 3.48.

Suppose that v;41 is an intersection node. Then pu; assigns the middlenodes of

v;+1 to objects that comply with some abstract mapping (o0, S) of A In this

Vi41-

case, i; can be extended by assigning o to v;yi. O
Finally, we show that the runtime of SFDT is polynomial in the size of the input

and the output.

Theorem 3.53 (Complexity) Let Q be a plain dag query and let D be a tree
database. Algorithm SFDT computes the set of semiflexible matchings My (Q, D)
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in polynomial time, in the size of the input and the output.

Proof. Let g, d and m be the sizes of the query, the database and the result,
respectively.

Computing the sets Ay, ..., Ay, is in O(¢?d?), according to Proposition 3.40.
Computing the restrictions of A,y,...,A,, to abstract mappings of intersection
nodes is in O(g3d?). This is because there are at most ¢ intersection nodes. There
are at most d abstract mappings in A,,, for each intersection node v;. Thus, there
are O(gd) computations of restriction and each computation is in O(g?d?), i.e., has
complexity that is similar to the complexity of computing A4,,,...,4,,.

There are O(q) extension steps in the algorithm. In each extension step, at
most m matchings are extended, according to Proposition 3.52. Each extension
step requires checking two things. First, compliance with the matching property.
This is tested in O(g), since there are at most ¢ variables above each variable of
the query. The second thing to check is compliance with an abstract mapping of
an intersection node. This is tested in O(qd) because there are d possible abstract
mapping to comply with and there are at most ¢ middlenodes for each intersection
variable.

All together, SEDT has O(q*d® + dm(q + d)) time complexity. Therefore, com-
puting the semiflexible matchings of @) w.r.t. D has polynomial time complexity, in

the size of the input and the output. O

3.2.3 Cyclic Databases and Cyclic Queries

For the case of a cyclic database, deciding if there exists a semiflexible matching
of a given query w.r.t. the database is NP-Complete. NP-Hardness follows from
Theorem 3.23. For acyclic queries, Membership in NP follows from Theorem 3.19.
For cyclic queries, since the result of evaluating a cyclic query over a dag database
is always empty, NP-Hardness does not follow from Theorem 3.23. However, a
reduction similar to that of Theorem 3.23 shows that nonemptiness of a cyclic query
over a cyclic database is NP-Hard.

The complexity results for the various cases are shown in Table 3.2. Note that the
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dag database

cyclic database

NP-Complete
NP-Complete

NP-Complete
NP-Complete

Database / Query path query tree query dag query cyclic query
path database PTIME PTIME PTIME the result is always empty
tree database PTIME PTIME PTIME the result is always empty

NP-Complete
NP-Complete

the result is always empty

NP-Complete

Table 3.2: The complexity of checking nonemptiness under the semiflexible seman-
tics.

cases for which it is said that testing emptiness is in polynomial time (in the size of
the query and the data), their query-evaluation has a polynomial-time input-output
complexity. When testing emptiness is not polynomial, obviously, query-evaluation

cannot have a polynomial-time input-output complexity either.

3.3 Evaluating Flexible Queries

In this section, we discuss query evaluation under the flexible semantics. First, we
will show that query evaluation under the flexible semantics can be reduced to query

evaluation under the rigid semantics.

Definition 3.54 (Reachability Graph) Let D = (O, E,rp, ) be a database over
the set of nodes O. The reachability graph of D is a rooted labeled directed graph,
denoted RG(D) = (O, Eg,rp, ), that is obtained from D by adding edges as follows.
If object o' of D has an incoming edge labeled with | and there is either a path from

o' to another object o or vice-versa, then Egr has an edge labeled with I from o to o'.

If a database D contains n nodes and the ingoing degree of D is k (the ingoing
degree of D is the maximal number of edges that enter a node in D) then RG(D)
has at most n? - 2k edges. The reason for this is that between each pair of nodes in
RG(D) there can be at most 2k edges with different labels. Hence, the size of RG(D)
is polynomial in the size of D. Note that the reachability graph can be stored in a
data structure whose size is n? + n - k. In the data structure, for each pair of nodes
there should be a bit that indicates whether there is a path between these nodes. In

addition, each node should have a list with the labels that enter it.
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Theorem 3.55 (Reduction to the Rigid Semantics) Consider a query Q and
a database D. Let RG(D) be the reachability graph of D. The following two sets are

equal.
o The set of flexible matchings of Q w.r.t. D.

e The set of rigid matchings of Q w.r.t. RG(D).

Proof. First, we show that every flexible matching of ) w.r.t. D is also a rigid
matching of @ w.r.t. RG(D). According to Definition 3.5, if 4 is a flexible matching
of Q w.r.t. D, then it satisfies the rc, all the wec’s and all the gec’s of (). We need
to show that u satisfies all the ec’s of @ w.r.t. RG(D).

Let ulv be an ec of (). The matching u satisfies the wec lv w.r.t. D. Thus,
the object p(v) has an incoming label [ in D. In addition, p satisfies the gec ulv
w.r.t. D. So, either there is a path in D from u(v) to p(u) or vice-versa. According
to Definition 3.54, RG(D) has an edge u(u)lu(v), and hence the ec ulv is satisfied
w.r.t. RG(D). From the above, it follows that y is a rigid matching of @ w.r.t. RG(D).
This is because, w.r.t. RG(D), p satisfies the rc and all the ec’s of Q.

For the other direction, we show that every rigid matching of @ w.r.t. RG(D) is
also a flexible matching of @ w.r.t. D. Let p be a rigid matching of @ w.r.t. RG(D).
The matching yu satisfies the rc and all the ec’s of @ w.r.t. RG(D). We need to show
that u satisfies all the wec’s and all the gec’s of QQ w.r.t. D.

Let v be a wec in (). The wec [v is part of an ec ulv for some node u. The
matching p satisfies the ec ulv w.r.t. RG(D). Thus, there is an edge p(u)lu(v) in
RG(D). It follows that u(v) has an incoming edge labeled with [. So, u satisfies the
wec [v w.r.t. D. This shows that u satisfies all the wec’s of ).

We now show that, w.r.t. D, u satisfies all the gec’s of ). Let ulv be a gec of
Q. The matching yu satisfies the ec ulv of @ w.r.t. RG(D). So, RG(D) contains the
edge p(u)lp(v). This means that either there is a path in D from p(u) to u(v) or
vice-versa. Thus, u satisfies the qec ulv w.r.t. D. This shows that u satisfies all the
gec’s of @. Since, w.r.t. D, yu satisfies the rc, all wec’s and all the gec’s of @, it is a

flexible matching of @ w.r.t. D. O
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Evaluating all the rigid matching of @ w.r.t. RG(D) can be done as follows. For
each edge e = ulv of (), we create a binary edge relation r. that has the attributes u
and v, and the following set of tuples: {(0,0’) | RG(D) has an edge olo'}. In other
words, 7, contains all edges of RG(D) that have the same label as e. The join of
all the edge relations yields all the rigid matchings of RG(D). When the join is
acyclic, Yannakakis’s algorithm [65] can be applied and, hence, we get the following

corollary.

Corollary 3.56 (Tree Evaluation is in Polynomial Time) When the query is
a tree and the database is any graph, query evaluation under the flexible semantics

has a polynomial-time input-output complezity.

Let M;(Q, D) denote the set of flexible matchings of a query @ w.r.t. a database
D. The next lemma shows that if @) is not a tree then it is NP-hard to decide whether
M;(Q, D) is not empty. We use a reduction of 3SAT.

Lemma 3.57 (Reduction of 3SAT) For a given 3CNF formula ¢ over a set of
propositional letters P, one can construct in polynomial time a dag query Q and a

database D such that the following are equivalent.

1. There is a flexible matching of Q w.r.t. D;
2. There is an assignment for the propositional letters in P that satisfies .

The proof of Lemma 3.57 is given in Appendix C.
The next theorem shows that if () is not a tree, then a query-evaluation algorithm

with a polynomial-time input-output complexity is not likely to exist.

Theorem 3.58 (DAG Evaluation is NP-Complete) Given a dag query Q and
a database D, deciding whether the flexible semantics yields a nonempty result is

NP-complete.

Proof. NP-hardness follows from Lemma 3.57. Membership in NP follows because
a flexible matching can be guessed and verified in polynomial time by checking the
satisfaction of the constraints with respect to the reachability graph of D. Recall
that the size of the reachability graph of D is polynomial in the size of D. O
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3.4 Query Containment and Query Equivalence

In the case of relational conjunctive queries, the final step of evaluation is a projection
of the matchings onto the distinguished variables. Consequently, containment is
defined in terms of those projections. In the case of queries over semistructured
data, the final step is a construction of the result from the matchings. A discussion
of this step, however, is beyond the scope of this work. Thus, in this work, the
semantics of queries is defined in terms of matchings over all the variables, and
containment (equivalence) is defined as containment (equality) of the corresponding

sets of matchings.

Definition 3.59 (Query Containment, Query Equivalence) Let Q1 and Qo
be two queries over the same set of node variables and with the same root. We
say that Q)1 is contained in Qo under the semantics s, denoted Q1 Cs Q2, if for all
database D, M4(Q1,D) C Ms(Q2,D). The queries Q1 and Qo are equivalent if for
all database D, Ms(Q1,D) = M;(Q2, D).

Deciding equivalence and containment of queries is useful for optimization tech-
niques. The next theorem provides a characterization of containment for semiflexible

queries.

Theorem 3.60 (Semiflexible Containment) Let Q1 and Qo be queries over the
same set of variables V. Q1 Cyp Q2 if and only if the identity mapping v over V is
a semiflexible matching of Q2 w.r.t. Q1.

Proof. Consider the case where the identity mapping v is a semiflexible matching
of Q2 wrt. Q1. Let D be a database, and let u € My(Q1,D) be a semiflexible
matching of @; w.r.t. D. We want to show that y is a semiflexible matching of Q2
w.r.t. D.

Obviously, ;4 maps the root of the Q)2 to the root of D, since the root of Q2 and
the root of ()1 are the same node.

Let w9 = wolyvy---1l,v, be a path in Q3. Since 7y satisfies the SF-Condition

w.r.t. v, there is a permutation o of 0,1,...,n such that ¢(0) = 0 and @; has
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a path w1 of the form v(v,(g))*ls(1)V (V1)) *** *lo(n)V(Vo(n)). But v is the iden-
tity mapping so the form of m; is actually v, (0)*lo(1)Vs(1) * * * *lo(n)Vo(n)- The path
71 satisfies the SF-Condition w.r.t. u, because u is a semiflexible matching of Q4
w.r.t. D. So, there is a permutation ¢’ such that D includes a path with the form
(g (0)) ¥l (1) (Vg1 (1)) * * * ¥l gt () 14 (Vgr (1) ). This path shows that m, satisfies the SF-
Condition w.r.t. y.

Given a strongly connected component C' in @2, C is also a strongly connected
component in ()1 since v is a semiflexible matching. Furthermore, the image of C is
a strongly connected component in D since y maps strongly connected components
of )1 to strongly connected components of D. We conclude that 4 is a semiflexible
matching of Q2 w.r.t. D.

For the other direction, assume that Q1 C,; Q2. We create a database from Q1
by adding to @)1 some arbitrary function o that maps the atomic nodes of Q)1 to
values (see Definition 2.1 and Definition 2.3). The identity mapping v over V is a
semiflexible matching of ()1 w.r.t. 1. Thus, v is also a semiflexible mapping of Q2

w.r.t. Ql- o

Corollary 3.61 (Polynomial Time Complexity) Deciding if Q1 Cs5 Q2 is in

polynomial time.

Proof. According to Theorem 3.19, the time complexity for verifying that a match-
ing is a semiflexible matching is polynomial. O
A characterization of containment for flexible queries is given in the next theo-

rem.

Theorem 3.62 (Flexible Containment) Let Q1 and Q2 be queries over the same

set of variables. Q1 Cy Q2 if and only if the following two conditions hold.
1. For each wec lv in Qo, there is a wec lv in Q1.

2. For each gec ulv in Qq, where u # rg, and v # rqg, (rq, is the root of Q2),

the query Q1 contains either the qec ul'v or the gec vl'u for some label I'.
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Proof. Assume that Condition 1 and Condition 2 hold for ()1 and Q2. Let D be
a database and let pu be a flexible matching of ()1 w.r.t. D. We show that u is a
flexible matching of Q.

The root of @)1 and the root of ()9 are the same node. Thus, satisfaction of the
rc of Q1 is the same as satisfaction of the rc of Q2. Let lv be a wec in Q). According
to Condition 1, [v is also a wec in Q1. Thus, u satisfies lv. Let ulv be a qec of Qo
such that both « and v are not rg,. By Condition 2, ()1 contains either a gec ulv or
a gec vlu. In both cases, from satisfaction of the gec’s of Q1 it follows that there is
a path in D from pu(v) to u(u) or vice-versa. This shows satisfaction of the gec ulv
of Q2. For a qec rg,lv of Q2, pu(rg,) is the root of D and obviously, there is a path
from the root of D to any node of D, including p(v). Thus, u satisfies this gec. For
a qgec ulrg, of @2, the object u(rg,) is the root of D and obviously, there is a path
from the root of D to any node of D, including p(u). Thus, u satisfies this gec. To
conclude, p in a flexible matching of )2 since it satisfies the rc, the gec’s and the
wec’s of Qo.

For the other direction, we assume that Q1 C; Q2 and we show that the above
two conditions hold.

To show that the first condition holds, we create a database from )1 by adding
to Q1 some arbitrary function « that maps the atomic nodes of Q1 to values (see
Definition 2.1 and Definition 2.3). Obviously, the identity mapping v is a flexible
matching of Q1 w.r.t. Q1. Since Q1 Cf @2, v is a flexible matching of Q2 w.r.t. Q1.
Let lv be a wec in Q). Since v satisfies [v w.r.t. @1, there must be an edge in ()1 that
enters v and its label is [. This means that there is a wec [v in ()1 and Condition 1
holds.

To show that the second condition holds, consider a gec ulv in Q2, where u # rq,
and v # rg,. We create a database D whose nodes are the variables of ()1 and its
root is the root of 1. For each label [ in ()1 and every two nodes w1, wa, such that
w; # u and w; # v (for 4 = 1,2), D includes an edge wilws. In addition, for each
label I and node w such that w # u and w # v, D consists of the edges wilv and

wlu.
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The database D has the following three properties. First, there is a path between
each pair of nodes, except for the pair v and v. Second, from each node there is a
path to u (v) but there is no path from u (v) to any node of D. Third, for each
label [ and each variable w of Q1, D has an edge, with the label [, that enters w.
Note that in the construction of D we assumed that neither v nor u is the root of
Q1. Thus, it is not necessary to have paths from from either u or v to all the other
nodes.

Since D has no path from u to v or vice-versa, there is no flexible matching of
Q2 w.rt. D. We assumed that Q1 Cy ()2, so there is no flexible matching of 1
w.r.t. D. According to the construction of D the rc and all the wec’s of (); are
satisfied by the identity mapping. Furthermore, every qgec, except for a qgec ul'v or
a qec vl'u, is satisfied by the identity mapping. Since the identity mapping is not
a flexible matching of @1 w.r.t. D, Q1 must include either the qec ul'v or the qec

vl'u, for some label I'. O
To decide containment of 1 in (Q2, under the flexible semantics, we just need

to check that every wec (qec) in @1 has a suitable wec (qec) in Q2. Thus, we get

the following result.

Corollary 3.63 (Polynomial Time Complexity) Deciding whether Q1 Cy Qo
is in O(|Q1] - |Q2|) time.

If we sort the ec’s and wec’s of ()2, deciding containment can be done in O(|Q2| -

log |Q2| + |Q1] - log [Q2])-

3.5 Database Equivalence

In this section we introduce the novel notion of database equivalence and we char-

acterize database equivalence under the different semantics.

Definition 3.64 (Database Equivalence) Given two databases D and D' over
the same set of objects O, we say that D and D' are equivalent under the semantics
s if for every query Q, the set of s-matchings of Q w.r.t. D is equal to the set of
s-matchings of Q w.r.t. D'.
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Under the classical (i.e., rigid) semantics, two databases are equivalent if and only
if they are isomorphic (i.e., have the same root and the same set of labeled edges).
In the case of the semiflexible and flexible semantics, however, two databases can be
equivalent even if they are not isomorphic.

One reason for investigating database equivalence is that in some cases it is
more efficient to evaluate queries over databases that have a certain form than
over databases that have a different form. For example, we showed that it is more
efficient to evaluate queries over a tree database than over a dag database. Thus, it
is important to be able to characterize equivalence of databases, and to be able to
transform a database of a given form (e.g., dag) to an equivalent database that has
a different form (e.g., tree).

Let D and D' be two databases that have the same set of objects and the same
root. We say that a path ¢ = ogl101l209 - - - [0, of D, where oq is the root, is included
in a path ¢' of D' if there is a permutation o of 1,...,n, such that ¢’ has the form
00%l5(1)00(1)*lo(2) O0(2) *** *lo(n) Oo(n)

We say that there is a semiflexible path inclusion of D in D’ if for every path ¢
in D that starts at the root, there is a path ¢’ in D', such that ¢’ includes ¢.

Theorem 3.65 (Semiflexible Equivalence) Consider two databases D and D'
over the same set of objects and with the same root. D and D' are equivalent under

the semiflexible semantics if and only if the following conditions hold.
1. There is a semiflexible path inclusion of D in D' and vice-versa.

2. Fach strongly connected component in D is a strongly connected component in

D' and vice-versa.

Proof. Suppose that the conditions of the theorem hold. We need to show that
D and D' are equivalent under the semiflexible semantics. Let @ be a query and
p € Mg (Q, D) be a semiflexible matchings of @ w.r.t. D. Since D and D' have
the same set of objects, p is an assignment of @ w.r.t. D'. We show that u is a
semiflexible matching of Q w.r.t. D' by showing that it satisfies the conditions of

Definition 3.4.
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Since D and D’ have the same root, u maps the root of @) to the root of D', and
thus, the rc of @ is satisfied.

Given a path 7 = vglyvy---lyv, in @, p satisfies the SF-Condition w.r.t. D
and hence there is a path ¢ in D of the form p(v,(0))*lo(1)(Vo(1)) * * * *¥lo(n) (Vo (n))-
According to Condition 1, there is a semiflexible path inclusion of D in D’ and, thus,
D' has a path p(ver(g))*lor (1) 14(Vor(1)) -+ ¥lot (n) (V! (n) ), for some permutation o’ of
1,...,n. This shows that 7 satisfies the SF-Condition w.r.t. D'.

If C is a strongly connected component in () then it is mapped by u to a strongly
connected component of D. This strongly connected component of D is also a
strongly connected component of D', according to Condition 2.

We have shown that u satisfies the conditions of Definition 3.4 and hence it is
a semiflexible matching of @ w.r.t. D'. Exchanging D with D’ shows that if y is
a semiflexible matching of @ w.r.t. D’ then it is also a semiflexible matching of @
w.r.t. D. To conclude, D and D' are equivalent under the semiflexible semantics.

For the other direction, suppose that D and D’ are equivalent. Let Qp be a query
that is created from D by considering the objects of D as variables and removing
the atomic values. Note that the set of labeled edges of D is equal to the set of
labeled edges of Qp.

The identity mapping pp, from the variables of Qp to the objects of D, is a
semiflexible matching of Qp w.r.t. D. Since D and D’ are equivalent, pp is also a
semiflexible matching of Qp w.r.t. D’.

Suppose the ¢ is a path in D. Then, ¢ is also a path in @Qp. The matching up
satisfies the SF-Condition w.r.t. ¢ and D’. Hence, there is a path ¢' in D’ such that
¢' is a permutation of ¢. That is, there is a semiflexible path inclusion of D in D'.

Because up is a semiflexible matching, it satisfies Condition 3 of Definition 3.4.
Thus, every strongly connected of @p (and hence of D) is a strongly connected
component of D'

By replacing the roles of D and D’ we can show, in the same way, that there is a
semiflexible path inclusion of D' in D and that every strongly connected component
in D' is a strongly connected component of D. This shows that the two conditions

of the theorem hold. O
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Conditions (1) and (2) of the above theorem are essentially equivalent to the
condition that the identity mapping (of the objects of D to the objects of D) is a

semiflexible matching. Therefore, we get the following corollary.

Corollary 3.66 (Time Complexity) Under the semiflexible semantics, deciding

database equivalence is in polynomial time.
For the flexible semantics, we have the following theorem.

Theorem 3.67 (Flexible Equivalence) Consider two databases D and D' over
the same set of objects O and with the same root. The databases D and D' are
equivalent under the flexible semantics if and only if their reachability graphs are

isomorphic, i.e., have the same set of labeled edges.

Proof. Consider the case where the reachability graphs of D and D' are isomorphic.
Let @ be a query. Because of the isomorphism, M, (Q,RG(D)) = M, (Q,RG(D’)).
Theorem 3.55 shows that M,(Q,RG(D)) = M;(Q,D) and M,(Q,RG(D’)) =
M (Q, D'). Hence, it follows that My(Q, D) = My(Q,D'). That is, D and D'
are equivalent.

For the other direction, consider the case where D and D' are equivalent. We
start by showing that the set of labeled edges of RG(D) is contained in the set of
label edges of RG(D’).

Let 01los be an edge of RG(D). According to the definition of the reachability
graph (Definition 3.54), in D there is an edge that enters oo and has the label . In
addition, D either has a path from o0; to o2 or vice-versa. There are two cases to
examine, depending on whether o; is the root of D or not.

If 01 is the root of D, then we create a query ()1 as follows. The variables of
Q1 are rg, and vy. There is a single edge in ()1—an edge from rg, to ve with label
[. The matching p1 that maps rg, to o1 and v to 02 is a flexible matching of @1
w.r.t. D. Since D' is equivalent to D, 1 is also a flexible matching of @ w.r.t. D'.
This means that u; satisfies the gec lvg. Thus, in D’ there is an edge with label [

that enters o0o. In addition, since o; is the root of D it is also the root of D’. Thus,
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there is a path in D' from 01 to 0o, because all the nodes are reachable from the
root. Consequently, RG(D’) has an edge 01l0,.

If 01 is not the root of D, then we create a query ()2 as follows. There are three
variables in Q2: rq,, v1 and ve. The edges of ()2 are the two edge rg,l1v1 and vilvs,
where [; is a label on an edge that enters v;. Note that such a label exists because
there is a path in D from the root to o;. Let po be a matching that maps r¢g, to
the database root, v1 to 01 and vy to 02. Obviously, us is a flexible matching of Q2
w.r.t. D. Since D' is equivalent to D, pus is also a flexible matching of Q2 w.r.t. D'.
It means that uo satisfies the wec vilvy and the qec lvy w.r.t. D'. That is, in D’
there is either a path from o0y to 0y or vice-versa. In addition, there is an edge with
the label [ that enters oo. Hence, RG(D’) has an edge o01l0s.

