
Full Disjunctions: Polynomial-Delay Iterators in Action

Sara Cohen
Technion

Haifa, Israel

sarac@ie.technion.ac.il

Itzhak Fadida
Technion

Haifa, Israel

tzahi@tx.technion.ac.il

Yaron Kanza
University of Toronto

Toronto, Canada

yaron@cs.toronto.edu

Benny Kimelfeld
The Hebrew University

Jerusalem, Israel

bennyk@cs.huji.ac.il

Yehoshua Sagiv
The Hebrew University

Jerusalem, Israel

sagiv@cs.huji.ac.il

ABSTRACT
Full disjunctions are an associative extension of the outer-
join operator to an arbitrary number of relations. Their
main advantage is the ability to maximally combine data
from different relations while preserving all the original in-
formation. An algorithm for efficiently computing full dis-
junctions is presented. This algorithm is superior to pre-
vious ones in three ways. First, it is the first algorithm
that computes a full disjunction with a polynomial delay
between tuples. Hence, it can be implemented as an itera-
tor that produces a stream of tuples, which is important in
many cases (e.g., pipelined query processing and Web ap-
plications). Second, the total runtime is linear in the size
of the output. Third, the algorithm employs a novel opti-
mization that divides the relation schemes into biconnected
components, uses a separate iterator for each component and
applies outerjoins whenever possible. Combining efficiently
full disjunctions with standard SQL operators is discussed.
Experiments show the superiority of our algorithm over the
state of the art.

1. INTRODUCTION
In many scenarios, databases that were built indepen-

dently contain related information. The Internet has made
many such databases accessible and enhanced the need for
reliable and efficient data-integration techniques. The goal
of data integration is to enable users to utilize all the avail-
able information from independent data sources. To that
end, integration techniques should connect related pieces of
information in a maximal way, that is, all and only related
pieces should be combined without causing any loss of in-
formation.

Integration of two relations can be done using the natural
outerjoin operator (or outerjoin for short) [4, 5, 9]. However,
the outerjoin is not suitable for integrating more than two

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

relations; for example, the outerjoin is not associative. The
full disjunction [7] is an associative and commutative gener-
alization of the outerjoin operator. Hence, it is suitable for
integrating any number of relations. Intuitively, for a given
set of relations, the full disjunction is obtained by joining
maximal sets of related tuples (i.e., tuples that agree on all
the common attributes). Since every given tuple is included
in at least one tuple of the result, all the available informa-
tion is preserved. In comparison, the tuples produced by a
sequence of outerjoins include all the original information,
but are not necessarily maximal, i.e., outerjoins cannot al-
ways combine all related pieces of information. Thus, in
general, results of outerjoins may have redundant tuples or
suffer from information loss (since some related tuples of the
source relations are not joined in the result).

Our goal is to provide practically efficient algorithms for
computing full disjunctions. Such algorithms are essential
for incorporating full disjunctions into standard query lan-
guages. The next example demonstrates the importance of a
full-disjunction operator as a primitive language construct.

Example 1.1. Suppose that the following relations are
stored in a database containing touristic information: Cli-
mates(Country, Climate), Accommodations(Country, City,
Hotel, Stars) and Sites(Country, City, Site). We would like
to find a place to visit, based on the information of our data-
base. The natural join of the three relations above may not
yield the desired result, since a join may cause interesting
data to be lost due to missing information in the tables. For
some cities, for example, the database may contain no sites
at all. For such cities, there is no corresponding tuple in the
Sites relation. As another example, some national sites may
be out of any specific city and, hence, the tuples of these
sites will not join with any tuple of Accommodations. To
prevent loss of information, we would like to be able to pose
the following query.

SELECT Country,City,Stars,Site

FROM FD(Climates,Accommodations,Sites) AS F

WHERE F.Climate = ‘tropical’

ORDER BY Stars

In this query, FD(Climates,Accommodations,Sites) is an
operation that computes the full disjunction of its argu-
ments. Intuitively, this query returns maximal information
about tourist sites and accommodations in countries with
tropical climate, ranked by the rating of the hotels.

When evaluating queries, such as that of Example 1.1, an
efficient algorithm for computing full disjunctions is clearly
needed. The best known algorithm for computing full dis-
junctions [2] runs in time that is quadratic in the size of the
output. Since the output of a full disjunction is typically
large (it includes, at least, all the tuples of the source re-
lations), it is clearly desirable to reduce the dependency to
optimum, i.e., achieve linear time in the size of the output
(and, of course, polynomial time in the size of the input).
One way of achieving linear dependency in the output is to
devise an algorithm that generates the tuples of the result
incrementally, where the time interval between generating a
tuple of the result and generating the next tuple is small.
Formally, we say that an algorithm runs in polynomial delay
if the delay between successive tuples is polynomial only in
the size of the input. An algorithm that runs with polyno-
mial delay has a total time that is linear in the size of its
output. In this paper, we present an algorithm for comput-
ing full disjunctions that is aimed at achieving small delays
between tuples. In particular, we present the first algorithm
for computing full disjunctions with polynomial delay.

Computing full disjunctions with short delays between tu-
ples is in itself an important goal (regardless of the total
computation time), since there are applications that can
benefit from getting tuples of the result as a stream that
starts flowing as soon as possible, before the whole com-
putation is complete. A motivating example is a paral-
lel system, where one processor computes the tuples of a
full disjunction and another processor receives these tuples
for further processing. A short delay is required to achieve
a proper utilization of the second processor. As another
example, consider a server on the Web that computes a
full disjunction and then sends the result over the Inter-
net. While the computation is going on, tuples are sent as
soon as they are produced, thereby reducing latency and
preventing bandwidth bottlenecks. A third important ex-
ample is when a user inspects the tuples one at a time, as
soon as they are generated, and may even decide at any mo-
ment that no more tuples are needed and the computation
can terminate. In such a scenario, the system should not let
the user wait for too long when she is asking for the next
tuple. Thus, minimizing the delay is important and it may
even save resources, since computing the whole result is not
always required.

Related Work. In some cases, full disjunctions can be
formulated as sequences of outerjoins. In [13], it was shown
that the full disjunction of a given set of relations is equiva-
lent to some sequence of outerjoins if and only if the relation
schemes form a γ-acyclic hypergraph [6]. Based on this re-
sult, an algorithm for efficiently computing full disjunctions
of γ-acyclic sets of relations by a sequence of outerjoins was
proposed in [13]. An algorithm that computes full disjunc-
tions of an arbitrary set of relations was presented in [12].
The above two algorithms run in polynomial time in the size
of the input and the output. In other words, all the tuples
of the result are returned in time that is polynomial in the
combined size of the given relations and their full disjunc-
tion. Note, however, that these algorithms do not return
any tuple until all processing is complete (and cannot be
easily adapted to do so).

In [2], an incremental algorithm for computing full dis-
junctions was presented. In this algorithm, the delay is short
while the first several tuples are generated, but it gets longer

as the computation goes on. Formally, the computation is
in incremental polynomial time, i.e., the delay between the
ith and the (i + 1)st tuples of the result is polynomial in
the combined size of the input and the first i tuples that are
generated. Note, however, that the substantial slowdown
between successive tuples is not suitable in the scenarios de-
scribed earlier. The algorithm of [2] can also be adapted to
generating tuples in ranked order provided that the ranking
function is “monotonically c