Thus far, we have shown that the set of edges of RG(D) is contained in the set
of edges of RG(D’). By exchanging the roles of D and D’, we can show that the
set of edges of RG(D’) is contained in the set of edges of RG(D). This shows that
RG(D) and RG(D’) are isomorphic. O

It is not necessary to solve the general case of graph isomorphism in order to
decide equivalence of databases under the flexible semantics. Instead, it is sufficient
to check that the identity mapping is an isomorphism. Thus, deciding whether two
databases D and D' are equivalent under the flexible semantics is in O(|D|? log |D|+

|D'[*1og | D'|).

3.5.1 Removing Redundancies

One application of database equivalence is the removal of redundant parts from
databases. A part of a database is redundant if removing it from the database has
no effect on the result of query evaluation.

For example, given a database D, we say that an edge o1log in D is redundant
w.r.t. the semiflexible (or flexible) semantics if D has a path of the form o;xloy
that does not include the edge o1loy. If a redundant edge is removed, the result
is a database that is equivalent to the original one under the semiflexible (flexible)

semantics.
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Proposition 3.68 (Redundant Edges) Suppose that D' is a database that is cre-
ated from another database D by removing from D a redundant edge. Then D and

D’ are equivalent under both the semiflexible and the flexible semantics.

Proof. Equivalence under the semiflexible semantics follows from Theorem 3.65.
This is because a removal of a redundant edge has no effect on semiflexible path
inclusion nor on the strongly connected components.

Equivalence under the flexible semantics follows from Theorem 3.67. This is
because a removal of a redundant edge cause no change in the reachability graph of

the database. O

The next lemma shows that under the semiflexible semantics, when there are no
redundant edges, the inclusion condition for database equivalence can be relaxed.
That is, if two databases are equivalent then each path, from the root to a leaf, in
one database has a path, in the other database, that contains exactly the same set

of objects and the same set of labels.

Lemma 3.69 (Image Path Permutation) Let D and D' be two databases over
the same set of objects, with the same root and without any redundant edges. If D and
D' are equivalent under the semiflexible semantics then for each path oglio1 - - - l0p,
from the root of D to a leaf, there exists a permutation o of 1,...n, such that in D'

there is a path 0oly(1)04(1) * * * lo(n)Oo(n)-

Proof. Let ¢ = oplyo1 - -l,0, be a path in D such that in D’ no path has the form
00l5(1)00(1) * * * lo(n) Os(n)- We show that this leads to a contradiction.

According to Theorem 3.65, there is a semiflexible path inclusion of D in D’
and vice-versa. So, there exists a permutation ¢’ such that D’ has a path ¢’ =
00%l51(1)051(1) * * * ¥l gt ()00 (n)- According to our assumption, ¢' contains a node o'
that is not among the nodes op,0,/(1),-..,047()- Note that if ¢' is not a simple
path then o' could be one of the nodes o1,...,0,. Since there is a semiflexible path
inclusion of D' in D we have a path ¢ in D that includes ¢'. The path ¢ goes
through all the nodes of ¢ and through the node o' (it may, in addition, go through

other nodes). Since oy is the root and oy, is a leaf, the node o' is neither the first nor
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the last node in ngS Therefore, there must be two nodes 0; and 0;41 in D such that
in addition to the edge 0;l;110;11 there is a path o;%0'*l;110;11. The edge 0;l;110;11
is redundant, in contradiction to the our assumption that D and D’ are redundancy

free. O

3.5.2 Transforming a Database to an Equivalent Tree

In addition to testing database equivalence, it is also possible to transform a database
D to a tree, provided that D is indeed equivalent to some tree database. Note that
under the semiflexible semantics, a cyclic database cannot be equivalent to a tree
database. However, there are dag databases that are equivalent to tree databases.
Under the flexible semantics, even a cyclic database could be equivalent to a tree
database.

Transforming a database to an equivalent tree is important for several reasons.
First, evaluation of queries is more efficient when the database is a tree, as was
shown earlier. Secondly, in a graphical user interface, presenting trees is easier than
presenting dags. Thirdly, storing data as a document (e.g., in XML) is easier when

the data is a tree, since references and identifiers need not be used.

Definition 3.70 (Tree Transformable Database) Given a database D, we say
that D is tree transformable under the semantics s if there exists a tree database T

that is equivalent to D under the semantics s.

In this section, we characterize tree transformable databases under the semiflexible

and the flexible semantics. In addition, we give algorithms for the transformations.

Tree Transformable Databases under the Semiflexible Semantics

We discuss transformation to a tree under the semiflexible semantics. Given a
database D that has no redundant edges, the following are necessary conditions
for D to be tree transformable under the semiflexible semantics.

The first necessary condition is that D does not include a node that has incoming

edges with different labels. The reason for this condition is that in a tree database



Chapter 8 Flexible and Semiflexible Queries 73

only one edge enters each node (except for the root that has no incoming edge)
and this edge holds exactly one label. The second necessary condition is that D is
acyclic. The reason for the second condition is that in a finite tree all paths are
finite, while a cyclic graph contains an infinite path. The third necessary condition
is that the number of root-to-leaf paths in D is not greater than the number of
nodes in D. Recall that in a tree, the number of paths, from the root to a leaf, never
exceeds the number of nodes.

In order to have conditions that are both necessary and sufficient, we need ad-
ditional definitions. A path-nodes set of a database D is a set of all the nodes on a
path in D from the root to a leaf. For a given database, the path hypergraph is a

hypergraph whose hyperedges are path-nodes sets.

Definition 3.71 (Path Hypergraph) Given a database D, the path hypergraph
of D is the hypergraph H such that:

1. The nodes of H are the objects of D.

2. The hyperedges of H are the path-nodes sets of D.

Definition 3.72 (Bachman Diagram) Let £ be the set that contains all the hy-
peredges of H and all the nonempty intersections of two or more hyperedges of H.

The Bachman diagram of #H, denoted BD(H), is the following graph.
1. For each element of £, there is a node in BD(H).
2. There is an edge between Ey and Fy in BD(H) if

(a) Ey C Ey, and

(b) there is no element E' in &, such that By C E' C Ey and E' is different
from both E1 and Es.

We say that BD(#) is acyclic if it contains no cycle (as an undirected graph). In
Appendix A we provide a definition of a y-acyclic hypergraph. A discussion of acyclic
Bachman diagrams and their usage in the characterization of «y-acyclic hypergraphs

is given in [31]. In [55], Bachman diagrams are used to characterize full disjunctions.
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Lemma 3.73 (Acyclicity is a Necessary Condition) Let D be a database with
no redundant edges and H be the path hypergraph of D. If D is tree transformable

under the semiflexible semantics then BD(H), the Bachman diagram of H, is acyclic.

Proof. To prove the lemma, we assume that the Bachman diagram of H is cyclic
and we show that D is not tree transformable.

In [31], Fagin showed that for a hypergraph #, the Bachman diagram of # is
acyclic if and only if H is y-acyclic. We have assumed that the Bachman diagram
of H is cyclic and, hence, H itself is not y-acyclic. This means that  either has a
pure cycle or a y-3-cycle.

All the hyperedges of H contain the root of D. Thus, there cannot be a pure
cycle in H. So, H must have a ~-3-cycle. That is, H includes three hyperedges

X,Y,Z and three nodes ng, n1,no such that:
1. ng is an element of all the three sets X,Y and Z;
2. n1 is an element of X and Z and not an element of Y; and
3. no is an element of Y and Z and not an element of X.

If ngy is not the root of D, we replace it with the root. This can be done since
the root of D is an element of every hyperedge.

To derive a contradiction we assume that D is tree transformable, i.e., there is
a tree database T such that T is equivalent to D under the semiflexible semantics.

One of the following three options must hold in 7'
1. No path in T goes trough both n; and ns.
2. There is a path in T from n1 to no.
3. There is a path in T from ng to ni.

In Case 1, the path in D whose nodes are the nodes of Z is not included in any
path of T. This is because Z contains both n; and ny. In Case 2, the path ¢y,
in D, whose nodes are the nodes of Y includes ny and ny and does not include 7.

According to Lemma, 3.69, T' should have a path that includes the same nodes as
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¢y. However, such a path cannot exist, since 7' is a tree and every path in T' that
includes no also include n1. In Case 3, each path in T that includes n; must include
ng. Thus, there is no path in 7" that includes exactly the nodes of X, i.e., includes
ng and n; and does not include ny. Since all three cases lead to a contradiction, an

equivalent tree database of D does not exist. O

Next we explain why the test of Lemma 3.73 can be performed in polynomial
time in the size of the given database.

Consider a hypergraph H with n hyperedges. It is possible to check in polynomial
time in the size of H that the Bachman diagram of A is acyclic. This is based on the
following two observations. First, in an acyclic diagram, the number of paths from
the least node (the node that is contained in all the other nodes) to the leaves (i.e.,
the hyperedges of 1) is at most n. Second, there are at most n sets in each path from
the root to a leaf. To see why the second observation is true, consider two nodes in
the diagram F; and E5 that have an edge between them, where E; C Fs. Let S;
(S2) be the set of hyperedges that F1 (Es) is their intersection. Then S; D So.

Thus, there are at most n? nodes in the Bachman diagram of #. It is possible to
construct the diagram by creating all the intersection of hyperedges of . If at some
point there are more than n? nodes then the test stops with the answer that the
diagram is cyclic. After constructing the diagram, it is possible to check in linear
time, in the size of the diagram, whether there are cycles. This can be done using a
DFS traversal.

The test of Lemma 3.73 can be performed in polynomial time in the size of the
given database. This is based on the observation that in a tree database the num-
ber of paths cannot exceed the number of nodes. In the test, we construct all the
hyperedges of the path hypergraph. If at some point, during the construction, the
number of hyperedges exceeds the number of database nodes, then the test stops
with the answer that the database is not tree transformable. Otherwise, the Bach-

man diagram is constructed and tested for acyclicity.

Thus far, we discussed necessary conditions for the existence of an equivalent
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tree database. Next, we show that the conditions that were presented as necessary
conditions are also sufficient conditions for performing a transformation. In addition,
we present a transformation algorithm.

We say that a database D is a tree-transformable candidate if (1) D has no
redundant edges; (2) D is acyclic; (3) there is no node in D that has two different
incoming labels; and (4) the Bachman diagram of the path hypergraph of D is
acyclic. The algorithm that we present next can transform a tree-transformable
candidate to an equivalent tree. Thus, it shows that tree-transformable candidates
are actually tree transformable.

Figure 3.4 presents a polynomial-time algorithm that transforms a given database
D to a tree, provided that D is tree transformable. The algorithm starts by creating
the path hypergraph H of D. Note that in a tree transformable database, the
number of paths from the root to the leaves cannot exceeds the number of nodes,
and thus, the size of the path hypergraph is polynomial in the size of the database.

The second step of the algorithm is the creation of the Bachman diagram B =
BD(H). This can be done in polynomial time in the size of 7. Recall that the nodes
of B are sets of objects of the database D. The intersection of all the nodes of B
always contains the root of D. Thus, there is a least node of B that is contained in
all the other nodes. In the algorithm, we view B as a tree whose root is the least
node.

The algorithm creates a tree database T by visiting the nodes of B in a topological
order, starting with the least node. Initially, T' is empty. For each visited node F of
B, the algorithm adds to T the objects of E — E', where E' is the parent of E. The
newly added objects are connected by new edges to form a simple path. The order
of the objects along this path is not important, except in the case of the least node
of B, since the root of D must be the first object on the path created for the least
node. Thus, each node E of B is associated with some path in T, and this path has
a first object and a last object. A new edge is also added from the last object of the
parent of E to the first object of E — E'.

The final step of the algorithm is to label the edges of T. Each edge is labeled
with the unique label associated with the object that it enters; that is, if an edge
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7

Algorithm TransformingDatabaseToTree(D);
Input a tree-transformable database D;
Output a tree database 7' that is equivalent to D

under the semiflexible semantics;

let H be the path hypergraph of D;
let B= BD(H) be the Bachman diagram of #;
S« 0;
let So be the least node of B (Sp is the intersection of all nodes of B);
(* by choosing Sy to be the root, B can be viewed as a tree *)
create from the objects of Sy a path Py with rp (the root of D) as the first node;
add to S all the children of Sy in B;
while S is not empty
remove some node S; from S;
add to S all the children of S; in B;
let S; be the parent of S; in B;
create a simple path P; from the objects of S; that are not in S;;
(* Since S; is the parent of S}, a path P; has already been created for S; *)
add an edge from the last node of P; to the first node of P;;
let T' be the database that was produced in the previous steps;
label T" by attaching to each edge the label that corresponds to its target in D;

return T

Figure 3.4: Creating a tree database T' from a database D.

enters an object o, then in the original database D, all the edges that enter o are

labeled with the same label [, and [ is also the label of the single edge that enters

object o in the tree database T'. Note that the root has no incoming edges in T'.

is easy to see that the returned graph is indeed a tree.

It

Lemma 3.74 (Correctness of the Transformation Algorithm) If a database
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D is a tree-transformable candidate, then applying the algorithm Transforming-
DatabaseToTree to D produces a tree that is equivalent to D under the semiflexible
semantics. Furthermore, the runtime of the transformation is polynomial in the size

of D.

Proof. Let T be the graph that the algorithm returns. We claim that 7' contains
exactly the same set of objects as D. Note that the creation of T" is done by traversing
the Bachman diagram B and visiting all the nodes in B. Since B is connected and
has no cycles, each node is visited exactly once. In the traversal, an object is added
to T if it is an element of a node S; and not an element of the parent of S;. It is
easy to see that all the objects of T' are objects of D. This is because the nodes of
B are sets of objects of D. Secondly, every node of D appears in at least one node
of B and thus appears in 1. Thirdly, none of the objects is added twice to T'. To
see this, consider the case where an object o is added to T' twice. Let S; and Sy
be the nodes of B for which o was added to T'. Then the intersection of S; and S
is non-empty and contains o. This means that in B there is an ancestor S; of S
and Sy and S; contains o. Hence, the parent of S; contains o in contradiction to S;
being a node for which o was added to T'.

The graph T is a tree because the construction of 7' is in such a way that the
root has no incoming edge and every object, other than the root, has exactly one
incoming edge. In addition, due to the way edges receive their labels, an object in
T has an incoming edge with the label [ if and only if it has an incoming edge in D
with label [.

Next, we show that D and T are equivalent under the semiflexible semantics.
The equivalence is proved by showing that there is a semiflexible path inclusion in
both directions, according to Theorem 3.65.

We start by showing a semiflexible path inclusion of D in T. Consider a path
¢ = oglyo1---lp0, in D. We assume that ¢ is a path from the root to a leaf. This
assumption can be done because every path is contained in a path from the root
to a leaf, so inclusion can be shown w.r.t. the container. The path ¢ is represented

by an hyperedge in H and thus B has a node S that contains all the objects on
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¢. Let Sy, S1,...,S; be a path in B, such that Sj is the least node and S is S.
The algorithm creates a path from the objects of each node S; and connects the last
node on each path to the first node of the next path. The result is a path ¢’ in T
that contains precisely the objects of Sg. All the objects of ¢ are included in ¢'. In
addition, according to the way labels are given, for each 1 < 4 < n, the label on the
edge that enters o;, in ¢/, is I;. Hence, there is a semiflexible path inclusion of ¢ in
¢

To show inclusion in the opposite direction, consider a path ¢’ = opli01 - -l,0,
in T, from the root to a leaf. Let S; be the node in B that contains o,. Obviously,
S; is a leaf in B and the set of objects S; is equal to the set of objects on ¢'. Since
S; has no children it is not an intersection of two other nodes in B. Thus, S; is an
hyperedge of H. This means that there is a path ¢ in D such that ¢ is a path from
the root to a leaf and the set of nodes on ¢ is equal to S;. The two paths ¢ and ¢’
consists of the same objects. Furthermore, if [ is the label on the edge that enter o
in ¢' then [ is also the label on the edge that enters o in ¢. To conclude, there is a
semiflexible path inclusion of ¢’ in ¢.

In the algorithm, each node of B is traversed exactly once. For each node, a single
pass over the objects of the node is needed since the algorithm does not require to
connect the objects in any particular order. Thus, the construction of T is linear
in the size of B. The number of leaves in B is at most the number of paths, from
the root to a leaf, in D. If D is tree transformable, it cannot have more paths,
from the root to a leaf, than nodes. Hence, the size of B is linear in the size of D.
Finally, since the construction of B is polynomial in the size of D, the algorithm has

a polynomial runtime in the size of D. O

We conclude the discussion on tree transformable databases, under the semiflex-

ible semantics, with the following theorem.

Theorem 3.75 (Semiflexible Equivalence to a Tree) Let D be a database with
no redundant edges and with the path hypergraph H. The database D is tree trans-

formable under the semiflexible semantics if and only if the following three conditions

hold.



Chapter 8 Flexible and Semiflexible Queries 80

{0, 04

/

{050,004 Og

O
11 Isl
l . / \ in O
;7/a\< (o000 (00000 {oodoy 1%
0 03 Og 6

i
B VN

15 02 Os
g

(1) A given database D. (2) The Bacman diagram of D. (3) The equivalent tree database.
Figure 3.5: Transformation to a tree under the semiflexible semantics.

1. D is acyclic;
2. There is no node in D that has two different incoming labels; and
3. BD(H), the Bachman diagram of H, is acyclic.

Deciding if D is tree transformable under the semiflexible semantics is in polynomial

runtime in the size of D.

Proof. Correctness of the theorem follows from Lemma 3.73 and Lemma 3.74. O

Example 3.76 In Figure 3.5, a tree transformable database D is depicted. In
addition, the Bachman diagram of D and an equivalent tree database of D are
shown. When applying the transformation algorithm to D, the result is either the

shown tree database or a tree database that is equivalent to the one that is shown.

Tree Transformable Databases under the Flexible Semantics

We now consider transformation to a tree under the flexible semantics. A necessary
condition for the existence of a transformation under the flexible semantics is as
follows. The database should not have a node o, such that two edges with different
labels enter 0. Moreover, there should not be any edge that enters the root.

Next, we give some additional definitions. The augmented reachability graph of

a database D is the reachability graph of D augmented with an unlabeled edge from
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each node to the root. An edge between two nodes, in the augmented reachabil-
ity graph, reflects the existence of a path in D between these nodes. Since each
node in the database is reachable from the root, there is an edge in the augmented
reachability graph from each node to the root.

The mazimal-clique hypergraph of a database D is the hypergraph that has the
same nodes as D and has, as hyperedges, the maximal cliques in the augmented
reachability graph of D. Note that in a directed graph, a clique is a set of nodes,
such that every two nodes are connected by edges in both directions. A clique is
maximal if it is not contained in any other clique.

Given that a database D is tree transformable under the flexible semantics, the
creation of the equivalent tree T is the same as in the case of the semiflexible seman-
tics, except for the following. In the algorithm of the transformation (Figure 3.4),
the hypergraph H that is used is the maximal-clique hypergraph of the augmented
reachability graph of D (instead of the path hypergraph of D).

Theorem 3.77 (Flexible Equivalence to a Tree) Consider a database D. Let
H be the mazimal-clique hypergraph that is created from the augmented reachability
graph of D. The database D is tree transformable under the flexible semantics if
and only if the following three conditions hold.

1. If there is an edge in D that enters the root, then the label on this edge is equal
to the labels on all the other edges of D;

2. There is no node in D that has two different incoming labels; and

3. The Bachman diagram BD(H) of H is acyclic.

Proof. We start by showing that the conditions are necessary. The first condition
is necessary because in a tree no edge enters the root and only a single edge enters
each other node. Thus, in the reachability graph of a tree, the root and every other
node are connected by a single edge and this edge carries a single label. Yet, if in D
there is an edge labeled with [ that enters the root rp while an edge labeled with I’
enters a different node o, then in the reachability graph there should be two edges

between rp and o—one that is labeled with [ and another that is labeled with [’
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The necessity of the second condition is obvious—a node in a tree cannot have
two incoming edges and thus cannot have two incoming labels.

The proof for the necessity of the third condition is similar to the proof of
Lemma 3.73—we assume that BD(?) contains a cycle and show that D has no
equivalent tree, under the flexible semantics.

If BD(#H) contains a cycle then # is not y-acyclic. Since all the hyperedges of H
contain the root of D there is no pure cycle in 7. Thus, H must have a y-3-cycle.
The y-3-cycle is created by three hyperedges X, Y and Z and three nodes rp, n1 and
ng such that (1) rp is an element of all the three hyperedges; (2) n; is an element
of X and Y and not an element of Z; and (3) ngy is an element of X and Z and not
an element of Y.

Consider a tree T that is equivalent to D under the flexible semantics. From the
equivalence it follows that the reachability graph of 7" should be isomorphic to the

reachability graph of D. We examine three possible cases:

1. There is no path in 7" that contains both n; and no.
2. In T there is a path from ni to no.

3. In T there is a path from nsy to n.

If in T there is no path that contains both n; and ngy, then there is no edge
between n; and no in the reachability graph of T'. This means that there is no edge
between n; and mo in the reachability graph of D, in contradiction to having the
hyperedge X in H, since the nodes in X are a clique.

If in T there is a path from n; to no, then every path that goes through both the
root and ny must also go through n;. However, according to the hyperedge Z there
is a clique in the augmented reachability graph of D (and thus also in the augmented
reachability graph of 7') that contains no and does not contain n;. This situation
requires the existence of a node o in T, such that there is a path that goes through
both o0 and ny and there is no path that goes through both o and n;. However, since
T is a tree no such object o can exist.

For the third case, where in T there is a path from ng to n1, showing that it is

impossible is done similarly to the second case above.
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(2) A given database D. (2) The Bacman diagram. (3) The equivalent tree database.

Figure 3.6: Transformation to a tree under the flexible semantics.

To prove that the conditions are sufficient, we need to show that when the con-
ditions hold, for a database D, the transformation algorithm returns a tree database
that is equivalent to D under the flexible semantics. This is shown by showing that
the reachability graph of D is isomorphic to the reachability graph of T', where T' is
returned by the algorithm. Since all the labels that enter a node o in D are equal
to the labels on the edge that enters o in T, it is sufficient to show that a pair of
nodes in D is connected by a path if and only if these two nodes are connected by
a path in 7.

If there are two nodes 07 and 09 such that D has a path from o; to 09, then there
is a maximal clique in the augmented reachability graph of D that contains both o0
and o9. It follows that H contains a node such that o1 and o9 are elements of this
node and thus, in 7', there is either a path from o0, to 0y or vice-versa.

For the other direction, if there are two nodes 0; and 09 such that in T there is
path from o; to o9, then there is a leaf of BD(H) that contains both o; and 0,. This
means that there is a maximal clique in H that contains both o1 and 02. Thus, in

D there is either a path from o; to 09 or vice-versa. O

The creation of the maximal-clique hypergraph is not in polynomial time. Thus,
the transformation to a tree under the flexible semantics is not in polynomial run-

time.

Example 3.78 An example of a transformation is depicted in Figure 3.6. Note

that Figure 3.6 does not show the augmented reachability graph of the database
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D. However, it is easy to see that the augmented reachability graph contains two
maximal cliques. One clique is the set {09, 01,02,03,04} and the other clique is the
set {0p,01,02,03,05}. These cliques are the leaves of the Bachman diagram that is

created from the maximal-clique hypergraph of the augmented reachability graph.

3.6 Summary of Contributions

In this chapter, we introduced novel query semantics, namely, the semiflexible and
the flexible semantics. These semantics facilitate querying of data when the schema
is unknown, complicated or changes frequently. Meaningful queries can be formu-
lated even when the user is oblivious to the structural details of the data and is only
familiar with the ontology. Moreover, queries are insensitive to common variations
in the schemas of semantically similar data instances.

We investigated query evaluation under the new semantics. Under the semiflex-
ible semantics, a polynomial-time algorithm, under input-output complexity, was
introduced for the case of a DAG query and a tree database, provided that labels
are not repeated in query paths. The case where the database is a tree is important
since XML documents are usually trees. It is also shown that when the database
is cyclic, there is no polynomial-time algorithm, in the size of the input and the
output, assuming that P # NP. This last claim holds even when the query is a
path.

Under the flexible semantics, evaluation has the same complexity as under the
conventional rigid semantics. Thus, for a tree query, evaluation can be done in
polynomial time, under input-output complexity. For DAG queries, there is no
polynomial time algorithm, in the size of the input and the output, assuming that
P # NP.

We characterized query containment and query equivalence, under both the semi-
flexible and the flexible semantics. The provided characterizations are a first step
towards developing optimization techniques. It is shown that equivalence of queries

is decidable in polynomial time.
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An additional contribution presented in this chapter is in introducing and in-
vestigating the novel concept of database equivalence. Under the conventional rigid
semantics, two database are equivalent only if they are isomorphic. This is not
the case under the semiflexible and the flexible semantics. Database equivalence is
defined and characterized, under the two semantics.

A novel feature of the new semantics is the possibility of transforming a given
database D to a tree database that is equivalent to D. For the semiflexible semantics,
testing whether D is equivalent to a tree database and actually transforming D to
a tree database (if the test is positive) are both polynomial. Since queries can be
evaluated more efficiently over tree databases, this result is of practical importance.
In addition, the transformation allows to represent data in XML without using

references. This is important since, for some parsers, references are problematic.



Chapter 4

Queries with Maximal Answers

This chapter introduces two new query semantics. The new semantics facilitate
querying of incomplete data. The outline of the chapter is as follows. Section 4.1
describes two query semantics that allow maximal rather than complete answers,
namely the OR-semantics and the weak semantics. In Section 4.2, an algorithm for
computing maximal OR-matchings is presented, along with a proof of correctness
and an analysis of the time complexity. In addition, it is shown how to modify the
algorithm in order to compute maximal weak matchings. Finally, in Section 4.3, we

discuss the contribution of this chapter.

4.1 Query Semantics

In the rigid semantics, matchings are complete assignments, i.e., all the query vari-
ables are mapped to database objects. We now define matchings that are partial
assignments, i.e., some query variables may not be mapped to a database object

and, instead, are assigned a null value.

4.1.1 Partial Matchings
We start with a formal definition of partial matchings.

Definition 4.1 (Partial Assignment) Let Q = (V,Eg,rq) be a query and D =
(O,Ep,rp,a) be a database. A partial assignment of Q w.r.t. the database D is a
mapping p: V — OU{L}, such that each variable of Q is mapped either to an object

of D or to a special value that is called null and is denoted as L.

86
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filmography item

filmography item

Figure 4.1: Another fragment of the movie database.

Each partial assignment can be represented as a graph. In the graph the nodes
are pairs consisting of a variable and an object. Each pair denotes a mapping of
an object to a variable. This way of representing partial assignments is formally

specified in the next definition.

Definition 4.2 (Assignment Graph) An assignment graph G of a query Q =
(V,Eq,rq) w.r.t. a database D = (O, Ep,rp,a) consists of nodes of the form (v,0),
where v is a variable of QQ and o is an object of D. The assignment graph G can-
not have any repeated variable, i.e., it cannot have any variable v that appears
in two distinct nodes (v,01) and (v,09), where 0y # o0y. The assignment graph
G may (but does not necessarily) have an edge from (vi,01) to (va,02), denoted
(v1,01)l(v2,02), provided that vilve is an edge of Q@ and o1log is an edge of D. We
say that (v1,01)l(va,02) is a potential edge of G if vilve is in Q and o1log is in D.

If the edge (v1,01)l(va,02) appears in G, then it is called an actual edge of G.

An assignment graph G corresponds to an assignment y that is defined as follows.
If (v,0) is a node of G, then pu(v) = o; and if G has no node with v as its first
component (i.e., no node of the form (v,0) for some o), then u(v) = L. The
assignment 4 is well defined, since G does not have any repeated variable.

Conversely, if 4 is an assignment, then an assignment graph for ;4 comprises all

nodes of the form (v, u(v)), where pu(v) is non-null. The assignment p may have
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several assignment graphs. All those graphs have the same set of nodes, but they
may have different sets of edges. However, the set of actual edges is always a subset
of the set of potential edges.

Let G be an assignment graph of a query () with respect to a database D. The
closure of G is obtained by adding to G all potential edges that are not already in
G. We say that G is closed if G is equal to its closure.

A matching is an assignment that satisfies some additional conditions (recall
Definition 2.4). In this chapter, we define two types of matchings. The definitions
are equivalent to those in [41]. Note that [41] presents three sematics for queries
with maximal answers. We discuss only two of the three semantics, since in the

semantics that is not presented here, evaluation of cyclic queries is NP-hard.

Definition 4.3 (OR-Matching) An assignment p of a query Q = (V,Eqg,rq)
w.r.t. a database D = (O, FEp,rp,a) is an OR-matching if p has an assignment

graph M that satisfies the following conditions.

1. The graph M has the node (rg,rp) (i-e., p(rp) = rp) and this node is desig-
nated as the root of M.

2. Each node of M 1is reachable from the root.

An assignment graph M of a query @ w.r.t. a database D preserves the edges
of @ if it satisfies the following condition. For every two nodes (v1,01) and (vg,02)
of M, if v1lvy is an edge of @, then (v1,01)l(v2,02) is an edge of M (and thus, 0109
is an edge of D).

Definition 4.4 (Weak Matching) An assignment u is a weak matching of Q if
it has an assignment graph M that satisfies the conditions of an OR-matching and,

in addition, M preserves the edges of Q.

An assignment graph that satisfies the conditions of an OR-matching is called an
OR-matching graph. Similarly, an assignment graph that satisfies the conditions of a
weak matching is called a weak-matching graph. Note that a weak-matching graph

is always closed.
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Figure 4.2: A query over the movie database.

Essentially, the result of posing a query to a database is a set of matchings.
Under the OR-semantics, this set comprises all the OR-matchings. Under the weak

semantics, this set comprises all the weak matchings.

4.1.2 Subsumption and Maximal Matchings

Let A be a set of assignments of a query @ w.r.t. a database D. Given two assign-
ments p and p’ of A, we say that y subsumes p', denoted u' C p, if u(z) = p'(z)
whenever 4/ (z) is non-null. The assignment p € A is a mazimal element of A if no
element in A, other than p itself, subsumes u. Intuitively, if ' C p, then p has more
information than u’. Therefore, all non-maximal elements can be discarded from A
without any loss of information.?

Subsumption is defined for assignment graphs in the natural way. Let G; and
G be assignment graphs. We say that G1 subsumes G4 if G5 is a subgraph of Gj.
That is, the set of nodes (edges) of G2 is a subset or equal to of the set of nodes
(edges) of G1. An assignment graph is maximal, in a set of assignment graphs, if it
is not subsumed by any other graph in the set.

Consider two assignment graphs G; and G2 that correspond to the assignments
11 and po, respectively. It is easy to see that if G; subsumes G2 then u; subsumes
Wo. Similarly, if M is a set of assignment graphs and G is a maximal element of M,
then the assignment that corresponds to G is maximal among the assignments that
correspond to the elements of M.

Given a query @ and a database D, the set of all maximal OR-matchings of @)

!This may not be true if bag semantics has to be assumed (e.g., in order to evaluate aggregate
queries). However, the issue of bag semantics is beyond the scope of this work.
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‘ Semantics H v1 ‘ v2 ‘ v3 ‘ w1 ‘ wa ‘ w3 ‘ wy ‘
OR 1| 2| 4 | 5(Zelig) | 6 (English) | 10 (Woody Allen) | 11 (1/12/1935)
1| 3| 4 |8(Antz) I 10 (Woody Allen) | 11 (1/12/1935)
Weak 1 2 4 | 5 (Zelig) | 6 (English) | 10 (Woody Allen) | 11 (1/12/1935)
1 3 | L | 8 (Antz) L L L

Figure 4.3: M, (Q, D) and M, (Q, D) for the @ and D of Figures 4.1 and 4.2.

w.r.t. D is denoted as M,,(Q, D). Similarly, the set of all maximal weak matchings
of @ w.r.t. D is denoted as M (Q, D). Note that both M, (Q, D) and M, (Q, D)
can be viewed as relations with columns that are labeled with the variables of @)

and tuples that are filled with oid’s and nulls.

Example 4.5 Figure 4.2 shows a query over the movie database of Figure 4.1.
Intuitively, the query looks for an actor (along with her name and date of birth) and
a movie (along with its title and language). The query specifies two relationships
between the movie and the actor. First, the edge labeled with “filmography item”
requires that the actor indeed acted in the movie. Secondly, the edge labeled with
“director” requires that the actor was also the director of the movie.

The answers to the query differ according to the semantics that is used. The
set of maximal OR-matchings and the set of maximal weak matchings are shown
in Figure 4.3. Each matching is shown as a tuple of oid’s and nulls. For atomic
nodes, the value is shown next to the oid, inside parenthesis. Formally, however, a
matching is always an assignment of oid’s and not of values.

In a maximal weak matching, the edges of the query are preserved. Thus, an
answer to the query includes a movie and an actor only if the actor acted in the
movie and was also the director of the movie. The first weak matching in Figure 4.3
finds Woody Allen as both an actor and the director of the movie Zelig. An actor
will be in an answer without a movie (i.e., null in v3) if none of the movies of the
actor was directed by her. A movie will be in an answer without an actor (i.e., null
in v3) if none of the actors in the movie was also a director of the movie. The second

weak matching in Figure 4.3 includes the movie Antz without an actor, since no
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actor in Antz was also the director of this movie.

In a maximal OR-matching, the edges of the query are not necessarily preserved.
Thus, an OR-matching can include an actor and a movie even if the actor neither
acted in the movie nor was the director of the movie. The second OR-matching in
Figure 4.3 gives a movie and an actor, such that the actor acted in the movie but
was not the director. There are no other maximal OR-matchings in this example,
since a movie always has an actor and an actor (or a director) always has a movie

in the given database.

4.2 Computing Maximal Matchings

Algorithms for computing the sets My, (Q, D) and M,,(Q, D) were given in [42] for
queries that are acyclic graphs. The time complexity of these algorithms was shown
to be polynomial in the size of the input (i.e., the query and the database) and the
output (i.e., the set of all maximal matchings). In this section, we generalize this

result to queries that may have cycles.

4.2.1 The Product Graph

We define a graph that combines the query and the database. This graph will be

used for computing OR-matchings and weak matchings.

Definition 4.6 (Product) Consider a query Q = (V, Eg,rq) and a database D =
(O,Ep,rp,a). Theproduct of Q and D, denoted Qx D, is the graph P = (V,E,rp),

that satisfies the following conditions.
1. The root of P, denoted rp, is the pair (rq,rp);

2. The set of nodes of P, denoted V, consists of all nodes of the form (v,0), where

v is a variable of Q@ and o is an object of D, i.e., V =V X O; and

3. The set of edges of P, denoted £, is a set that consists of all the edges of the

form (v1,01)l(va,02), where vilvy is an edge of Q and o1los is an edge of D.
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filmography item

filmography item

Figure 4.4: The product of the query that is presented in Figure 4.2 and the database
that is presented in Figure 4.1.

Example 4.7 Figure 4.4 shows the product of the query that is presented in Fig-
ure 4.2 and the database that is depicted in Figure 4.1. Note that only nodes that

are reachable from the root are shown.

The graph G is a subgraph of @xD if G comprises some subset of the nodes of
@xD. The edges of G may be some or all the edges of @xD that connect nodes
appearing in G. It is rather obvious that if M is either an OR-matching graph or a
weak-matching graph, then M is a subgraph of @xD. The next proposition states

when the converse is also true.

Proposition 4.8 Consider the following four conditions on a subgraph G of QxD.

1. G has no repeated variables; that is, G does not have two nodes (v,01) and

(v,092), such that o1 # o03.
2. G contains the root of QxD.
3. In G, each node is reachable from the root.

4. G preserves the edges of Q.

A subgraph G of QxD is an OR-matching graph if and only if it satisfies the
first three conditions. G is a weak-matching graph if and only if it satisfies all four

conditions.
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Proof. Condition 1 is needed so that G will be the assignment graph of an assign-
ment 4 that is defined as follows. If (v,0) is a node of G, then u(v) = o; otherwise,
pu(v) = L. Conditions 2 and 3 are identical to the two conditions in the definition of
an OR-matching. Condition 4 is the additional condition in the definition of a weak

matching. O

4.2.2 Computing Maximal OR-Matchings

In this section, we will show how to compute the maximal OR-matchings of a query
Q@ w.r.t. a database D. The main idea is to compute all the maximal subgraphs G
of @xD, such that G satisfies Conditions 1-3 of Proposition 4.8.

The computation is incremental; it starts with small subgraphs and expands
them by adding edges. Initially, the root is the only current subgraph. In every
iteration, each current subgraph is expanded by adding one more edge from Q) xD.
The algorithm works efficiently if the edges are added in the “right order.” If @ is
a DAG (directed acyclic graph), a topological sort of @ gives the right order and,
in this case, there is really no need to consider the product @ xD. Instead, it is

sufficient to apply topological sort just to @Q; see the details in [41, 42].

The General Idea

When @ has cycles, a different approach is needed. Instead of () itself, the product
@xD should be considered. Furthermore, when adding edges in the “right order,”
it is not sufficient to consider each edge just once. To formalize the notion of the
“right order,” we say that an edge milmo of QxD has a depth d if there is a path
consisting of d edges that starts at the root of @xD and ends with the edge milma.
Two observations should be noted. First, an edge can have more than one depth
when @ x D is not a tree. Second, an edge with depth 1 emanates from the root of
QxD.

We divide the edges of @@x D into strata, such that stratum k contains all the
edges at depth k (and k is called the depth of the stratum). Note that an edge may

belong to more than one stratum. A stratum traversal of QxD is an ordered list T
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that starts with the edges of stratum 1, followed by the edges of stratum 2, and so
on. Notice that the order of the edges within each stratum is unimportant and can
be determined arbitrarily, but the edges of stratum k& must appear before the edges
of stratum k + 1. Clearly, a stratum traversal may have multiple occurrences of the
same edge, but in each stratum a given edge may appear at most once.

An important part of the algorithm for computing maximal OR-matchings is to
create a stratum traversal 7' in polynomial time. However, as defined, a stratum
traversal could be infinite. We will now show how to construct a finite stratum
traversal T in polynomial time.

An occurrence of an edge e in stratum k is extraneous if e is not the kth edge of
any path that emanates from the root and consists of distinct edges. In principle,
all extraneous occurrences of edges can be removed from a stratum traversal, but
doing so is computationally hard. We will use a stratum traversal with some extra-
neous occurrences of edges. However, these extraneous occurrences neither affect the
correctness of the algorithm nor add an exponential blowup to the time complexity.

Obviously, if there are m edges in Qx D, then only the first m strata may have
non-extraneous occurrences of edges. Actually, it is sufficient for a stratum traversal
to include only the first n strata, where n is the number of nodes in ). The reason
for this is that a matching graph cannot include two nodes (v,01) and (v,02), such
that o; # 0y9. Therefore, the number of nodes in a matching graph cannot exceed
the number of nodes in Q.

The algorithm for computing maximal OR-matchings uses a stratum traversal T’
that consists of the first n strata, where n is the number of nodes in the query @,
and is constructed as follows. Stratum 1 contains all the edges that emanate from
the root of @xD. Stratum k contains all edges (v1, 01)l1 (ve,02) of @%D, such that
stratum k£ — 1 has an edge that enters node (v1,01). The size of the stratum traversal
T is O(q?d), where q is the size of the query @ and d is the size of the database D.
The stratum traversal 7 can be constructed in O(g?d) time.

Let T be the stratum traversal that was constructed as described above. The
maximal OR-matchings are generated by an incremental algorithm that iterates over

the edges in T'. Initially, the set of current subgraphs of ) x D has only one member,
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namely, the root of @xD. In the ith iteration, each current subgraph is expanded,
if possible, by adding the edge that appears in position ¢ of T' (the nodes of the edge

are also added, unless they are already in the subgraph).

The Various Cases of Adding An Edge

Let G be a subgraph of @ x D, such that G satisfies Conditions 1-3 of Proposition 4.8;
that is,

e (G has no repeated variables;
e (G contains the root of @xD; and

e All the nodes of G are reachable from the root (via edges that belong to G).

Consider an attempt to add an edge (v1,01)l(v2,02) of @xD to G. Several cases are

possible and we now consider them one by one.

Case 1 The node (v2,02) satisfies vo = rg and og # rp. In this case, the edge
(v1,01)l(v2,02) is not added to G, since the node (ve2,02) cannot belong to a sub-
graph of @xD that satisfies Conditions 1-3 of Proposition 4.8. Thus, G remains

unchanged.

Case 2 The node (vi,01) is not in G. In this case, the edge (v1,01)l(v2,02) cannot

be added to G and G remains unchanged.

Case 3 The nodes (v1,01) and (ve,09) as well as the edge that connects them are

all in G. In this case, G remains unchanged.

Case 4 Both (v1,01) and (va,02) are in G, but the edge that connects them is not
in G. In this case, the edge (v1,01)l(v2,09) is added to G. Notice that the result is
a subgraph G’ of QxD that satisfies Conditions 1-3 of Proposition 4.8. The new

graph G’ replaces G.

Case 5 The node (v1,01) is in G and vy does not appear in any node of G. In this
case, the edge (v1, 01)l(v2, 02) as well as the node (vy,02) are added to G. Notice that
the result is a subgraph G’ of @x D that satisfies Conditions 1-3 of Proposition 4.8.

The new graph G’ replaces G.
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Case 6 The node (vi,01) is in G, vo # rg and G also has a node (vy,03), where
09 # 03. In this case, the addition of the edge (v1, 01)l(v2,02) to G forces the deletion
of the node (vy,03). Thus, a new subgraph G’ is created from G as follows. First,
the node (vg,02) and the edge (v1,01)l(v2,02) are added to G. Second, the node
(v9,03) is deleted from G'. Third, all the nodes that are not reachable from the
root, due to the deletion of (v, 03), are deleted from G'; edges that are incident on
deleted nodes are also deleted. The result is a subgraph G’ of @x D that satisfies
Conditions 1-3 of Proposition 4.8. Notice that G is not subsumed by G’, since the
former includes the node (v2,03), but the latter does not. However, it could be that
G subsumes G’ (that may happen if the edge (v1, 01)l(v2, 02) that was initially added
to G is eventually deleted). In summary, both G and G’ should be retained unless
G’ is subsumed by G.

The Algorithm

The algorithm computes a set M as follows.
1. Initially, M has one graph that consists of the root of @QxD.

2. Repeat the next two steps for each edge e in the stratum traversal 7', starting

with the first edge of T'.

3. For each graph G € M, replace G with the result of adding e to G, according
to the above six cases. Recall that G is replaced either with G itself, with
a new graph G’ that subsumes G or with G and a new graph G’, such that

neither one subsumes the other.

4. Remove subsumed graphs from M, i.e., a graph G € M is removed if it is
subsumed by some other graph of M (and this step is repeated until there are

no subsumptions among the graphs of M).

The next theorem shows that the algorithm is correct and gives its time com-

plexity.
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Theorem 4.9 (Correctness) Given a query Q and a database D, the algorithm
terminates with M = M, (Q, D). The running time of the algorithm is O(g>dm?),
where q is the size of Q, d is the size of D and m is the size of My (Q, D).

Correctness of the Algorithm

The algorithm iterates over all the edges in the stratum traversal T'. In each iteration,
Steps 3 and 4 are executed once. The ith iteration is for the edge that occurs in
position i of T. The value of M at the end of the ith iteration is denoted as M®.

Consider a maximal OR-subgraph M of () x D. Intuitively, we would like to prove
that for all i, there is a graph G € M?, such that G subsumes the restriction of M
just to the edges that appear in the first ¢ positions of 7. However, the minimal
depth of an edge in M may be greater than its minimal depth in Qx D. Therefore,
a more elaborate definition is needed.

Consider a position i in the stratum traversal T' and suppose that position 4
occurs in the stratum that has depth d. Let M be a maximal OR-matching subgraph
of QxD. The i-portion of M, denoted M?, consists of all the edges mqlmsy of M,
such that the minimal depth of milmso in M is not greater than d and there is
at least one occurrence of milms among the first ¢ positions of T. Note that, by
definition, the O-portion of M consists just of the root of M. Also note that M?® is
an OR-matching subgraph of @xD.

Next, we will prove the following lemma that shows the correctness of the algo-

rithm.
Lemma 4.10 When the algorithm completes its execution, M = M, (Q, D).

Proof. The proof follows from the following two claims.

Claim 4.11 During the evaluation of the algorithm, all the graphs in M are OR-

matchings graphs.

This claim is true, since all the graphs in M satisfy Conditions 1-3 of Proposi-

tion 4.8 throughout the evaluation of the algorithm.
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Claim 4.12 When the algorithm terminates, the following holds. For every maxi-

mal OR-matching graph M, the set M has a graph G, such that G subsumes M.

Together, the two claims imply that at the end of the algorithm, M is exactly
the set of all maximal OR-matching graphs, since the set M is subsumption free.

Claim 4.12 is proved by induction, using the following inductive hypothesis: If
M is a maximal OR-graph, then M* is subsumed by some G € M".

For the basis of the induction, we should consider the initialization of M just
prior to the first iteration. Initially, M contains one subgraph G of @xD that
comprises the root of (QxD. The 0-portion of M is just the root, so the induction
hypothesis is true. Now suppose that the inductive hypothesis holds at the end of
the ith iteration. We will show that it also holds at the end of the (74 1)st iteration.

Let M be a maximal OR-matching graph and (v1,01)l(v2,02) be the (i 4+ 1)st
edge in the stratum traversal 7. We need to show that the induction hypothesis
holds after expanding the graphs in M?, by adding (vy,01)l(v2, 02).

We consider two cases, depending on whether (vy,01)l(ve,02) is an edge of M*+!
or not. We show that in both cases in M**! there is a G’ that subsumes G.

Suppose that (v1,01)l(v2,02) is not an edge of M**!. Then, M* and M*t! are
identical. By the inductive hypothesis, there is a graph G in M?, such that M?* is
subsumed by G. Since G € M¢, there is a G € M**!, such that G is subsumed by
G'. Thus, M**1 is subsumed by G’ and the inductive hypothesis is proven.

Now, suppose that (v, 01)l(ve,09) is an edge of M**!. By the inductive hypoth-
esis, there is a graph G in M?, such that M? is subsumed by G.

An important observation is that (v1,01) is a node of G. This observation follows
from the following assertions. First, M**! is an OR-matching graph and (vy,0;) is
reachable from the root by a path that comprises edges of M*. Thus, (v1,01) is a
node of M'. Secone, since G subsumes M*, (v1,01) is a node of G.

Next, we consider the six cases of adding the edge (v1,01)l(v2,02) to G during
the (7 4 1)st iteration, as described in Section 4.2.2. We show that in all the cases,
M1 cotains a grapg that subsumes Mt

The first two cases contradict the assumption that (vi,01)l(ve,02) is an edge of
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M*+1. In the first case, the edge (v1,01)Il(v2,02) cannot be in M and, thus, it is not
an edge of M'*!1. In the second case, the node (v, 01) is not in G, in contradiction
to the above observation.

In the third case, G already has the edge (v1,01)l(v2,02). Since G subsumes
M?, it follows that it also subsumes M*T!. Therefore, since G’ subsumes G it also
subsumes M+,

The fourth and the fifth cases are similar. The graph G’ has all the nodes and
edges of G and also the added edge (v1,01)l(v2,02). Since G subsumes M*, G’
subsumes M*+1.

Finally, consider the sixth case. First note that M cannot include the node
(vg,03). This is because M**! includes the node (vg,02) and, hence, M includes
(v2,02). M is an assignment graph so it cannot have two nodes with the same
variable.

In the sixth case, a new subgraph G’ is created from G by adding the edge
(v1,01)l(v2,02) and then deleting the node (ve,03) as well as all the nodes that are
not reachable from the root. Let G be the subgraph that is obtained immediately
after the addition of (v1,01)l(v2,02) and just before the deletion of any node. Since
M does not include (vq,03), all the nodes of M**! are reachable from the root via
paths that do not include (v, 03). By the induction hypothesis, M? is subsumed
by G and, consequently, all the nodes and edges of M'*! also appear in G. In G,
all the nodes of M*t! are reachable from the root via paths that do not include
(va,03). Thus, none of the nodes and none of the edges of M**! is deleted from G.
Therefore, G’ subsumes the graph M+,

In summary, in all of the above cases, the inductive hypothesis holds at the end

of the (7 + 1)st iteration. O

Time Complexity

In this section, we will prove the part of Theorem 4.9 that refers to the time com-
plexity. The proof hinges on the fact that the number of graphs in M does not

decrease from one iteration to the next, as shown by the following lemma.
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Lemma 4.13 For each i > 0, |IM*| < |[MTL].

Proof. The lemma, is proved by showing that each G’ € M**! subsumes at most one
G € Mt. To derive a contradiction, we assume that G; and Gy are two graphs in
M that are subsumed by some G’ € M*t1. Suppose that position i of the stratum
traversal T occurs in a stratum that has a depth d. Consider the graph G that
consists of all the edges that appear in either G1 or Go, as well as all the nodes
connected by those edges. (If there are no edges, then G consists just of the root of
QxD.) Clearly, each edge of G has a depth (in G) that is not greater than d and has
an occurrence among the first ¢ positions of the stratum traversal 7. Furthermore,
G has no repeated variables, since it is subsumed by another OR-matching subgraph,
G'. Thus, G is an OR-matching subgraph of @xD, and G (the i-portion of G’) is
the same as G. By the inductive hypothesis in the proof of Lemma 4.10, there is a
G € M, such that G subsumes G. Consequently, G subsumes both G; and G, in

contradiction to the fact that M? is subsumption free. O

We will now complete the proof of the time complexity. Recall that ¢, d and m
are the sizes of the query, the database and the result, respectively. By Lemma 4.13,
at any time during the evaluation of the algorithm, before the removal of subsumed
graphs, M has at most twice as many graphs as the final value of M. After the
removal of subsumed graphs, the number of graphs in M does not exceed the number
of graphs in the result. In Step 3 of the algorithm, adding an edge to a graph G € M
takes O(q) time. Thus, each execution of Step 3 takes O(gm) time. Each execution
of Step 4 takes O(gm?) time. The size of the stratum traversal is O(qd) and it can
be constructed in O(g2d) time. Hence, Steps 3 and 4 are repeated O(g?d) times and
the whole algorithm takes O(q3dm?) time.

4.2.3 Computing Maximal Weak Matchings

To modify the algorithm so that it will compute the set of all maximal weak match-
ings, Cases 5 and 6 of Section 4.2.2 should be changed. In each of these two cases,
after creating the subgraph G’, there is a need to test and possibly modify G’ so
that it will preserve the edges of ). This is done as follows.
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Let (v1,01)l(v2,02) be the edge that was added to G'. For each node (v;,0;) in
G', if there is a label h, such that v;hvs is an edge of ), but 0;h09 is not an edge of
D, then delete node (v;,0;) from G'. Similarly, for each node (v;, 0;) in G, if there
is a label h, such that vohv; is an edge of @), but 02ho; is not an edge of D, then
delete node (vj,0;) from G’. Nodes that become non-reachable from the root should
also be deleted. Edges that are incident on deleted nodes are deleted as well. As
a result of these deletions, G’ may no longer subsume G and consequently, in Case
5, both G’ and G should be added to M (or just G should be added if it subsumes

G'). The same is done in Case 6.

Theorem 4.14 Given a query Q and a database D, the set M,,(Q, D) of all maz-
imal weak matchings can be computed in O(g3dm?) time, where q is the size of Q,

d is the size of D and m is the size of My (Q, D).

In proving the correctness of the algorithm for computing the maximal weak

matchings, Claim 4.11 should be replaced with the following claim.

Claim 4.15 During the evaluation of the algorithm, the closure of each graph in M

1s a weak matching.

Claim 4.12 remains the same, except for changing “maximal OR-matching graph
M?” to “maximal weak-matching graph M.” The proofs of correctness and time com-

plexity are similar to the ones in the case of computing the maximal OR-matchings.

4.3 Summary of Contributions

Chapter 4 follows the work of [41, 42] on queries with incomplete answers over
semistructured data. In [41, 42], three semantics, AND, OR and weak, were pre-
sented and the complexity of query evaluation was investigated. In particular, it
was shown that for DAG queries, both the OR-semantics and the weak semantics
have polynomial-time evaluation algorithms under input-output complexity. In this

chapter, we have shown that this result carries over to cyclic queries.



Chapter 5

Combining Flexibility with

Maximal Answers

In the previous chapters we introduced two paradigms: The paradigm of flexible
queries and the paradigm of maximal answers. In the current chapter, we show how
to combine the two paradigms. Combining the two paradigms facilitates, querying
of databases that are both irregular and incomplete.

The outline of this chapter is as follows. In Section 5.1, four new semantics
are defined, namely, the semiflexible-OR, the semiflexible-weak, the flexible-OR and
the flerible-weak semantics. In Section 5.2, query evaluation under the four new
semantics is investigated. Finally, in Section 5.3 we summarize the contribution of

this chapter.

5.1 Queries under the Combined Semantics

In this section we define new semantics that are called combined semantics. The
combined semantics generalize the weak and the OR-semantics and add flexibility to

matchings, according to the paradigm of flexible queries.

5.1.1 Combined Semantics

We start by providing required definitions. We also provide a characterizations
for weak and OR-matchings. We will use this characterization when we define the

combined semantics.

102
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Definition 5.1 (Rooted Fragment) Given a query Q = (V,Eq,rg), a rooted
fragment of Q is a rooted graph F = (Vg,Ep,rq), where Vi is a subset of V and
Eg is a subset of Eg N (Vi x Vg). The rooted fragment F' preserves the edges of
Q if each edge of @ that lies on two nodes of F is contained in Ep, that is, all the

edges of Eq that connect nodes of Vg belong to Ep' .

The next proposition characterizes weak and OR-matchings in terms of rooted

fragments.

Proposition 5.2 (Weak-Matchings and Or-Matchings) Let Q be a query and
D be a database. A mapping p is an OR-matching of Q@ w.r.t. D if and only if there
18 a rooted fragment F' of Q), such that u is a rigid mapping of F w.r.t. D and p maps
to null all the variables of @Q that are not in F'. The mapping p is a weak-matching
of Q w.r.t. D if and only if the rooted fragment also preserves the edges of Q.

Proof. Suppose that F' is a rooted fragment of () and p is a rigid mapping of F
w.r.t. D. We show that p is an OR-matching of Q) w.r.t. D.

First, we create an assignment graph G. The nodes of G are pairs of the form
(v, pu(v)), where v is a variable of F. For each edge wlv if F there is an edge
(u, p(w)l(v, p(v)) in G. To see why G is an assignment graph, one should observe
that if ulv is an edge in F' then there is an edge p(v)lu(u) in D. This is because y
satisfies all the ec’s of F.

Since p maps the query root r¢ to database root rp, the pair (rg,rp) is a node
of G. Because in F' each node is reachable from the root, also in G each node is
reachable from the root. Thus, according to Definition 4.3, p is an OR-matching.

The correctness of the other direction follows from the following observation. If
M is an OR-matching graph of y, then the nodes and edges of  that appear in nodes
and edges of M form a rooted fragment of (). For weak matchings, the arguments

are similar. 0

Essentially, according to Proposition 5.2 an assignment p is an OR-matching

(weak-matching) if there exists a rooted fragment (a rooted fragment that preserves

! Note that in literature, sometimes a fragment F that preserves the edges of Q is called “the
induced subgraph of @Q on the nodes of Vr”.
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the edges) of ) such that u satisfies the rc and all the ec’s of the fragment. In order
to add flexibility to the weak and OR-semantics, we replace the query constraints in

the definitions as defined next.

Definition 5.3 (Combined Semantics) Suppose that Q is a query and D is a
database. Let € be one of the three semantics: rigid, semiflexible and flexible. Con-

sider the following four conditions.
1. F is a rooted fragment of Q.
2. u is a E-matching of F w.r.t. D.
3. u maps to null all the variables of Q that are not in F.
4. F preserves the edges of Q.

A mapping u is a £&-OR-matching of Q w.r.t. D if the first three conditions hold. It

18 a &-weak-matching of Q w.r.t. D if all four conditions are true.

For tree queries there are actually only three combined semantics, as pointed out

by the following proposition.

Proposition 5.4 (Tree Queries) Suppose that Q is a tree query, D is a database
and & is one of the three semantics: rigid, semiflexible and flexible. An assignment
b is a &-OR-matching of Q w.r.t. D if and only if u is a &-weak-matching of Q
w.r.t. D.

Proof. In a tree, every rooted fragment preserves the edges. O
For queries that are arbitrary graphs, the following holds.
Proposition 5.5 (Weak and OrR-Matchings) Suppose that Q is a query, D is a

database and & is one of the three semantics: rigid, semiflexible and flexible. If y is

a é-weak-matching of Q w.r.t. D then p is a é&-OR-matching of Q w.r.t. D.

Proof. If u satisfies all the four conditions of Definition 5.3 then it satisfies the first

three conditions of the definition. O
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Query | Root (r) | Movie (z) | Title (y) Year (z) Actor (u) | Name (v)

Query 1 | 1 11 Star Wars (23) | 1977 (24) | 21 Mark Hamill (30)

Query 2 | 1 11 Star Wars (23) | 1977 (24) | 21 Harrison Ford (31)
and 1 12 Leon (26) L 25 Natalie Portman (32)

Query 3 | 1 29 Dune (35) 1984 (36) | 14 Kyle MacLachlan (27)

Table 5.1: The flexible-weak matchings of Query 1, Query 2 and Query 3 of Fig-
ure 2.2 w.r.t. the movie database of Figure 2.1. Only matchings in which both z
and u are not null are presented.

Query results, under the combined semantics, consist only of maximal answers.
If @ is a query and D is a database, the set of maximal flexible-OR-matchings of )
w.r.t. D is denoted as M, (Q, D). The set of maximal flexible-weak-matchings of
@ w.r.t. D is denoted as M, (Q, D). The notations for the combined semantics in
which the flexible semantics is replaced with the semiflexible semantics are similar

(i.e., Msf—or(Qa D) and Msf—fw(Qa D))

5.1.2 Examples

Example 5.6 Recall the three queries that are depicted in Figure 2.2. All three
queries look for actor-movie pairs in which the actor acted in the movie. For actors,
the queries return their name. For movies, the queries return their title and the year
of production.

We examine the case where the three queries are posed, under the flexible-weak
semantics, to the movie database that is shown in Figure 2.1. Table 5.1 presents the
flexible-weak matchings in which x and u are not assigned a null value, i.e., matchings
that consist of both a movie and an actor. Note that with the requirement that x
and u should not be null, all three queries have the same set of matchings. For
Query 1 and Query 3, there is an additional flexible-weak matching where r, £ and
y are mapped to 1, 13 and 33, respectively, and all the other variables are mapped
to null. This matching is not shown in Table 5.1 because it maps w to null. In the
table, for atomic objects, their value is presented in addition to the object identifier.

Consider a user that looks for related actor-movie pairs but is familiar only with
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Query | Root (r) | Movie (z) | Title (y) Year (z) Actor (u) | Name (v)
Query 1 | 1 11 Star Wars (23) | 1977 (24) | 21 Mark Hamill (30)
1 11 Star Wars (23) | 1977 (24) | 21 Harrison Ford (31)
1 12 Leon (26) L 25 Natalie Portman (32)
1 13 Magnolia (33) L L 1L
1 29 Dune (35) 1984 (36) | 14 i
Query 2 | 1 11 L L 21 Mark Hamill (30)
1 11 L L 21 Harrison Ford (31)
1 12 1 L 25 Natalie Portman (32)
1 29 Dune (35) 1984 (36) | 14 Kyle MacLachlan (27)
Query 3 | 1 11 L L 21 Mark Hamill (30)
1 11 L L 21 Harrison Ford (31)
1 11 Star Wars (23) | 1977 (24) | L 1
1 12 L L 25 Natalie Portman (32)
1 12 Leon (26) L L 1
1 13 Magnolia (33) L L L
1 29 Dune (35) 1984 (36) | 14 Kyle MacLachlan (27)

Table 5.2: The semiflexible-weak matchings of Query 1, Query 2 and Query 3 of
Figure 2.2 w.r.t. the movie database of Figure 2.1.

the ontology of the database and not with the structure of the database. This
user may formulate one of the three queries of Figure 2.2. Under the flexible-weak
semantics, all three queries will return a correct answer, that is, all the actor-movie
pairs in which the actor acted in the movie. As shows in Chapter 1, this is not the
case when using the traditional rigid semantics. The example also demonstrates how
the flexible-weak semantics facilitates the querying of data which is both irregular
and incomplete.

Under the flexible-OrR semantics, Query 1 and Query 2 will return the same
set of matchings as under the flexible-weak semantics. This is because the queries
are trees. Query 3, however, may return, under the flexible-OR semantics, actors
and movies that are not related. The reason for this is that under the flexible-ORr
semantics, it is not required that matchings will preserve the edges of the query and,

in particular, the edge that goes from u to .
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Example 5.7 Table 5.2 shows the semiflexible-weak matchings of the three queries
of Figure 2.2 w.r.t. the movie database. The semiflexible semantics is more restric-
tive than the flexible semantics. Therefore, for each semiflexible-weak matching in
Table 5.2 there is a flexible-weak matching, of the same query, that subsumes it. This
shows that queries under the semiflexible-weak semantics may extract less informa-
tion than under the flexible-weak semantics. Yet, the semiflexible-weak semantics
reduces the chance of having non-related objects in a matching, in comparison to the
flexible-weak semantics. Most importantly, under the semiflexible-weak semantics,
all three queries find all the related actor-movie pairs. Furthermore, actor-movie

pairs that are not related are never returned.

5.2 Computing Maximal Matchings

In this section, we study the problem of computing maximal matchings under the
combined semantics that were presented above. We describe evaluation algorithms
for queries with combined semantics and analyze the input-output complexity of

these algorithms.

5.2.1 Computing Semiflexible-OrR-Matchings

Evaluation of maximal semiflexible-OR-matchings is discussed next. At the begin-
ning of this section, we show that evaluation of dag queries is NP-hard. Then we
provide a polynomial-time algorithm for the case where the query is either a tree or
a dag in which the number of nodes, with more than one parent, is bounded. At the
end of the section, we provide an algorithm for computing maximal semiflexible-OR-

matchings of cyclic queries.

DAG Queries

Consider the evaluation of dag queries under the semiflexible-OR semantics. We
show that it is not likely that this evaluation has an algorithm with polynomial-

time input-output complexity. For a proof we use a reduction of 3SAT.
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Lemma 5.8 (Reduction of 3SAT) For a given 3CNF formula ¢ over a set of
propositional letters P, one can construct in polynomial time a dag query QQ and a

dag database D, such that the following are equivalent.

o The set of mazimal semiflexible-OR-matchings consists of a single matching

and this matching does not map any variable of Q to null.
e There is an assignment, for the propositional letters in P, that satisfies .
The proof of Lemma 5.8 is given in Appendix C.

Theorem 5.9 (Complexity of Semiflexible-OrR-Queries) If there ezists an al-
gorithm that computes Mg or(Q, D) in time polynomial in the size of the input (Q
and D) and the output, then PTIME=NP.

Proof. Let ¢, d and m be the sizes of the query, the database and the result, respec-
tively. Suppose that there is an evaluation algorithm A and there is a polynomial
P(z1, 22, x3) such that for every database D and query @, the algorithm .4 computes
Mgpor(Q, D) in O(P(q,d,m)) time. We show that this would yield a polynomial
algorithm to decide 3SAT. However, 3SAT is NP-complete.

Let ¢ be a 3CNF formula over a set P of propositional letters. Let D, and
Q, be the query and the database that are constructed according to Lemma 5.8.
Consider a satisfying assignment f to the propositional letters of P. If f satisfies
@, then My 0r(Qy, D,) contains a single element. Furthermore, the evaluation of
Myt or(Qyp, Dy) is in O(P(|Qyl,|Dy|,1)) time. Since the sizes of D, and Q,, are
polynomial in the size of ¢, there exists a polynomial P'(z) such that A terminates
after time P'(|yp|), i.e., after polynomial time in the size of ¢.

In order to solve 3SAT in polynomial time, we would construct D, and @), and
then execute A with D, and @, as the input. If A does not terminate after P’'(|¢|)
time, we stop the run and know that ¢ is unsatisfiable. If A stops without our
intervention, we examine the result. If the result consists of a single matching and
this matching maps all the variables of @ to database objects (i.e., not to null), then
we know that ¢ is satisfiable. Otherwise, we know that ¢ does not have a satisfying

assignment. O
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The above theorem showes that there is no polynomial-time algorithm for eval-
uating dag queries under the semiflexible-OR-semantics, assuming that P # NP.
However, consider a query (), a database D and a mapping u that assigns objects of
D to the variables of @). To decide if y is a semiflexible-OR-matching of @ w.r.t. D
is in NP. This is because one can guess a rooted fragment F' of () and, according
to Theorem 3.19, verify in polynomial time, in the size of @) and D, whether 4 is a

semiflexible matching of @) w.r.t. F.

Next, we provide an algorithm that computes maximal semiflexible-OR match-
ings. First we describe the algorithm for dag queries and then modify this algorithm,
to deal with cyclic queries. In the general case, the input-output complexity of the
algorithm is not polynimal. Yet, there are cases in which the algorithm is tractable.
In particular, for tree queries, the algorithm has a polynomial-time input-output
complexity. An analysis of the algorithm runtime will be given at the end of the
section.

Before presenting the algorithm, we show that when computing semiflexible-OR-
matchings, it is sufficient to compute the matchings w.r.t. subtrees of the query
instead of examining all the rooted fragments of the query, including fragments that

are not trees.

Proposition 5.10 (Tree Expansion) Consider a query @ and a database D. An
assignment p is a semiflexible-OR-matching of Q w.r.t. D if and only if there is a

tree T that satisfies the following three conditions.
1. T is a rooted fragment of Q;
2. u is a semiflexible-matching of T w.r.t. D; and

3. pu maps to null all the variables of Q that are not in T.

Proof. Obviuosly, if there exists a tree T' that satisfies the conditions of the proposi-
tion, then p is a semiflexible-OR-matching. This follows directly from Definition 5.3.
We show the other direction. Suppose that y is a semiflexible-OR-matching.

According to Definition 5.3, there is rooted fragment F' of () such that p is a
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semiflexible-matching of F' w.r.t. D and y maps to null all the variables of @) that
are not in F. If F' is a tree, then the claim is correct and there is nothing to prove.
Otherwise, let 1" be a spanning tree of F', i.e., a tree that consists of all the nodes of
F. Obviously, T is a rooted tree and p maps to null all the variables of () that are
not in 7. Furthermore, p is a semiflexible matching of F' w.r.t. D. Thus, yu satisfies
the SF-Condition w.r.t. every path of F. Since all the paths of T" are also paths of
F, u satisfies the SF-Condition w.r.t. every path of T'. Therefore, i is a semiflexible
matching of T’ w.r.t. D. O

Next, we present an evaluation algorithm for queries under the semiflexible-OR-
semantics. Generally, the evaluation algorithm computes rooted subtrees of the
query and finds the semiflexible matchings w.r.t. these trees. For trees and for dag
queries, the evaluation is performed by a series of extension steps. We describe
extension steps, first, and then describe how to apply these extension steps when

evaluating a query.

Definition 5.11 (Extension Set) Let T = (Vr, Er,rq) be a rooted subtree of a
query @ and let u be a semiflexible matching of T w.r.t. a database D. Consider

a variable v of Q) that is not in Vp. The set Extsf_or(T,u,v) is the set of all pairs
(T', ") such that:

1. T’ is a rooted subtree of Q.

2. The variables of T' are Vp U {v} and the edges of T' consists of Er plus one

edge that connects a node in Vp to v.
3. The matchings p and y' are equal on all the nodes of T.

4. The matching u' is a semiflexible matching of T' w.r.t. D.

Intuitively, Ext (T, u,v) contains pairs of a tree T and a matching p’, where

sf-or
T" is an extension of T' (T" is created by adding to T' an edge that connects T' with
v) and ' is a semiflexible matching of 7" w.r.t. D.

Computing Extsf_ or(T, 1, v) is described next. First, we find all the edges of @

that connect a node of T' to v. Adding each of these edges to T provides a tree T"
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that extends 7' to include v. For an object o in D, let p U {(v,0)} be a matching
that is equal to p on the variables of T' and assigns o to v. Consider a pair of a
tree 7" that is the result of extending 7" with v and a matching p' = p U {(v,0)}. If
p' is a semiflexible matching of 7" w.r.t. D, we add the pair (T”,4') to the result.
Checking if p' is a semiflexible matching of T w.r.t. D is being done by testing the

two conditions that are described in the next proposition.

Proposition 5.12 (Testing Extended Matchings) Let i’ be a matching that is
created by extending p with an assignment of o to v, as described above. Then ' is

a semiflexible matching of T' w.r.t. D if the next two conditions are satisfied.

1. Let 1 be the label on the edge that enters v in T'. There is an edge in D that

enters o and s labeled with .

2. If v, is an ancestor of v in T' and has an incoming label l,, then D either has

a path p(vg)*lo or a path oxlgp(v,).

Proof. First, we show why it is sufficient to check the conditions in the proposition
only w.r.t. v and o and not w.r.t. all the variables of the query. Recall that the
matching p is a semiflexible matching of T w.r.t. D. Thus, every path of T satisfies
the SF-Condition w.r.t. 4. Every path in T’ that does not include v is a path in
T and, hence, satisfies the SF-condition w.r.t. y’. So, in order to check that p' is a
semiflexible matching of 77 w.r.t. D, we merely need to check that paths that contain
v satisfy the SF-condition. This is precisely what the conditions of the proposition
do. Therefore, if the two conditions of the proposition are satisfied, then y’ is a
connectivity-preserving mapping. Note that the first condition of the proposition is
sufficient and necessary for satisfaction of the first condition in the definition of a
connectivity-preserving mapping (Definition 3.10). According to Corollary 3.13, '

is a semiflexible matching of T". O

Consider two pairs (T, 1) and (T”, u'), where (1) T and T" are subtrees of Q; and
(2) u and u' are semiflexible matchings w.r.t. T' and T', respectively. We say that
(T', ") subsumes the pair (T,p) if (1) all the edges and nodes of T are also edges
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and nodes of T", and (2) for each variable v of T, u(v) = p/(v). During the run of
the algorithm, subsumed pairs are discarded in order to prevent redundant work.
Let @ be a dag query and D be a database. Next, we present the algorithm

SFORD that computes the set of maximal semiflexible-OR matchings of Q) w.r.t. D.

SFORD(Q, D)

1. Sort topologically the nodes of Q). Let vg,...,v, be the nodes of ) according
to the topological order.

2. Create an initial set M° that contains a single pair (T, u), where T' has no
edges and has a single node—the query root. The matching y is a mapping of

the query root to the database root.

3. Create the sets M! ..., M™, iteratively. For each 1 < i < n, the set M’
is created by extending the matchings of M*~! w.r.t. v;. Extension step i is

performed as follows.

(a) Start with an empty set M.

(b) For each pair (T,p) in M1, if Ethf_or(TaMan) is empty, add to M°*

the pair (T, u). Else, add to M; all the elements of Ethf—or(T’ oy V).
(c) Tteratively, remove an element of M’ that is subsumed by another element

of M?, until there are no subsumptions.

4. Let M be the set {u | (T, p) € M™}. That is, M consists of all the matchings

p that are part of a pair (7, u) in M™.

5. For each matching y in M, if there are variables of () that u does not map
to any object, then replace p by a mapping i, such that [ is equals to p on
all the variables that 4 maps to database objects. In addition, & maps to null

variables for which y is not defined.

6. Remove from M subsumed matchings, i.e., non-maximal elements, and return

M.
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The next propositions prove the correctness of the algorithm and analyze the

input-output time complexity.

Proposition 5.13 (Completeness) Suppose that Q is a dag query and D is a
database. If yu is a semiflexible-OR-matching of Q w.r.t. D, then the result of Algo-

rithm SFORD contains p or contains a matching that subsumes p.

Proof. According to Proposition 5.10, there exists a rooted subtree T of @), such
that p is a semiflexible matching of 7" w.r.t. D. We use induction to show that either
M™ contains (T, u) or M™ contains a pair (T”, ') that subsumes (T’ p)-

Let vg, ..., v; be the first 14 1 variables in the topological order over the variables
of ). We denote by T; the restriction of T to vy, ...,v;. The variables of T; are the
elements of the intersection V; = {vy,...,v;} N Vp, where V are the variables of 7.
The edges of T; are all the edges of T" that connect two variables of V;. We denote
by u; the restriction of u to vg,...,v;. That is, u(v) = p;(v) for each v in V;.

The induction hypothesis is the following. In M?¢ there is a pair (77, u}) that
subsumes or equals to (Tj, ;). For i = 0, the pair (Tp, yo) is in M, according to
Step 2 of the algorithm. Next, we assume that the hypothesis holds for M? and
show that it holds for M**1.

We examine two cases. The first case is when v;11 is not a node of T'. In this
case, (Tj+1,piv1) is equal to (T;, u;) because even if an edge is added to T; it is not
an edge of T. If the pair (T7,4}) is in M**! then M'*! contains an element that
subsumes (T, 1, ti+1). Otherwise, Mit! contains a pair (T, /i) that is created by
extending T/ and pl. If so, (T, ji) subsumes (77, i) and, thus, subsumes (T4 1, fi11)-

In the second case, v;y1 is a node of T'. Let TZ-'+1 be a tree that is produced by
adding to T, the node v;y1 and the edge of T' that enters v;y1. Since vg,v1,..., vy
are sorted topologically, 7" is a rooted tree. Let pj ; be pj U {(vit1, u(viy1))}, ie.,
an extension of y1} to v;41.

Because p is a semiflexible matching of T', all the paths of T' satisfy the SF-
condition w.r.t. u. Specifically, the path to v;41, in Ti’+1, is also a path in 7. Hence,
this path satisfies the SF-Condition w.r.t. p;y1. So, (T}, ,piyq) is in an element

of Extsf_ or{T!, i, viy1) and, consequently, it is an element of M*! or subsumed
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by an element of M**!. Finally, the induction hypothesis holds for M**1, because

(T}, 1, p; 1) subsumes or is equal to (Tj11, frit1).- O

Proposition 5.14 (Soundness) Let Q be a dag query and D be a database. When
computed over Q and D, Algorithm SFORD produces only mazimal semiflexible-OR-

matchings.

Proof. Suppose that y is a matching in the result of Algorithm SFORD. In this case,
according to Step 4 of the algorithm, there exists a tree 7' such that M"™ contains
the pair (T, u).

For each i and every pair (T}, 1;) in M?, it holds that y; is a semiflexible matching
of T; w.r.t. D. This is shown by induction on i. For ¢ = 0, M? containts only a
single element comprising a mapping of the query root to the database root. Thus,
the induction hypothesis holds. For ¢ > 0, according to Definition 5.11, if u;—; is a

semiflexible matching of T;_;, then Ext (T5—1, pi—1,v) consists of pairs (T;, p;),

sf-or
such that p; is a semiflexible matching of T; w.r.t. D. This shows that u is a
semiflexible matching of T' w.r.t. D.

To see why p is a maximal matching, consider the case where there exists p'—a
semiflexible-OR-matching of ) w.r.t. D that subsumes . In this case, according to
Proposition 5.13, M will include either p' or a matching that subsumes p'. Since

subsumed matching are removed, it follows that y is not returned by the algorithm.

This is a contradiction to our assumption. O

We now analyze the complexity of Algorithm SFORD. For each variable v in @),

we denote by fan-in(v) the number of edges that enter v in Q.

Proposition 5.15 (Complexity) Let Q be a dag query and D be a database. The
runtime of Algorithm SFORD is O(d? + q*mr(d + mr)), where q is the size of the
query, d is the size of the database, m is the size of the result and r is the value of

the multiplication HUEQ,#TQ fan-in(v).

Proof. Computing the topological order over the nodes of @, in Step 1, can be done

in O(q). Step 2 requires a costant time. In Step 3, there are n iterations, where n
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is the number of variables in Q. In each iteration, the elements of M’ are extended.
We will show later that there can be at most mr elements in M°.

An extension of a pair (7, i), by adding a mapping to a variable v, is computed in
O(dg). In the extension, in the worst case, all the objects of D are tested. Testing
if an object o can be assigned to v is by verifying that all the ancestors of v are
mapped to objects that are connected to o by a path. In @ there are, at most, n
ancestors of v. We assume that it is in O(1) to test if a pair of objects is connected.
To make this assumption true, we create, in a preprocessing step, a suitable data
structure that tells which two database objects are connected by a path. Creating
such a data structure can be done in O(d?).

Removing subsumed elements from M? requires O(g(mr)?), since in M there
are at most mr elements and because each subtree and each matching have an O(q)
size. In total, the time complexity is O(q + d? + q(gdmr + q(mr)?)).

To complete the proof, we provide a bound on the number of elements in the
sets M. Consider a matching y in the result set M. Let u; be the restriction of
p to vo,...,v;. We say that there is a repetition of size k (k > 1) w.r.t. u, in M,
if there are k + 1 pairs (T4, i4;),- - - » (Tky1, 45) in M. That is, the restriction of u
to the first ¢ variables, in the topological sort, appears in k + 1 different elements of
M.

Suppose that y is a matching in the result set M. In MO there are no repetitions
w.r.t. 1, because M° contains a single element. In M! there is a repetition of size
fan-in(v1) w.r.t. u, because fan-in(v1) edges enter v; in Q. We continue by induction
and see that, in M?, there is a repetition of size fan-in(v1) - fan-in(ve) - - - fan-in(v;)
w.r.t. u. This shows that for each 1 < i < n, in M?, there is a repetion of size less
than or equal to r w.r.t. each matching of the result. Thus, there are, at most, mr

elements in M®. 0

Corollary 5.16 (Complexity for Tree Queries) Let QQ be a tree query and D
be a database. The runtime of Algorithm SFORD is O(d? + ¢*m(d + m)), where q

is the size of the query, d is the size of the database and m is the size of the result.
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Proof. Since in a tree each node, other than the root, has exactly one incoming

edge, the value of the expression [] fan-in(v) is 1. O

VEQWETQ

Evaluating Cyclic Queries

Evaluation of cyclic queries is similar to the evaluation of dag queries. The main
principle is to iteratively construct all the subtrees of the query and compute the
semiflexible matchings w.r.t. these trees.

Next, we describe Algorithm SFORG that computes semiflexible-OR-matchings
of queries that are arbitrary graphs. Consider a query @) with n 4+ 1 variables and a
database D. As in Algorithm SFORD, which computes semiflexible-OR-matchings
of dag queries, we create in SFORG sets of pairs M?, ..., M™. The set M° consists
of a pair (Tj, 1o) where Ty has just one node, the query root, and pg is the mapping
of the query root to the database root. For each i, M’ is the set of all pairs (T}, ;)
such that T; is a subtree of () with exactly ¢ edges and p; is a semiflexible matching
of T; w.r.t. the database D. Notice that there are n sets since, for a query with n+1
nodes, a subtree of the query cannot have more than n edges.

The sets M!,..., M" are created in n iterative steps. In the ith iteration, the
set M’ is created from the elements of M*~! as follows. We create an empty set M.
Then, for each pair (T} 1,u; 1) in M*~! and for each variable v, such that v is not

in T;_1, the set Ext (Ti—1, pi—1,v) is added to M?. Duplications are discarded.

sf-or

During the creation of the sets M!, ..., M™, we create an additional set denoted
M. The set M consists of matchings that cannot be extended. At each step of
creating a set M?, if a pair (T;_1,;_1) is such that Extsf_or(’l’i_l,ui_l,v) is empty
for every v, then p;_1 is added to M. After the nth iteration, for each pair (7}, )
of M", u, is added to M. The final step of the algorithm is the creation of the
matchings from the elements of M. In this step, each matching p in M is extended
by mapping the undefined variables to null. Subsumed tuples and duplications are
removed from M and M is returned.

Soundness and completeness of Algorithm SFORG are proven in a similar way

to the proof of Algorithm SFORD.
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Proposition 5.17 (Time Complexity) When computed over a query QQ and a
database D, Algorithm SFORG has a time complezity O(d?> + ¢3dmr + q(mr)?),
where q is the size of the query, d is the size of the database, m is the size of the

result and 7 is the value of the multiplication HveQ,v;érQ (fan-in(v) + 1).

Proof. In O(d?) runtime, it is possible to construct a data structure that, for each
pair of database objects, can answer in O(1) time whether this pair of objects is
connected by a path.

In the algorithm there are g iterations. In each iteration, the elements of a set
M? are extended. There are at most mr elements in M* as will be proved later.
For each pair (Tj,u;) in M?, there are at most ¢ edges that can extend T;. For
each edge e that can be used to extend T;, there are at most d objects that can
be assigned to the target node v of e. Testing if an assignment of o to v satisfies
the conditions of the semiflexible semantics requires to check that o is on a path
with all the objects that are assigned to ancestors of v. There can be at most ¢
ancestors to v. Thus, the runtime for a single iteration is O(mrqdq) and q iterations
are computed in O(¢g*dmr) time. Removing subsumed matchings, at the final step,
is in O((mr)?%q) time.

We show why there are at most mr elements in each set M¢. First, note that
there are no subsumed pairs in the set M?*. This is because, for all the pairs in M?,
all the trees in these pairs have exactly i edges. Secondly, note that M? is a set
and does not include duplicate elements. Thirdly, for each pair (T}, u;) in M, the
matching p; is a semiflexible matching of 7;. Thus, u; is either equal to a matching
in the result or subsumed by a matching in the result. The last three observations
show that it is sufficient to count the number of of pairs (T;,, y1,) in M?, such that
there is a semiflexible-OR-matching of Q w.r.t. D that subsumes p;,.

Let i be a semiflexible-OR-matching of Q) w.r.t. D. We claim that the number of
pairs (T5,, pj;) in M?, such that p subsumes i, is less than or equal to r. To prove
this claim, let rg,v;,,...,v; be the variables of @ that y maps to non-null values.
Consider a subset Vg of {rg,vj,,...,v;,} and let T be a tree whose variables are

Vr. For each 1 <[ < k, in T there is at most one edge that enters v;,. There are
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fan-in(v;,) edges that enter vj, in Q. So, in T, for each 1 < < k, either there in no
edge that enters vj, or the edge that enters vj, is choosen from the fan-in(v;,) edges
that enter v;, in Q. Hence, there are at most [ ], ;< (fan-in(v;) + 1) possibilities to
choose the edges for a tree over Vp. For the case where y maps all the variables of
Q to non-null values, the number of subtrees of @ is HWGQ,U#Q (fan-in(v) + 1), i.e.,

equals to 7. O

5.2.2 Computing Flexible-Oor Matchings and Flexible-Weak Match-
ings

In this section, we show how to compute flexible-OR matchings and flexible-weak
matchings in polynomial runtime, in the size of the input and output. The main
principle behind the methods that we provide is to pose queries, under the OR-
semantics (weak semantics), to the reachability graph instead of posing the queries
to the database itself.

In Theorem 3.55 we showed that the set of flexible matchings w.r.t. a database
is equal to the set of rigid matchings with respect to the reachability graph. We now

apply this principle to the combined semantics.

Proposition 5.18 (Computation Reduction) Let Q) be a query, D be a database
and RG(D) be the reachability graph of D. The following two sets are equal.

o The set of flexible-OR-matchings of Q w.r.t. D.

e The set of OR-matchings of Q w.r.t. RG(D).

Proof. Let yu be a matching of ) w.r.t. D. Consider the following statements.
1. The matching y is a flexible-OR-matching of ) w.r.t. D.

2. There exists a rooted fragment F' of ), such that p is a flexible matching of
F wrt. D.

3. There exists a rooted fragment F' of @), such that y is a rigid matching of F
w.r.t. RG(D).
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4. The matching y is an OR-matching of @ w.r.t. RG(D).

According to Definition 5.3, Statement 1 is true if and only if Statement 2 is
true. Statement 2 is true if and only if Statement 3 is true, due to Theorem 3.55.
Statement 3 and Statement 4 are either both true or both false, according to Propo-

sition 5.2. O

For weak queries, the next proposition describes a principle that is similar to the

the principle of Proposition 5.18.

Proposition 5.19 (Computation Reduction) Let Q be a query, D be a database
and RG(D) be the reachability graph of D. The following two sets are equal.

o The set of flexible-weak matchings of Q w.r.t. D.

e The set of weak-matchings of Q w.r.t. RG(D).

The proof of Proposition 5.19 is similar to the proof of Proposition 5.18.

Let @ be a query and D be a database. Computing flexible-OR-matchings
(flexible-weak matchings) of @ w.r.t. D is a two-step process. Firstly, RG(D)—
the reachability graph of D—is constructed. Secondly, @ is evaluated under the
OR-semantics (weak-semantics) w.r.t. RG(D). Correctness follows from Proposi-

tion 5.18 (Proposition 5.19).

Theorem 5.20 (Polynomial Time Complexity) Let Q be a query and D be a
database. There exists an algorithm that computes the flexible-OR-matchings of Q
w.r.t. D in polynomial time in the size of the input and output. This theorem is also

true if we replace “flexible-OR-matchings” with “flexible-weak-matchings”.

Proof. The theorem follows from the following two facts. First, the size of the
reachability graph is polynomial in the size of the database. Secondly, as shown in
Chapter 3, there exists an algorithm that computes OR-matchings (weak-matchings)

in polynomial time in the size of the input and output. O



Chapter 5§ Combining Flexibility with Mazimal Answers 120

Query / Semantics || Semiflexible-OrR | semiflexible-weak | flexible-OR | flexible weak

path query PTIME PTIME PTIME PTIME
tree query PTIME PTIME PTIME PTIME
dag query NP-Complete Open Problem PTIME PTIME
cyclic query NP-Complete Open Problem PTIME PTIME

Table 5.3: The complexity of query evaluation under the four combined semantics.
(NP-Complete results refer to checking non-emptiness.)

5.3 Summary of Contributions

In this chapter, we presented four new semantics, namely, the semiflexible-OR, the
semiflexible-weak, the flexible-OR and the flexible-weak semantics. Query evaluation
was investigated under these four new semantics. It was shown that under the
semiflexible-OR semantics, a tree query can be evaluated in polynomial time in the
size of the input and the output. For a DAG query, there is no polynomial-time
algorithm, in the size of the input and the output, unless P = NP. Under the
flexible-OR and the flexible-weak semantics, any arbitrary query can be evaluated
in polynomial time in the size of the input and the output. When the query is
a tree, the semiflexible-weak semantics and the semiflexible-OR semantics are the
same. Thus, under the semiflexible-weak semantics, tree queries can be computed
in polynomial time in the size of the input and the output. For DAG queries and

cyclic queries it is still an open question whether such an algorithm exists.



Chapter 6

Full Disjunctions

In this chapter, we present the full-disjunction approach for oblivious querying.
The manner of oblivious querying, in the previous chapters, required from users
to provide a query in the form of a rooted graph. Since providing a rooted graph
could be cumbersome, in the full disjunction approach, the semistructured database
is automatically transformed into a relation and the user queries this relation using
a traditional relational query language. Thus, the user is oblivious to the structure
of the semistructured database.

The outline of this chapter is as follows. In Section 6.1 a short introduction
is given. Section 6.2 provides some preliminary definitions and, in particular, full
disjunctions are defined. Section 6.3, explains how to transform a semistructured
database into a universal relation. Such a transformation facilitates the querying of
semistructured databases and admits the querying of a single relation with a known
schema—instead of querying a graph whose schema, is unknown or is more compli-
cated. In Section 6.4, it is shown how to reduce the evaluation of full disjunctions to
the evaluation of maximal weak matchings. This reduction provides an algorithm,
for full disjunctions, that has polynomial-time input-output complexity. Section 6.5
discusses projections of a full disjunction on a given set of attributes. It is shown
that for the case of relations with y-acyclic schemas (see Appendix A, for a definition
of v-acyclic hypergraphs), there is an algorithm that computes the projection of a
full disjunction in polynomial time in the size of the input and the output. However,

in the general case, i.e., when the relation schemas are not y-acyclic, such algorithm

121



Chapter 6 Full Disjunctions 122

does not exists, unless P = NP. Section 6.6 presents a generalization of full dis-
junctions that facilitates integration of relational data by means of join conditions
that are more general than just equalities. Finally, in Section 6.7, we discuss the

contribution of this chapter and conclude.

6.1 Motivation

For a start, we explain the motivation behind full disjunctions. The usual way to
integrate data from several relations is by computing a natural join of the relations.
However, in a natural join, there could be dangling tuples. Given a set of relations
T1,...,Tn, a tuple t, in some relation r; with schema R;, is a dangling tuple if the the
projection of the natural join of r1,...,r, on the attributes of R; does not include
t. Obviously, in a natural join, dangling tuples are not part of the result. That is,
they do not appear as part of any tuple of the result. In this sense, natural joins
cause a information loss.

Consider a set of relations R = {r1,...,r,}. Suppose that we take all the subsets
of R, compute the natural join w.r.t. each subset and add the tuples of these natural
joins to a set J. In J, no dangling tuple is lost. However, there are two fundamental
problems in J that prevent J from being useful.

One problem with J is that tuples in the result may come from disconnected
relations. We consider two relations as directly connected if their schemas have a
non-empty intersection. Two relations r and 7’ are connected if one of the follow-
ing two conditions is true: (1) r and r’ are directly connected; (2) there are two
connected relations 7 and 7 such that 7 is directly connected to r and 7' is directly
connected to r’. Joining disconnected tuples should be avoided. Otherwise, we
would not be able to distinguish between the next two cases. First, a case where
two pieces of information are in one tuple of the result because they are related.
Second, a case where the two pieces of information appear in one tuple of the result
because they come from disconnected tuples.

A second problem with J is that it contains tuples that are not maximal.

More specifically, consider a tuple ¢ that is the join of the tuples ¢;,,...,%;, , where



Chapter 6 Full Disjunctions 123

tiys---,t; are tuples of the relations r;,,...,r; , respectively. If ¢ is in J, then for
each subset of ¢; ,...,;,, the join of the tuples in this subset will also be in J. This
may cause an exponential blowup in the size of J, without adding information.

In an integration of two relations, the outerjoin can give an answer to the three
problem that were presented above: loss of dangling tuples, connecting unrelated
pieces of data and an exponential blowup due to keeping non-maximal elements. An
outerjoin of two relations r; and 9 is a relation that consists of all the tuples in the
natural join of r; and r2. In addition, the outerjoin contains all the tuples of r; (r2)
that are not joined with any tuple of ro (1), padded with null values.

For integration of more than two relations, the semantics of outerjoins is prob-
lematic, since outerjoins are not associative. Galiando-Legaria [34] proposed full
disjunctions, which are commutative and associative, as an alternative to outer-
joins. Essentially, the full disjunction of a set of relations is obtained by taking all
joins of any subsets of relations, excluding joins that involve a Cartesian product,
and removing subsumed tuples.

In full disjunctions, dangling tuples are not discarded. In addition, the two
problems that were discussed above are prevented—the problem of tuples that are
produced by a join of disconnected tuples and the problem of causing an exponential
blowup due to keeping non-maximal tuples in the result.

Rajaraman and Ullman [55] showed that the full disjunction of some given re-
lations can be evaluated by a natural outerjoin sequence if and only if the relation
schemas are connected and 7y-acyclic. It is easy to see that the sequence of outer-
joins has a polynomial input-output complexity. They did not provide a polynomial
time algorithm, under input-output complexity, for computing full disjunction of
relations with schemas that are not y-acyclic.

In the next section, we provide a formal definition of full disjunctions. We
describe how to use full disjunction for oblivious querying of semistructured data
and we present an algorithm that computes full disjunctions in polynomial time in
the size of the input and output. The runtime of the algorithm remains polynomial

even for relations with schemas that are not ~y-acyclic.



Chapter 6 Full Disjunctions 124

6.2 Preliminaries

Let ri1,...,7r, be relations with relation schemas Ry,..., R,, respectively. The jth
tuple of r; is denoted as ¢;;. Given a subset X C R;, the projection of the tuple ¢;;
on X is denoted as t;;[X].

Two distinct relation schemas R; and R; are connected if R; N R; is non-empty.
This definition is generalized to m (m > 1) distinct relation schemas as follows.

The schema graph of R;,,...,R;

consists of a node for each R;; and edges in both
directions between R;, and R;, (1 < h < k < m) if R;, and R;, are connected,

ie., R; N R; is non-empty. We say that the relation schemas R; ,...,R;  are

Im
connected if their schema graph is connected. (There is an equivalent definition of
connectivity that is based on the notion of the hypergraph of R;,,..., R;,.) We say

that tuples t;,;,,...,1t from m (m > 1) distinct relations are connected if their

tmJm
relation schemas are connected. Note that a single tuple ¢;,;, is connected.
Two connected tuples t;,;, and t;,;, (i1 # iz) are join consistent if ¢; ;, [R;; N

R;,] = ti,jo[Ri; N Ri,]. More generally, m tuples t;,,,...,t from m distinct

imJm
relations are join consistent if every pair of connected tuples ¢;,;, and ¢;,;, is join
consistent. The natural join of t;,;,,...,%;,,j,, denoted x}* | t; ; , is either empty

or has one tuple over the attributes of Uj,R;,. It has one tuple if and only if

ik -
Livjis+ s tipmj,, are join consistent.

A universal tuple is defined over the set of all the attributes, namely U} R;,
and its columns are filled with nulls as well as non-null values. If u is non-null
exactly on the attributes of Z, then u[Z] is called the non-null portion of u and is
denoted as 4. The universal tuple u is called an integrated tuple if there are m > 1
connected and join-consistent tuples 2;,;,...,%;, .., such that 4 =x7 , #; ;. The

tuples ;,j,,...,1 are called generators of u.

imJm
A universal tuple v subsumes a universal tuple u, denoted u C v, if v[Z] = u[Z],
where u is non-null exactly on Z. Given a set D of universal tuples, u € D is mazimal

if it is not subsumed by any other tuple of D.

Definition 6.1 (Full Disjunction) The full disjunction of the relations r1,...,m,

is the set of all maximal integrated tuples that can be generated from m (1 <m <mn)



Chapter 6 Full Disiunctions 125

A|B|C A|B|D Al|E C|D|E
11213 1|24 2|3 3/3|3
413|3

R

234 3|2

[ Relaion R, ][ Relaion R, ][ Relation R, ][ Relaion R, ]

The Full Digunction of
theRelations R, R,, Ry, R,

Figure 6.1: The full disjunction of four relations.

tuples of r1,...,7p.

Example 6.2 In Figure 6.1, the full disjunction of four relations is depicted. The
first tuple of the full disjunction is created as a join of the the first tuples of the
relations R, and Ry. The second tuple of the full disjunction is the join of the second
tuple of Ry, the first tuple of R3 and the second tuple of R4. The third tuple is a
join of the first tuples of Ry and R4. Finally, the fourth tuple is created from the
second tuple of Rj.

6.3 Transforming Semistructured Data to Relational

We now show how full disjunctions can be used for oblivious querying of semistruc-
tured databases, provided that in the database there are no repeating labels on
simple paths. To facilitate querying of irregular semistructured data, the database
is transformed into a relation. Intuitively, the transformation is as follows. First,
for each simple database path, from the root to a leaf, a tuple is created. Secondly,
the tuples are divided to relations according to the labels on the paths that define
them. Finally, the full disjunction of the relations is computed and returned. Next,

we provide some definitions and then introduce the transformation.

Definition 6.3 (Induced Schema and Induced Tuple) Let D be a semistruc-
tured database and ¢ = opli01 * - 0n—1ln,0n be a simple path from the root of D to a

leaf op,. Furthermore, assume that there are no repeated labels on ¢. The induced
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schema of ¢ is the set Schy that consists of the labels on ¢, i.e., l1,...,l,. The
induced tuple of ¢ is a tuple ty over the schema Schy. For 1 <i <mn —1, t4]l;] is
the oid of 0;. For the atomic node oy, ty[l,] is the atomic value that is attached to

Oy, 1 D.

Consider a semiflexible database D that has no repeated labels on simple paths.

The method for transforming D into a relation is as follows.

Transform a Semistructured Database to a Relation
1. Let R be an empty set of relations.
2. Compute all the simple paths, from the root to a leaf, in D.

3. For each path ¢ that was found in Step 1, compute the induced schema, of ¢,
Schg, and the induced tuple of ¢, t. If there exists a relation r in R with the
schema Schy, then add #4 to r. Else, create a new relation 7 with the schema

Schg, add ty to r and add r to K.

4. Compute F, the full disjunction of the relations of R and return F.

Example 6.4 In this example we demonstrate the full-disjunction approach by ap-
plying the transformation to the movie database of Figure 2.1. The tables that are
created in the first step of the transformation are presented in Appendix B. The
result of the transformation is shown in Table 6.1.

Without providing any information, the user receives a table that she can query
using a relational query language. Note that a projection on the attributes “Movie”
and “Actor” produces all the movie-actor pairs in which the actor acted in the movie.

The full disjunction approach is less accurate than the combined semantics that
were presented in Chapter 5. By this we mean that there can be tuples in F where
the tuples indicate that two values or objects are related, while actually these values
or object are not related. This happens, for example, in Line 6 of the table. In this
line, the T.V. Series “Twin Peaks” is attached to the year 1984, although 1984 is

actually the year when “Dune” was produced. Thus, the full disjunction approach
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Movie | Title Year | Actor | Director | Name Filmography | T.V. Series
11 Star Wars 1977 | 21 1 Mark Hamill 1 1
11 Star Wars 1977 | 22 1 Harrison Ford 1 1
11 Star Wars 1977 | L 41 George Lucas 1 4
12 Leén €L 25 1 Natalie Portman 1 €1
13 Magnolia 1 1 1 1 1 1
29 Twin Peaks | 1984 | 14 1 Kyle MacLachlan | 15 28
29 Twin Peaks | 1984 | 14 42 David Lynch 15 28
29 Dune 1984 | 14 1 Kyle MacLachlan | 15 1
29 Dune 1984 | 14 42 David Lynch 15 1

Table 6.1: The result of transforming the movie database into a relation, using full
disjunction.

is suitable for naive users but it may have errors that the flexible-weak semantics

(or the other combined semantics) of Chapter 5 would not have.

6.4 Computing Full Disjunctions

In order to compute the full disjunction, we need to view tuples as objects and rela-
tion schemas as variables. By a slight abuse of notation, ¢;; denotes both the tuple
and its oid. Similarly, R; denotes both the relation schema and its corresponding
variable.

We construct a database D = (O, Ep,rp, ) and n queries Q; = (V, Eg,,7Q;)
(1 <4< n) as follows. D has a root 7p and an object for each tuple ¢;;. There are
edges in both directions between every pair of connected and join-consistent tuples.
There is also an edge from the root to every tuple. An edge that enters a tuple of
rr (1 <k < n) is labeled with l;. The values of the atomic objects can be chosen
arbitrarily.

The query Q; = (V, Eg,,rq,) is constructed from the schema graph of Ry, ..., R,
by adding a root rg, and an edge from the root to each R;. An edge that enters
Ry (1 <k < n) is labeled with l;. Note that only one connected component of the

schema graph of Ry,..., R, can be reached from the root of Q;.
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Consider a weak matching y of some @Q; w.r.t. D. Recall that u assigns to each
variable of @); either a tuple or null. Let g(u) denote the tuples in the image of p.
Since p is a weak matching, the tuples of g(u) are connected and join consistent.

Therefore, the tuples of g(u) generate an integrated tuple that is denoted as >a(u).

Proposition 6.5 (Soundness and Completeness) The tuple u is an integrated
tuple of r1,...,rn if and only if there is a weak matching p of some Q; w.r.t. D,

such that u = >(p).

Proof. As noted earlier, if y is a weak matching of @; w.r.t. D, then x(u) is an
integrated tuple. For the other direction, consider an integrated tuple u that is
generated by the tuples ¢; ;,,...,%;,,j,. Let u be the assignment for Q;, w.r.t. D
that is defined as follows: u(rg, ) =rp, p(Ri,) = tij, (1 <k <m), and p(R;) = L
for any R; that is not among R;,,..., R;,,. Note that all the edges that enter R;,
and all the edges that enter #;,;, (1 < k < m) have the same label /;,. Moreover,

Livjrs---st are connected and join consistent. Thus, p is a weak matching. By

imJm
the construction of y, we have that u = (). This proves the proposition. O
The full disjunction F of r1,...,r, can be computed as follows. First, compute

the set M,,(Q;, D) fori =1, 2, ..., n. Let M be obtained from U} ; M,,(Q;, D) by
removing subsumed matchings.! Finally, F = {sa(u) | p € M}.

Theorem 6.6 (Complexity) The set F is the full disjunction of the relations
T1,...,mn and it can be computed in O(n®s®f?) time, where n is the number of

relations, s is the total size of all the relations and f is the size of F.

Proof. From Proposition 6.5, it follows that F consists of integrated tuples. To
complete the proof that F is the full disjunction, it should be observed that if u
and po are two assignments of Q; w.r.t. D, such that pu; C po, then px(u1) E px(ue).
Therefore, it is sufficient to compute only the maximal weak matchings in order to

generate all the maximal integrated tuples.

I TedMnic@llyDY has matchings of all the Q;, but all these matchings are for the

same set of variables (ignoring the root) and therefore, subsumptions among them are well defined.



Chapter 6 Full Disjunctions 129

In order to show that the running time of the algorithm is polynomial in the
size of the input and the output, it is necessary to show that F has only maximal
integrated tuples. We will derive a contradiction by assuming that there are two
distinct integrated tuples w; and ug in F, such that u; C ug. Let u; and uo be
two maximal weak matchings of ); and @, respectively, such that u; = >a(u;) and
up = >(u2). Essentially, it can be shown that there is a weak matching p of Q;
w.r.t. D, such that ug = <(u) and g subsumes both py and pe. This contradicts
the fact that g1 and po are maximal in M.

The size of each query Q; is O(n?) and the size of the database D that is con-
structed from the relations is s2. The size of each M,,(Q;, D) is no more than the
size of F. In general, the size of the product graph is O(pd), where p is the size of
the query and d is the size of the database. However, in the computation of the full
disjunction, for each node t;; of D, the product graph Q; x D (1 < k < n) has at
most one node (R;,t;;) € Qi x D that is reachable from the root. Consequently, the
size of the portion of @ x D that is reachable from the root is O(d). Therefore, the
size of the stratum traversal is O(pd) and the time to compute each M., (Q;, D) is
O(n*s?f?). Hence, M is computed in O(n°s?f2) time. Removing subsumed match-
ings from U? ;M,(Q;, D) takes O(n®f?) time. The final step of constructing F
from M takes O(f) time. Thus, the running time is O(n®s?f?). O

Theorem 6.6 shows that full disjunction can be computed in polynomial run-
time, under input-output complexity. However, in the polynomial expression, the
exponent of n is 5, where n is the number of relations in the input. Hence, in order
to efficiently compute the full disjunction in the case where the input comprises
many relations, optimization techniques should be applied. Next, we present an
optimization rule that allows to improve the evaluation runtime for many cases of
full disjunctions. We start by providing some definitions.

Consider a connected undirected graph G. A separation of G w.r.t. a node v are
two subgraphs of G, G; and G3, such that the following holds. (1) v is a node in
both G; and G3. (2) Every node of G, except v, is either in G; or in G but not

in both. (8) For each two nodes v; and vy of G; and G, respectively, there is no
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edge between v; and v in GG, unless v1 is v or vy is v. We say that G1 and G, are a
non-trivial separation of G if they are a separation in which each of the two graphs
has at least two nodes.

An articulation node of G is a node whose removal will disconnect G. That is,
a node v, in G, is an articulation node if removing v from G (and also removing
from G all the edges that are incident on v) creates a subgraph of G that is not
connected. It is easy to see that there exists a non-trivial separation of G w.r.t. v if
and only if v is an articulation node of G. Computing all the articulation nodes of
G is in O(|E|) where |E| is the number of edges in G (see [27] for details).

We provide some required notations. Consider a set of relations rq,...,r, with
schemas Ry,..., R,, respectively. Let G be the schema graph of Ri,...,R,. By
FD(G) we denote the full disjunction of rq,. .., ry,, i.e., the full disjunction of the re-
lations that correspond to the schemas that are nodes of G. We use the symbol B t0
denote the outerjoin operation. The next proposition shows how graph separations

can assist in computing full disjunctions.

Proposition 6.7 (Applying an Outerjoin) Suppose that r1,...,r, are relations
with schemas Ry, ..., Ry,, respectively. Let the schema graph of Ry, ..., R, be G and
R; be an articulation node of G. In addition, let G1 and G2 be a separation of G
w.r.t. Rj. Then FD(G:) > FD(Gy) is equal to FD(G).

The proof of Proposition 6.7 is given in Appendix C.

Based on Proposition 6.7, we propose the Separate-and-.Join method for comput-
ing full disjunctions. Consider a set of relations r1,...,r, with schemas R1,..., Ry,
respectively. Separate-and-Join works recursively. First, the schema graph G of
Rq,..., R, is computed. If there is a separation G'1 and G5 of G then Separate-and-
Join is called with G; and with G5. The results of these calls are joined using an
outerjoin. The result of the outerjoin is returned. If there is no separation of G then
the general evaluation algorithm (the one that is presented at the beginning of the
section) is called.

Note that at the worst case, Separate-and-Join has the same runtime complexity

as the general algorithm. However, in many cases, evaluation of a full disjunction
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by Separate-and-Join is performed as series of outerjoin operations.

6.5 Projections and Restrictions of Full Disjunctions

One way of generalizing the result of Theorem 6.6 is by considering the complexity
of evaluating a projection of the full disjunction. Formally, the projection problem
is the problem of computing the projection of the full disjunction on a given set of
attributes X.

In some cases, it might be desirable to compute only those tuples of the full
disjunction that are non-null on all the attributes of a given set X. Formally, the
restriction problem is the problem of computing just those tuples of the full dis-
junction that are non-null on X. The following theorem shows that the restriction
problem cannot be computed in polynomial time in the size of the input and the
output, even if the relation schemas are a-acyclic (a definition of a-acyclic schemas

is provided in Appendix A) and X has only two attributes.

Theorem 6.8 (NP-Completeness) Let r1,...,r, be relations with a-acyclic re-
lation schemas and let X be a set of two attributes. Deciding whether the full dis-

junction has a tuple that is non-null on all the attributes of X is NP-complete.

Proof. NP-hardness is shown by a reduction of the Hamiltonian-path problem. Let
G = (V,E) be a given directed graph, and let s and ¢ be two nodes in G. The
problem is to decide whether G has a directed path from s to ¢ that goes through
all the nodes of G, visiting each node exactly once.

Suppose that G has k nodes, denoted n1,...,nt, and m edges. We assume that

s =n3 and t = ng. We construct the following m + 2 relations:

1. A relation r¢ that has the relation schema S(A, N1) and contains the single

tuple (1,1).

2. A relation r; that has the relation schema T (N, B) and contains the single

tuple (k, k).
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3. For each edge ¢; = (nj,n;) (1 <1 <m), we construct a relation r; that has the
relation schema E;(N;, N;) and contains the k —1 tuples: (1,2),(2,3),...,(k—
1, k).

In addition to the above m + 2 relations, we also construct an empty relation r,
that has the set of all the attributes as its relation schema. The sole purpose of 7,
is to ensure that the relation schemas of the m + 3 relations are a-acyclic.

Let F denote the full disjunction of the m+3 relations and let ¢ be the projection
of F on the attributes A and B.

It is easy to see that only the tuples (1,%), (1, 1) and (L, k) may appear in g.
Furthermore, there is a Hamiltonian path in G from s to ¢ if and only if the tuple
(1,k) is in the result of q. This shows NP-hardness.

To show membership in NP, note that we can guess an assignment of values and
nulls to all the attributes of all the relation schemas, such that the attributes of X
are assigned non-null values. We can then verify in polynomial time that the guess

creates an integrated tuple. O

The reduction that is used in the proof of Theorem 6.8 implies that the projection
problem cannot be computed in polynomial time under input-output complexity if
P # NP. For the problem of deciding whether a tuple is in the projection of the full
disjunction on a gives set of attributes, membership in NP is also shown as described

in the proof of Theorem 6.8. Thus, we have the following corollary.

Corollary 6.9 (NP-Completeness) Deciding whether a given tuple is in the pro-
jection of the full disjunction on X is NP-complete.

Theorem 6.8 and Corollary 6.9 show that if P # NP, then there cannot exists
an algorithm, for either the restriction problem or the projection problem, that
is polynomial under input-output complexity. It is easy to see that the projection
problem and the restriction problem have polynomial-time algorithms if each relation
schema either contains X or is disjoint from X. Note that, in particular, this
condition is satisfied if X is a singleton.

A related problem to the projection problem is the evaluation of a projection

of the natural join of n relations. Yannakakis [65] showed that this problem has a
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polynomial-time algorithm, in the size of the input and the output, if the relation
schemas are a-acyclic. In the general case, deciding non-emptiness of the natural
join of n relations is NP-Complete [49].

In [55], Rajaraman and Ullman showed that the full disjunction of 71, ..., 7, can
be evaluated by a natural outerjoin sequence if and only if the relation schemas are

connected and ~y-acyclic. Their result can be generalized as follows.

Theorem 6.10 (Complexity) The projection problem has a polynomial-time al-

gorithm under input-output complezity if the relation schemas are y-acyclic.

The proof of Theorem 6.10 is given in Appendix C.

6.6 Generalizing Full Disjunctions

Full disjunction are based either on equijoins [34] or natural joins [55]. Quite fre-
quently, however, the process of integrating information involves more general con-
ditions than merely equality of attributes. Consider the scenario of piecing together
information about people, in the absence of a unique ID for each person. Joining
two records, simply because both carry the same name, might be error prone. A
safer approach could be to join two records if the names are the same or similar
(e.g., one has a middle initial and the other does not) and either the address or one
of the phone numbers (e.g., home, office or mobile phone) are the same. A similar
scenario is joining two records, such that one has a complete address while the other
only contains the city and state. In this case the appropriate condition is that the
city and state from the second record appear in the address of the first record.

The approach of Section 6.4 can be easily generalized to the above scenarios.
We use the same queries as in Section 6.4 and use the same database, but the edges
should reflect the new conditions. Thus, there are edges in both directions between
R; and R; if some condition is specified for this pair of relation schemas. Similarly,
there are edges in both directions between the tuples ¢;,;, and t;,;, if these two tuples
satisfy the condition that is specified for their relation schemas, R;, and R;,.

Conditions of general types could be used for joining tuples. Essentially, we may
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assume that queries are formulated using a SELECT-FROM-WHERE clause and the
WHERE clause is a conjunction of conditions Ci A ... A Cf, where each C}, involves
either one or two relations. If C}, involves just one relation r;, then it is a selection
that can be applied to r; before starting the evaluation of the full disjunction. If C},
involves two relations r; and r;, then it may be any condition that can be evaluated
for pairs of tuples from these two relations.

Thus, the weak semantics provides the means to generalize full disjunctions and
thereby facilitating integration of information from the Web, as well as from other

heterogeneous sources, in a more general manner than earlier work.

6.7 Summary of Contributions

In Chapter 6, we have shown that evaluation of full disjunctions is reducible to
evaluation of queries under the weak semantics. Thus, full disjunctions can be
computed in polynomial time in the size of the input and the output. Previously,
the only known algorithm to compute full disjunctions in the general case was by
evaluating all connected joins and removing subsumed tuples. That algorithm runs
in exponential time in the size of the input and the output. Hence, our result makes
full disjunctions practical for real-world applications.

For a-acyclic relation schemes, Yannakakis [65] showed that any projection of the
natural join of all the relations can be computed in polynomial time in the size of the
input and the output. Theorem 6.10 builds on the results of [55, 65]. We have also
shown that when the relation schemes are a-acyclic, there are no polynomial-time al-
gorithms, under input-output complexity, for computing projections and restriction
of full disjunctions.

The weak semantics provides a substantial generalization of full disjunctions,
by allowing general types of join conditions (provided that those conditions can
be computed efficiently). This is achieved without increasing the time complexity
of evaluating full disjunctions, in stark contrast to other approaches for querying
incomplete information, where complex join conditions quickly lead to intractability

of query evaluation.
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The OR-semantics can provide another, more general form of full disjunctions.
In the OR-semantics, an answer should be connected, but it does not have to satisfy
all the join conditions among its parts; instead, it is sufficient to satisfy only a
subset of the conditions, provided that the satisfied join conditions are connected.
In traditional databases, this would not be an answer at all, but in the realm of the
Web this might still be of interest to the user, although it would probably be ranked

lower than answers that are obtained under the weak semantics.
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Conclusion

Our work introduces novel ways of querying semistructured data and XML. We
propose new querying methods that are ontology-based querying—the user is given
the ontology of the database, i.e., a list of labels, and is not required to have any
knowledge about structural details of the data. An ontology-based querying is well
suited to querying data in the following cases: (1) the data do not conform to a
schema, (2) the data have a structure that changes frequently, and (3) the schema of
the data is unknown. For all these cases, traditional querying methods are generally
problematic since the user formulates a query having a specific schema in mind and
receives a result that does not include all the expected answers.

Irregularity and incompleteness are two fundamental features of semistructured
data and ontology-based querying deals with both. In irregular databases, the order
of labels, in database paths, is unknown. The paradigm of flexible queries introduced
in this work facilitates querying of data that are irregular. In incomplete databases,
some fragments of the database are expected to includes certain labels, but some of
these labels are missing. The paradigm of queries with maximal answers that was
introduced in [41, 42] facilitates querying of data that are incomplete.

The main contributions of our work is by proposing methods for dealing with
irregularity and incompleteness in semistructured data and XML. In the paradigm
of flexible queries, we defined the semiflexible and the flexible semantics. Query
evaluation, under these semantics, was investigated. We also investigated query
equivalence and the novel concept of database equivalence. In the framework of

queries with maximal answers, we continued the work of Kanza, Nutt and Sagiv

136
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[41, 42] by providing a polynomial-time algorithm, in the size of the input and the
output, for computing cyclic queries, under the weak and the OR-semantics. We
also showed how to combine the semantics of the two paradigms. The combined
semantics facilitate the querying of data that are both irregular and incomplete.
The user queries the data while being oblivious to the structural details of the data
and to the possibility of incompleteness.

An additional important contribution of our work is by showing that evaluation
of full disjunctions is reducible to evaluation of queries under the weak semantics.
Thus, full disjunctions can be computed in polynomial time in the size of the input
and the output. Previously, known algorithms for computing full disjunctions of
any arbitrary relations required exponential time in the size of the input and the
output. Hence, our results are important for making full disjunction a practical tool
in real-world applications.

Future work should address the issue of optimizing the evaluation of queries,
under the different semantics that are presented in this work. Semistructured
databases, in general, and XML documents, in particular, could be large. Thus,
evaluation algorithms should exploit the disk and should not perform the evaluation
while the entire database is in memory. Note that for full disjunctions, this prob-
lem has received an initial solution in the Separate-and-Join method, which was
described in Chapter 6.

Future work should also address the problem of ranking the answers of queries.
For example, a user may expect complete answers to be ranked higher than incom-
plete answers.

It seems that among the four combined semantics that were presented in this
work, the flexible-weak semantics is the most useful, due to two reasons. First,
query evaluation under this semantics is polynomial, in the size of the input and the
output, for any arbitrary query and database. Secondly, it seems that this semantics
captures the intended meaning of users better than the other combined semantics.
However, additional work is required in order to provide means for measuring the
quality of different semantics. A quality measure could assist in determining whether

indeed the flexible-weak semantics is better than the other semantics.
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Appendix A

Hypergraphs and Acyclic Hypergraphs

There are many equivalent definitions for the notation of “acyclic” hypergraph. We
present in this appendix the definitions that we use in the thesis. The definitions
that are presented here are generally used by database researchers and are taken
from [55, 60].

A hypergraph is a pair H = (V, E), where V is a set of nodes and F is a set of
subsets of V. Each subset in F is called an hyperedge of H.

Alpha-Acyclic Hypergraphs

Let E and F be two hyperedges in an hypergraph . Suppose that the attributes in
E — F are unique to E; that is they appear in no hyperedge other than F. Then we
call ¥ an ear. The removal of FE from #H is called an ear removal. If F intersects no
other hyperedge of H, it is also considered an ear and its removal is an ear removal.

In a GYO-reduction of a hypergraph, ear removal is applied until there are no ears
to remove. A hypergraph is a-acyclic if its GYO-reduction is the empty hypergraph.

Otherwise, it is not a-acyclic.

Gamma-Acyclic Hypergraphs

We now introduce y-acyclic hypergraphs. The definition is based of [31]. In [31],
there is also a notion of f-acyclic hypergraphs that we do not present here, since

B-acyclic hypergraphs are not discussed in our work.
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Figure 1: A pure cycle in a hypergraph

Pure Cycle A pure cycle in a hypergraph is a collection of three or more hyper-
edges and nodes in the form of a cycle as shown in Figure 1. In the pure cycle, each
pair of hyperedges X; and X;;; (and also X, and X;) has at least one node A; (or
A, in the case of X,, and X;) in common. Moreover, none of the shared nodes A;
appears in more than two hyperedges of the pure cycle shown by Figure 1. These
nodes, however, may appear in hyperedges that are not part of the pure cycle. In
the pure cycle, there may be more than one node in the intersection of two adjacent
hyperedges, but these nodes must not appear in any other hyperedges of the pure

cycle.

Gamma-Three-Cycle A 7-3-cycle is a set of three hyperedges in the configura-
tion of Figure 2. That is, the nodes A, B and C of the hypergraph must exists.
Any other regions of the diagram of Figure 2 may or may not be empty, and the
regions containing A, B and C may also contain other nodes. In other words, there
must be some node in all three hyperedges, one that is only in X and Z, and one
that is only in Y and Z. For example, the smallest y-3-cycle consists of the three
hyperedges {ABC, AB, BC}.

Gamma-Cycle A «y-cycle is a cycle of at least three edges, in the form of Figure 1.
However, unlike a pure cycle, a y-cycle permits A, to appear in any of hyperedges

Xo,... X1, as well as X1 and X,,. All other nodes in the intersections appear only
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Figure 2: A v-3-cycle in a hypergraph

in two adjacent X;’s.

Gamma-Acyclic Hypergraphs A hypergraph is y-acyclic if and only if it has
no ~y-cycle. Equivalently, a hypergraph is y-acyclic if and only if it contains no pure

cycle and no v-3-cycle. A hypergraph is «y-cyclic if and only if it is not y-acyclic.
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Appendix B

The tables that are constructed during the transformation of the movie database
(Figure 2.1) to a relation, according to the full-disjunction approach shown in Ex-

ample 6.4.

r1 | Movie | Actor | Name

11 21 Mark Hamill
11 21 Harisson Ford
12 25 Natalie Portman

T9 Movie | Title

11 Star Wars
12 Leén
13 Magnolia

r3 | Movie | Year

11 1977

r4 | Movie | Director | Name

11 41 George Lucas

rs | Actor | Name

14 Kyle MacLachlan
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re¢ | Actor | Filmography | T.V. Series | Title
14 15 28 Twin Peaks
r7 | Actor | Filmography | Movie | Title
14 15 29 Dune
rg | Actor | Filmography | Movie | Year
14 15 29 1984
rg | Actor | Filmography | Movie | Director | Name
14 15 29 42 David Lynch
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Appendix C

The Proof of Theorem 3.21

We present Algorithm SFPT that evaluates semiflexible path queries w.r.t. tree
databases in O(|Q||D| + |M|) runtime, where |Q)| is the size of the query, |D| is the
size of the database and | M| is the size of the result.

Intuitively, SFPT computes the matchings as follows. A traversal is performed
over the database. The correspondence sets are computed during the traversal.
Matchings are computed , from the correspondence sets, each time that the traversal
reaches a leaf.

We now describe Algorithm SFPT. First we describe three data structured that
SFPT uses. How the data structured are being used will be described later. Consider
a path query @ and a tree database D. The first data structure that SFPT uses
is an array A of correspondence sets. In A there is a correspondence set for each
variable of (). Initially, all the correspondence sets in A are empty.

The second data structure that SFPT holds is an array L of positive numbers.
The array L is used for counting the number of labels in D on paths from the root
to a leaf. In L there is an entry for each label [ of (). The entry that corresponds to
[ is denoted L(I). Initially, all the entries in L are equal to 0.

The third data structure in SFPT is a set of matchings M7. The set Mp
contains, at each step of the algorithm, the matchings that where computed up to
this step. Initially, My is empty.

SFPT performs a traversal over D that is similar to a DFS. The traversal is
performed using the recursive procedure visit, that is described in Figure 3. The

traversal starts by calling visit with the root of the database.
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Procedure visit(o)

Input a database object o;

D is the tree database

M is a set of matching that is being constructed during the traversal;
L is an array of numbers that count the number of instances

for each label on the path to o;

A is an array of correspondence sets that is being updated during the traversal;

if o is not the root of D then
let [ be the label that enters o in D;
update L by adding 1 to L(1);
update A by adding o to all the correspondence sets
of variables with incoming label [ in Q;
else update A by adding o to the correspondence set of the root;
if 0 is a leaf of D then
if for each label [ in (), the number of variables in () with
incoming label [ is not greater than L(l) then
compute M according to Equation 3.1;
add M to Mr;
for each child o' of o
visit(o');
if 0 is not the root of D then
update L by subtracting 1 from L(l);
update A by removing o from all the correspondence sets

of variables with incoming label [ in @;

Figure 3: The recursive procedure visit of Algorithm SFPT. Algorithm SFPT com-

putes the semiflexible matchings of a path query w.r.t. a tree database.

In the traversal there are steps of descending from a node to a child and steps of

ascending from a node to the parent. In each step, the arrays A and L are modified

according to the node that is visited. Consider a node o in D with incoming label [.
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When descending to o, L(l) is increased by 1. In A, o is added to the correspondence
sets of variables that have incoming label [ in Q. When ascending from o, L(l) is
decreased by 1. In A, o is removed from the correspondence sets of variables with
incoming label [.

When reaching a leaf of D, the algorithm computes the set of matchings w.r.t. the
path to this leaf. The computed matchings are added to Mp. The matchings are
computes using the correspondence sets of A.

Computing the matchings is as follows. First, the algorithm checks that there
are “enough nodes for each label” for at least one matching. This is done by checking
that for each label [ in @, if there are k variables in () with incoming label [ then
L(l) > k. If this test fails, then no matching is added to My and the computation
w.r.t. the current leaf is completed. Else, the set of matchings on the left side of
Equation 3.1 is computed and added to M.

Consider a path query () and a tree database D. Algorithm SFPT computes the

semiflexible matchings of @ w.r.t. D in O(|Q||D|+ |M]|) runtime, where |Q|, |D| and
| M| are the sizes of the query, the database and the result, respectively.
Proof of Theorem 3.21. We show that SFPT returns the semiflexible matchings of
Q@ w.r.t. D. First we claim that the visit procedure computes the correspondence
sets correctly. Consider a call to visit with an object o that is not the root. Let 7
be the path in the database from the root to the parent of 0. Then, for each label
[ in the query, L(l) holds the number of objects in 7 with incoming label /. For
each variable v in @), the correspondence set of v in A holds all the objects on 7
that have an incoming label [, where [ is the label on the edge that enters v. The
correspondence set of the root holds merely the database root. If o is the root then
L and A hold the initial values. The claim can be proved by a simple induction on
the number of calls to visit.

According to the above claim, every matching of @) w.r.t. D is a matching of )
w.r.t. a path of D from the root to a leaf. Essentially, Algorithm SFPT evaluates
@ w.r.t. each path in D, from the root to a leaf, and performs a union on the
result of the computations w.r.t. the different paths. Correctness of the computation

w.r.t. the different paths follows from Proposition 3.20.
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Query Database

root root

C-1

C-2

Figure 4: An illustration of how to construct a query and a database, according to
Lemma 3.22, for the formula ¢ = (p1 V p2 V —p3) A (=p2 V —p3 V pyg). The clauses
of ¢ are denoted by C-1 and C-2, respectively. For each node, the truth-assignment
path is the path that comes from the left and the false-assignment path is the path
that comes from the right.

We analyze the time complexity of the algorithm. In the algorithm, every node
of D is visited once. The updating of L and A in each visit of a node can be done
in O(1). Computing the matchings has the following complexity. Testing that there
are “enough object for each labels”, for creating at least one matching, is in O(|Q)|).
There can be O(|D|) leafs for which this test should be performed . Finally, creating
the matchings is in O(|M|) runtime. Thus, the algorithm has O(|Q||D| + |M])

runtime. u

The Proof of Lemma 3.22

Proof of Lemma 3.22. TLet ¢ = ci Aca A ... A ¢y, be a 3CNF formula and U =
{p1,...,pn} be the propositional letters appearing in ¢. We construct from ¢ a
path query @ and a dag database D in such a way that a semiflexible matching of
Q@ w.r.t. D simulates a satisfying assignment for the propositional letters in U.

First, we explain how to construct ). The query @ is a path made of m edges
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such that the i-th edge in @ is labeled with C-. Thus, the query has the form
vo, C-1,v1,...,Vm—1, C-(m), vp,.-

Secondly, we explain how the database is constructed. The database, has n nodes
denoted by op,,...,0p,. These n nodes represent the propositional letters in U. In
addition, the database has one more node that serves as the root of the database
and is denoted by rp. There are other nodes in the database that we do not name
explicitly.

Generally, there are exactly two paths in D from the root to the node op,.
Similarly, there are exactly two paths from each node op, to the node op,,, (for
1 <i<m—1). Next, we describe these pairs of paths.

Given a propositional letter p;, let the set Cr = {¢;,,...,¢ci, } be the set of
clauses satisfied by assignment of true to p;. Let the set Cr = {c;;,...,cj,,} be
the set of clauses satisfied by an assignment of false to p;. We create a path from
op, , (rp if i = 1) to op, that we call the truth-assignment path of o,,, and a similar
path from oy, , (rp if i = 1) to op, that we call the false-assignment path of o, .
The truth-assignment path of op, is a simple path of k 4 1 edges that are labeled
with the names of the clauses in Ct and an additional edge labeled with P, that is,
0p;_,, C-i1,01,...,05_1, C-ig, 0, P,0,,. Except the first and the last nodes, all the
nodes in the truth-assignment path are fresh, i.e., they are not among the nodes
TD,Opys- - - 0p, and they do not appear in any other truth-assignment path or false-
assignment path. The last edge is labeled with P and its role is to make sure that
there is a truth-assignment path to oy, even if an assignment of true to p; does not
satisfy any clause. Similarly, the false-assignment path of op, is a simple path of £'+1
edges that are labeled with the names of the clauses in Cr and an additional edge
that is labeled with P, that is, op, ,, C-j1,0,...,0._1, C-jir, 0}, P, 0p,. Except the
first and the last nodes, all the nodes in the false-assignment path are fresh. Note
that even if one or both of the sets Cr and Cr are empty, there are still two paths
that enter the node p; due to the “neutral” edge labeled with P.

There are no nodes and edges in the database in addition to the ones that were
described above. Thus, the created database D is a dag.

We now show that there is a semiflexible matching of ) w.r.t. D if and only if
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there is a satisfying assignment of ¢.

Assume that « is an assignment to the propositional letters of U that satisfies ¢.
We look at a path ¢ in D that starts at rp and goes through the nodes o, ..., 0p,
as follows. If « assigns true (false) to p; then ¢ goes through the truth-assignment
path (false-assignment path) of o,,.

The assignment « satisfies every clause in . Thus, a clause ¢; must have a
proposition p; in it such that either p; is positive in ¢; and « assigns true to p; or
p; is negative in ¢; and « assigns false to p;. In the first case, ¢; is in C7 of p;, the
path ¢ goes through the truth-assignment path of 0,;, and hence, ¢ goes through
an edge labeled with the name of ¢;. In the second case, ¢; is in CF of p;, the path
¢ goes through the false-assignment path of 0,,, and hence, ¢ goes through an edge
labeled with the name of ¢;. Thus, in both cases, the path ¢ goes through an edge
labeled with the name of ¢;, and this is true for all the clauses of ¢.

The path ¢ is a path in the database, from the root to the only leaf, that goes
through at least m edges that are labeled with the names of the m clauses of . A
permutation of ¢ can transfer these m edges to the beginning of the path and this
creates a prefix that can be matched with the query (). Consequently, it shows the

existence of a semiflexible matching of @ to D.

Conversely, assume that there exists a semiflexible matching y of @ to D. The
existence of u entails the existence of a path ¢ in D that starts on the root, such
that ¢ has a permutation with a prefix that matches ). Since ) has edges that are
labeled with all the names of the clauses of ¢, it means that ¢ must also have edges
that are labeled with all the names of clauses of ¢.

We create an assignment o to the propositions of U,

) true ¢ goes through the truth-assignment path of o,
a\pi) =

false ¢ goes through the false-assignment path of o),

We now show that the assignment « satisfies the formula ¢. First we show that
if the path ¢ goes through an edge labeled with the name of the clause c;, then o

satisfies the clause c;. Let e be an edge, on the path ¢, labeled with the name of c;.
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The edge e is either an edge in a truth-assignment path of some node op, or an edge
in a false-assignment path of some node op,.

In the first case, the path ¢ goes through a truth-assignment path of the node
Op;, S0 « assigns true to p;. The edge e is in the truth-assignment path of op,, and
this means that the clause c; is in the set Cr of p;. The set C7 of p; includes clauses
that are satisfied by assigning true to p;, and hence, « satisfies ¢;. The second case,
where the path ¢ goes through a false-assignment path of the node op,, is similar.

For each clause c; of ¢, the path ¢ goes through an edge labeled with the name
of ¢;. This means that « satisfies all the clauses of ¢, and by this satisfies ¢ itself.
Thus, the formula ¢ has a satisfying assignment.

The query ) and the database D that were created from ¢ have a polynomial
size in ¢. The number of edges in the query is the number of clauses in ¢. In the
database, there are the following edges. First there is an edge for each appearance
of a propositional letter in a clause of ¢. This sums to 3-m edges. In addition, there
are two edges with the label P for each propositional letter of U. That is, there are
2 - n edges with the label P. Thus, for a formula ¢ with m clauses over a set of n
propositional letters, there are 3 - m + 2 - n edges in the database D. We conclude
that the construction of the query and the database is polynomial in the size of the

formula. O

The Proof of Lemma 3.57

Proof of Lemma 3.57. Let ¢ be a formula in 3CNF, let P = {pi,...,pn} be the
set of propositional letters appearing in ¢, and let C = {C1,...,Cy} be the set
of clauses in ¢. We construct a database D and a query () in a way such that
evaluating the query over the database simulates the assignment of truth values
to the propositional letters, and such that flexible matchings are in a one-to-one
correspondence with satisfying assignments.

We construct D as follows. Let rp be the root of D. For each clause C; € C,
there is an edge labeled clause; from rp to a unique object ocl;. The object ocl;

represents the i-th clause of the formula . For each propositional letter p; € P,
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Figure 5: The construction of Lemma 3.57 for the formula ¢ = (p1 Vpa Vps) A(—p1 V
P2V pa).

there is an object otrue; and an object ofalse;. The objects otrue; and ofalse;
represent the truth values that can be assigned to the propositional letter p;. From
each object ocl; there are seven outgoing edges labeled by truth-ass; to seven different
objects 0ass;1, ... oass;7. The objects oass;; represent the seven possible satisfying
assignments for the clause C;. Let py,, pi,, pi; be the propositional letters that appear
in the literals of the clause C;. For each assignment to p;, , pi,, pi, that satisfies C;, we
look at the object oass;; that represents that assignment. If in this assignment p;,
is assigned true then there is an edge ass-val;,, to otrue;, in D. If in the assignment
P1,, 1s assigned false then there is an edge ass-val;,, to ofalse; in D. There are no

other objects and edges in D.
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We construct a dag-query (). The construction is as follows. The root of @ is
rg. For each clause C; € C, there is an edge labeled clause; from rg to a unique
variable vcl;. The variable vcl; represents the i-th clause of the formula ¢. For each
clause Cj, there is a unique variable vass; in (), and there is an edge, from wvcl; to
vass;, labeled by truth-ass;. For each propositional letter p; € P, there is a variable
vprop; in Q. Let py,,pi,,pi; be the propositional letters that appear in the literals
of the clause C;. There is an edge labeled ass-val;,, in () from vass; to the variable
vprop,, , for m = 1,2,3. There are no other variables and edges in (). From the
construction it is easy to see that @ is a dag.

In a flexible matching of () to D, each variable vprop; is is mapped to either the
database object otrue; or the object ofalse;. That corresponds to an assignment of
truth values to the propositional letters in P. A flexible matching of @ to D is an
assignment that satisfies all vass;ass-valjvprop; constraints, by assigning to vass;
and vprop; database nodes that are indirectly connected by a path in D and with
appropriate incoming labels. Hence, an object oass;; is assigned to each variable
vass; where oass;, stands for a satisfying assignment for the clause C;. That means
that the matching determine directly an assignment that satisfies each clause of ¢,
and thus satisfies ¢ itself.

For the other direction, we assume that there is a satisfying assignment to ¢. Let
this assignment be p. The satisfying assignment determine a matching in that an
object otrue; or ofalse; is assigned to the variable vprop; according to the truth value
which is assigned to the propositional p; by p. The restriction of y to the variables
of a clause C; is a satisfying assignment for C;, and hence one of the seven possible
satisfying assignments for C;. That determine which object oass;; is assigned to
vass;. Finally, we get from p a flexible matching of @) to D.

We conclude that there is a one-to-one correspondence between satisfying truth

assignments for ¢ and flexible matchings of Q) to D. O
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Figure 6: A database according to the construction of Lemma 5.8 for the formula
¢ =(p1Vp2Vp3)A(=p1Vp2Vps)

The Proof of Lemma 5.8

Proof of Lemma 5.8. Let ¢ be a formula in 3CNF, let P = {p1,...,pn} be the
set of propositional letters in ¢, and let C = {C},...,Cy} be the set of clauses of
@. We construct a query @) and a database D in a way such that if a maximal
semiflexible-OR-matching maps all the variables of the query to non-null values,
then this mapping indicates the existence of a satisfying assignment for ¢. Without
loss of generality, we assume the no clause of ¢ contains both a literal and its
negation. Obviously, if such a clause exists, it can be removed from ¢ without
affecting satisfaction.

We first describe how to construct the database D. In D there are four levels of
objects below the root. The first level represents the propositional letters of ¢. That

is, there are n objects op,,...,0p, and for each object op, there is an edge with the
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Figure 7: A query according to the construction of Lemma 5.8 for the formula
¢ =(p1Vp2Vp3) A(=p1Vp2Vps).

label P; from the root to op;. The second level consists of n objects og,,...,o0r,.
For each 1 < j < n, there is an edge with the label R; from op; to OR;. On the
third level, for each proposition p;, there are two objects ojr and ojr. There is an
edge with the label Pjr from og; to ojr and there is an edge with the label Pjp
from og; to 0jp. On the fourth level, there are m nodes o, ..., 0, that represent
the m clauses of . There is an edge from o1 to o, if assigning true to p; satisfies
the clause Cj, i.e., p; is a positive literal in C;. There is an edge from o;r to o, if
assigning false to p; satisfies Cj, i.e., C; includes —p;. There are no additional edges
or nodes in D.

We now describe how to construct the query (). As in the database, the query also
has four levels of objects below the root. The first level represents the propositional

letters of ¢ and comprises n variables vp,, ..., vp,. Each variable vp, is connected to

the root by an edge with the label P;. In the second level, there is a pair of variables
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vjr and vjp for each propositional letter p;. From the node vp;, there is an edge
with the label Pjr to v;r and there is an edge with the label Pjr to vjr. On the
third level, there are n nodes vg,,...,vg,. From each node v;r and from each node
vjF there is an edge with the label R; to vg,. Finally, on the fourth level there are
m variables v, ,...,v.,, that represent the m clauses of ¢. There is an edge from
vR; to v, if the propositional letter p; appears in the clause Cj, either positively or
negatively. There are no additional edges or nodes in Q.

Next, we show that if there exists a semiflexible-OR-matching p of Q w.r.t. D,
such that g map all the variable of () to non-null, then ¢ has a satisfying assignment.

Suppose that y is a semiflexible-OR-matching of () w.r.t. D, such that u does not
map any variable of ) to null. Since p is a semiflexible-OR-matching, there exists
a rooted fragment F' of () such that F' consists of all the nodes of @ and u is a

semiflexible matching of F' w.r.t. D.

Claim .1 If there is an edge in F' from vg, to v, then F' has ezactly one of the

two edges that enters vg,, i.e., in F' there is exactly one edge with the label R;.

As a first step towards proving the claim we provide the next observation. Con-
sider the two edges that are described next. First, an edge from o;r to the node o, .
Second, an edge from o;7 to the node o.,. Only one of this edges can be in D. This
is because the edge from o;7 to o, is in D if the propositional letter p; appears pos-
itively in c;. The edge from o;r to o, is in D if the propositional letter p; appears
negatively in ¢x. The claim of the observation follows from the assumption that a
propositional letter cannot appear both positively and negatively in a clause.

According to the construction of D and the observation above, foreach 1 <i < n
and 1 <k < m, only one of the objects 0;r and o;r has a path to o,.

Now, we continue proving the claim. It is easy to see that according to the labels
on the edges of both the query and the database, u maps the variables vg,, v.,, vir
and v;7 to the objects og;, o, 0;r, and o;T, respectively.

Next, we assume that F' has an edge from vg; to v, and in addition has the
two edges that enter vg,—an edge from v;r to vg, and an edge from v;r to vg,. We

show that this assumption leads to a contradiction.
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According to the above assumption, F has a path from v;r to v, and a path from
vi7 t0 ve,. Since p is a semiflexible matching w.r.t. F, u(v;r) (i-e., 0;r) and p(ve,)
(i.e., o) should be connected by a path. Similarly, p(vir) (i-e., o;r) and p(ve,)
(i.e., oc,) should be connected by a path. This contradicts the above observation
that only one of the objects o;r and o;7 has a path to o, .

Next, we show how to construct an assignment f to the propositional letters
of P, such that f satisfies ¢. The assignment f is defined as follows. Consider

1< <n.

e If there is a path in F' from a node v;r to a node v, for some 1 < k < m,

then f assigns true to p;.

e If there is a path from the node v;r to a node v,,, for some 1 < k < m, then

f assigns false to p;.
e Otherwise, f maps p; to true or to false arbitrarily.

We argue that f is well defined. This is because there cannot be in F both a
path from the node v;r to a node v., and a path from the node v;r to a node Vey -
Otherwise, F' would include two edges that enters vg,, one from v;r and the other
from v;p. This is a contradiction to Claim .1.

Finally, we show that f is a satisfying assignment of ¢. In F, there is a path
from the root to each variable. In particular, there is a path to all the variables
Veyy---3Ve,. Consider a path m, in F, from the root to v, . According to the
construction of @), there is 1 <4 < n such that 7 goes either through v;7 or through
ViF.

If pi goes through v, (to v, ), then there is a path (actually an edge), in D,
from o;1 to o, . This is because p is a semiflexible matching of F' and it satisfies the
SF-Condition (Definition 3.3) w.r.t. each path of F. According to the construction
of D, there is an edge from o;r to o, if assigning p; to true satisfies c;. According
to the definition of f, p; is assigned true. Thus, f satisfies cx. The case where pi

goes through v;r is similar.
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For the other direction, let f be a satisfying assignment for the propositional
letters of . We construct a fragment F' of () as follows. The fragment F' contains
all the edges that emanate from the root and all the edges that emanate from the
variables v1,...,v,. For each propositional letter p;, if f assigns true to p; then F'
has an edge from v;r to vg,. Otherwise, F' has an edge from v;r to vg;. There is
an edge from vg; to v, if the assignment of f to p; satisfies Cj, i.e., f assigns true
(false) to p; and p; appears positively (negatively) in C;. There are no other edges
in F.

According to the construction of F' and because f satisfies all the clauses of ¢, F’
is rooted. We examine the assignment y of F' w.r.t. D, where y is defined as follows.
The variables vp,, ..., vp, are mapped to the objects op,, ..., op,, respectively. Each
variables v;7 is mapped to the object o;7 and, similarly, each variables v;r is mapped
to the object 0jr. The variables vg,, ..., vg, are mapped to the objects og,, ..., 0r,,
respectively. Finally, each variable v., is mapped to the object o,.

It is easy to see that u satisfies the SF-condition w.r.t. paths of () that do not
reach a node v.,. For a path ¢ that does reach a node v, note that ¢ goes through
a node v, only if p; appears positively in C;. In this case, oj7 is connected to o, .
The case where ¢ goes through v;p is similar. Thus, p satisfies the SF-condition
w.r.t. each path of F' and, therefore, u is a semiflexible matching of F w.r.t. D.

We show that g is the only maximal semiflexible-OR-matching of @ w.r.t. D.
Consider a fragment F' of ) and a semiflexible matching p' of F' w.r.t. D. It is easy
to see that according to the labels on the edges of both the query and the database,
for every variable v in F', y'(v) = p(v). Thus, either y is equal to u' or g subsumes
p'. Thus, any semiflexible-OR-matching of Q w.r.t. D that is different from y is not

maximal. O

The Proof of Proposition 6.7

Proof of Proposition 6.7. We start with the following claim.

Claim .2 There is an attribute A in R; such that A is not an attribute of any
schema of G1 (G2) other than R;.
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We show that the claim is true. Let R; (i # j) be a schema in G5 that has a
non-empty intersection with R;. Such schema exists because G is connected. If the
claim was not true, then all the attributes of R; were in schemas of G, including
the attributes of the intersection of R; and R;. In this case, R; was connected to a
node of G1 and to a node of G5. This is a contradiction to the assumption that G
and G2 are a separation of G w.r.t. R;, and it proves the claim.

We now continue with the proof of the proposition. Suppose that ¢ is a tuple of
FD(G). We show that ¢ is also a tuple of FD(G;) 0 FD(G5).

The tuple ¢ is a maximal integrated tuple. Thus, it is generated from m (m < n)
tuples ¢;,,...,t;, of the relations r;,,...,r; , respectively. Without loss of general-
be nodes of G1, R;, ..., R;, benodes of G2 and R;, be the
node that separates G1 and G, i.e., the only node that is in both G; and G2. Note

ity, let R;,,..., R;,_,
that each one of the sets {R;,...,R;, } and {R;,,...,R;,,} could be empty. This
happens when the non-null portion of T' consists of attribute of schemas of G; and
does not include attributes of schemas of G2, or vice-versa.

Consider the following three assertions, for the case where {R;,,..., R; } is not

empty. First, the tuples ¢;,,...,%; are join consistent because they are part of the

k
integrated tuple ¢. Secondly, the schemas R;, ,..., R;, are connected. This is because
R;,,...,R;, are connected (otherwise, ¢ would not be in FD(G)) and none of the
R;, . Thirdly,

schemas R;,,..., R has an edge to one of the schemas R

ik ka1
there are no R; in G; and a tuple ¢; of r; such that (1) ¢; is join consistent with
tirs---sti, (2) Ry has an attribute A such that A does not belong to any of the
schemas R;,,...,R;,, and (3) R; is connected to one of the relations R;,,...,R;,.
Otherwise, ¢ would not be maximal and would be subsumed by the join of ¢ and ;.

The above three assertions show that the universal tuple ¢; whose generators are
tiys- .-, i, is a maximal integrated tuple w.r.t. the schema nodes of G and the corre-
sponding relations of these schemas. Similarly, it can be shown that if {R;,,..., R;, }
is not empty then the universal tuple ¢ whose generators are t;,,...,1;,, is a maxi-

mal integrated tuple w.r.t. the schema nodes of G and the corresponding relations

of these schemas.
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Thus, if {R;,,..., R; } is not empty, then ¢; is an element of FD(G). Otherwise
we consider ¢; as a null tuple. If {R;,,..., R; ,} is not empty, then ¢, is an element
of FD(G2). Otherwise we consider t2 as a null tuple.

Next, we show that the join of ¢; and t; is in FD(G,) < FD(G5). Suppose that
both t; and %9 are non-null. Consider the generators of ¢; and the generators of #s.
Since all these tuples are generators of ¢, they are pairwise join consistent. Thus, t;
and ¢y are join consistent.

The attributes in the intersection of the schemas of ¢; and ¢y are the attributes
of R;,. We claim that both tuples do not have a null in any attribute of R;, and
t1[Ri,] = t2[Ri,]- The claim is true because the tuple ¢;, is a generator of both ¢;
and t3. The reason that the tuple ¢;, is a generator of both ¢; and 3 is the following.
The generators of ¢t belong to relations with schemas that form a connected graph.
However, the only node that connects schemas of Gi with schemas of Go is R;, .
Thus, if both #; and #, are non-null then their join is in FD(G1) < FD(G5).

Consider the case where t5 is null. In this case, the set of generators of ¢; does
not include ¢;,, or else, ¢;, would have been a generator of t3 and ¢ would not be
null. We argue that there is an attribute A in R;, such that ¢;[A] is null. Let A be
an attribute that is belong to R;, and does not belong to any of the schemas of G.
There is such an attribute according to Claim .2. Since ?;, is not a generator of ¢,
t1[A] is null.

Because t;[A] is null for some attribute A in R;,, in the outerjoin of FD(G) B
FD(G,), t; cannot be joined to any tuple of FD(G2). Thus, t; appears in the result
padded with null values.

The case where ¢; is null is similar to the case where t2 is null. Thus, in all three
cases: when t; is null, when ¢, is null and when neither of the tuples is null, ¢ is in

FD(G4) v FD(G5).

For the other direction, suppose that ¢ is a tuple in FD(G1) 04 FD(G3). We show
that ¢ is in FD(QG).
There are three cases to consider. First, ¢ is created by a join of two tuples ¢;

and ty of FD(G1) and FD(G52), respectively. Second, ¢ is created from a tuple ¢; of
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FD(G1) by padding t; with nulls. Third, ¢ is created from a tuple ¢, of FD(G2) by
padding to with nulls.

Consider the first case, i.e., t is created by a join of two tuples ¢; and ¢y of
FD(G,) and FD(G3), respectively. We show that the generators of ¢; and ty create
a maxiaml integrated tuple w.r.t. ri,...,ry,.

First, we show that the generators of ¢; and ¢s are join consistent. Let X; be
the generators of ¢; and X5 be the generators of to. The tuples of X; (X3) are
join consistent and connected because ¢; (t2) is in FD(G1) (FD(G2)). Let X be the
union of X; and Xs. Because t; and to are joined in an outerjoin operation, each
two tuples, one from X; and one from Xo, are join consistent. Thus, the tuples in
X are join consistent.

Secondly, we show that the generators of ¢; and ¢3 are connected. Consider R;—
the articulation node that the separation is w.r.t. it (the schema that was denoted

R;, in the first part of the proof). The tuples ¢; and ¢ do not have a null on any of

ik
the attributes of R;. Otherwise, ¢; and ¢ were not joined in the outerjoin. Because
of Claim .2, there are no null values in ¢;[R;] only if there is a tuple ¢’ in r; that is a
generators of 1. Due to the same argument and because t; and o are equal on the
attributes of R, ¢’ is also a generator of 5. The tuple ¢’ connects the generators of
t1 and the generators of ¢5. Hence, the tuples of X are connected.

Thirdly, the join of the generators of #; and ¢y is a maximal integrated tuple. If
the join was not maximal, then either ¢; was not maximal, w.r.t. the relations whose
schemas are nodes of Gy, or 2 was not maximal, w.r.t. the relations whose schemas
are nodes of G2. The above three arguments show that ¢ is a maximal integrated
tuple and it is in FD(G).

Consider the second case, i.e., t is created from a tuple ¢; of FD(G1) by padding
t1 with nulls. Let X be the set of generators of ¢;. Obviously, the tuples in X are
join consistent and connected. Thus, they are the generators of an integrated tuple.
This integrated tuple is maximal w.r.t. the relations whose schemas are in G;. We
need to show that this integrated tuple is also maximal w.r.t. the relations rq, ..., .
We claim that the generators of ¢; do not include a tuple of r; (Recall that the

separation of G is w.r.t. R;.) We assume that the claim is incorrect and show that
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this leads to a contradiction.

Assume that there is a generator ¢; of ¢; which is a tuple of r;. The schema R;
is a node of G3. According to the definition of the full disjunction, there is a tuple
to in F'D(G9) such that ¢; is one of its generators (note that it could be that ¢; is the
only generator of ¢3). The tuple ¢, is join consistent with ¢; because ¢; and ¢9 have
the same values for the attributes of R;. Hence, the join of ¢; and %5 is a tuple in the
outerjoin of FD(G1) and FD(G2). That yield a contradiction to the assumption that
there is no tuple in FD(G2) which is joined with ¢;. This shows that the generators
of ¢; do not include a tuple of r;.

Consider a tuple over the schema nodes of G whose generators are the generators
of 1. This tuple is equal to t, that is, it is the result of padding ¢; with null values.
Since the generators of ¢; do not include a tuple of r;, it follows from Claim .2 that
there is an attribute A in R; such that ¢;[A] is null. This shows that any set of
generators that includes the generators of £; and a tuple of a relation whose schema
is in (9 is not connected and join consistent. This shows that ¢ is maximal.

Thus, the tuple ¢ is a maximal integrated tuple and, hence, it is in FD(G). The
third case is similar to the second case. Therefore, in all three cases, ¢ is in FD(G)

and the proof is completed. O

The Proof of Theorem 6.10

Before we give the proof of Theorem 6.10, we provide some background on the com-
putation of the full disjunction, without a projection, for relations with connected,
v-acyclic schemas.

Consider a a set of relation schemas that form a connected, y-acyclic hypergraph.
The algorithm SOJO receives these schemas and returns a sound outerjoin ordering
of the schemas. A sound outerjoin ordering is an expression that consists of the
given schemas and outerjoin operations. In the expression, each schema appears
exactly once. Furthermore, if in this expression, the schemas are replaced with their
corresponding relations and the expression is computed, the result of the computa-

tion is the full disjunction of the relations. The exact definition of SOJO and the
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proof of its correctness are given in [55].

In Sketch, SOJO performs the following computation steps. In the first step, a
Bachman diagram B is constructed from the given schemas. In subsequent steps,
SOJO is applied recursively to B. Recall that the nodes of a Bachman diagram are
either schemas or attribute sets that are intersection of schemas. A node is minimal
if it is not contained in any other node of the diagram.

The recursion is as follows. If B comprises a single node R then R is returned.
Else, a minimal node Z is chosen among the nodes of B. According to Z, B is
decomposed into two sub-diagrams B; and Bs. The decomposition has the following
property. The set Z is the intersection of the following two sets: the set of attributes
in the nodes of By and the set of attributes in the nodes of By. SOJO is executed
on By and on By. Suppose that E; and FEy are the expressions that SOJO returns
when recursively called with By and Bs. Then E; b FE5 is returned for B.

Next, we explain how to modify SOJO in order to solve the projection problem.
Consider a set of relations rq,...,r, with schemas Ry,..., R,, respectively. Let X
be a given set of attributes. Our goal is to compute the projection on X of the
full disjunction of rq,...,r,. To do so, we modify SOJO as follows. First, on each
recursive call of the algorithm, the input includes a set of projection attributes, in
addition to a diagram. Secondly, instead of returning an expression that comprises
merely the schemas and outerjoins, the returned expression also includes projections.

The modified recursion is as follows. Let B be the Bachman diagram and X be
the projection attributes that are given in the input. For the case where B comprises
a single node R, the projection of R on X is returned.! For the case where B has
more than one node, B is decomposed into two sub-diagrams By and Bs, according
to a minimal node Z. The algorithm is called recursively—once with B; and then
with Bs. In both cases, the projection attributes are X U Z. Suppose that E; and
Fy are the expressions that the recursive calls produce. Then, the projection of
Eq b FE5 on X is returned.

SOJO is defined for connected schemas. It is easy to see that when the schema

!Suppose that R is a schema and X is a set of attributes that is not contained in R. We assume,
in this case, that the projection of R on X is equal to the projection of R on X N R.
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graph is not connected, SOJO can be applied to each connected component. The re-
sults for the connected components are combined using outerunion. In an outerunion
of two relations r; and ro with schemas R; and R,, respectively, the schema, of the
outerunion is the union of R; and Ry. The outerunion itself is a relation that con-
sists of all the tuples of r; and r9, where a tuple of one relation is padded with null
values in the attributes of the other relation.

We can now prove Theorem 6.10.

Proof of Theorem 6.10. We prove the theorem by first showing that the modified
SOJO correctly computes the projection on X of the full disjunction. Later we will
show that the runtime of the modified SOJO is polynomial in the size of the input
and output.

Suppose that r1,...,r, are relations with schemas R;,..., R,, respectively. Let
X be a given set of projection attributes. We denote by Fx the projection of the
full disjunction of ry,...,r, on X. We denote with F{'° the result of evaluating
the expression that the modified SOJO returns for Ry,..., R, and X. It should be
shown that Fyx = F¢"°.

First, we want to show that attributes that are needed for the join are not
removed too early because of the projections. To see this, consider a pair of schemas
R; and R;. Let E; and Fj be two expressions that the algorithm computes in one
of the recursive calls, such that Ry appears in F; and Ry appears in Fy. (E; and F,
are unique for the given schemas, because a schema cannot appear more than once
in the final expression). We define the schema of an expression to be the schema of
the relation that is the result of computing the expression after replacing relation

schemas with their corresponding relations.

Claim .3 Both the schema of E1 and the schema of Es contain the shared attributes
of R; and R;, i.e., contain R; N R;.

To see why Claim .3 is true, consider the decomposition that returns the expres-
sion F4 B Ey. Let Z be the node of the diagram that this decomposition is with

respect to it. Since Z is a node in a Bachman diagram, the set Z is the intersection
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of the following two sets. The set of attributes in schemas that appear in F; and
the set of attributes in schemas that appear in Fy. Thus, Z contains R; N R;. Now,
one should notice that at each recursive call, the set of projection attributes is only
increased. So, all the projections, in sub-expressions of F; and FE5, are on sets that
contain Z, and, consequently, these sets contain R; N R;.

The next claim shows that attributes of X are not discarded by projections.

Claim .4 In each expression E that is produced during the run of the modified SOJO
algorithm, E is the projection of some sub-expression of E on a set of attributes that

contains X.

Again, this claims follows from the fact that, in the recursive calls, the set of
projection attributes is always increased, i.e., no attribute is removed.

Next, we prove correctness by showing containment in both directions. Suppose
that ¢, is a tuple in 7. It follows from Claim .3 that the tuples that were joined
to produce t, are join consistent. Thus, in Fx there is a tuple that is equal to %, or
subsumes t,.

Before showing containment in the other direction, we provide a notation. Con-
sider an expression F than contains the schemas Ry,..., R,. The evaluation result
of F is the relation that is produced by computing E after replacing each schema R;
with its corresponding relation r;. We denote the evaluation result of E as eval(E).

Now, we show containment in the other direction. Suppose that ¢, is a tuple in
Fx. Then there is a tuple ¢ in the full disjunction of r1,...,r,, such that ¢, is the
projection of ¢t on X. Let ¢;,,...,%;,, be the generators of ¢.

Consider the expression E* that the unmodified SOJO produces for Ry,..., R,.
Then ¢ is in eval(E"). In the evaluation of E", ¢ is produced by a sequence of joins
w.r.t. the tuples t;,,...,t;, . We show that in the modified SOJO there is a similar
sequence of joins, w.r.t. projections of ¢;,,...,%; ., and this sequence produces ¢, or
a tuple that subsumes ¢,.

Consider the expression E™ that the modified SOJO produces. The two expres-

sions E* and E™ have the same order of outerjoin operations. The difference between
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them is the additional projections in E™. Given a sub-expression E; of E*, we de-
note as Proj(E1) the sub-expression of E™ that contains exactly the same schemas
as Fq. Such sub-expression exists because the decomposition to sub-expressions in
SOJO is the same as the decomposition in the modified SOJO.

Consider the evaluation of E™ after replacing each schema R; with its corre-

sponding relation r;. The the following claim holds.

Claim .5 Suppose that E' is a sub-expression of E*. Let t' be a tuple in eval(E"),
such that all the generators of t' are among t;,,...,t;,. Then there is a set of

attributes X' that contains X, such that t'[X'] is in eval(Proj(E'")).

We prove Claim .5 by induction on the structure of E'. If E’ is a relation
schema R;,, for some 1 < j < m, then Proj(E') is a projection of R;; on a set X'.
According to Claim .4, X' contains X. In this case, #;; is in eval(E’) and t;,[X'] is
in eval(Proj(E")). Thus, the claim holds.

Suppose that E' has the form By x Eo. Let # be a tuple in eval(E'), such

that the generators of ¢’ are among t;,,...,t; . Then one of the following three

cases must hold. First, ¢’ is in the projection of eval(E1) on a set of attributes X'.
Second, t' is in the projection of eval(Fy) on a set of attributes X'. Third, ¢’ is a
projection on a join of a tuple of eval(E7) and a tuple of eval(Es). In the first two
cases, according to Claim .4, X’ contains X and the claim holds.

We cousider the third case. There are tuples ¢; and t9 such that (1) ¢; and o
are in eval(E7) and eval(E2), respectively, (2) the generators of ¢; and t9 are among

tivs---,ti, and (3) t' is the join of ¢; and to.

Tm )

By the induction hypothesis, there are sets of attributes X; and X5 that contain
X, such that #1[X1] is in ewal(Proj(E1)) and to[X3] is in eval(Proj(Es)). Since ty
and to are join consistent, ¢1[X;] and #2[X32] are join consistent. Hence, there is an
X' such that eval(Proj(E')) is a projection of the join of ¢;[X1] and #3[X5] on X'.
According to Claim .4, X’ contains X. This proves Claim .5.

From Claim .5 follows that there is a set of attributes X’ that contain X such
that eval(E™) contains ¢[X']. The tuples ¢[X’] and ¢, are created from the same

generators. Hence, ¢[X'] is equal to ¢, or subsumes ¢,. Hence, there is a tuple in
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F¥’° that is either equal to ¢; or subsumes ¢,. This proves the other side of the

containment.

So far, we showed the correctness of the algorithm. Next, we show that comput-
ing a projection of a full disjunction, using an expression that the modified SOJO
produces, can be done in polynomial time in the size of the input and output.

First, note the following three simple fact. (1) The expression that modified
SOJO produces does not include any schema more than once. (2) Computing a
projection of a relation is in polynomial time in the size of the relation. (8) Com-
puting an outerjoin of a pair of relations is in polynomial time in the size of the
two relations. Thus, we only need to show that each intermediate relation has a
bounded size w.r.t. the size of the input and the final result.

Suppose that FE is the expression that the modified SOJO produces for R4,..., R,
and X. Let E; be a sub expression of E that is returned from one of the recursive
calls. In addition, let Fx be the result of evaluating £ and F; be the result of

evaluating F.

Claim .6 The number of tuples in Fi is less than or equal to s, X f, where s, is
the number of tuples in all the relation r1,...,r, and f is the size of the result, i.e.,

the number of tuples in Fx.

To prove Claim .6 we consider two cases. In the first case, F; is a projection on
an input relation. Obviously, in this case, F; has at most s, tuples. Thus, the claim
holds.

The second case is when E; is a projection of E| 51 E} on X U Z, where E/ and
E! are sub-expressions. The set Z is a node in the Bachman diagram. We show
that there cannot be too many tuples in Fj.

Every tuple ¢ is F; has two parts (not necessarily disjoint). One part is the
projection of ¢ on X. The other part is the projection of ¢ on Z. The projection of
t on X is part of a tuple of Fx. Thus, there are at most f tuples in the projection

of F; on X.
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According to the way decomposition is performed in the algorithm, Z is a mini-
mal node in the Bachman diagram. Hence, for each schema R; that appears in Ey,
the set Z is either contained in R; or disjoint from R;. Thus, the projection of ¢
on Z is a part of a tuple in one of the relations that appear in F;. In other words,
the projection of ¢ on Z cannot be created by a Cartesian product or a join of two
tuples from two different relations. Otherwise, the schemas of these relations do not
contain Z and are not disjoint from Z, which is a contradiction to the minimality
of Z. Hence, the number of tuples in the projection of F; on Z is at most s,.

Let C be the Cartesian product of the following two relations: the projection of
F1 on Z and the projection of F; on X. The number of tuples in Fi is less than
the number of tuples in C'. Also, the number of tuples in C is at most s, x f. This

proves Claim .6 and proves the theorem. O
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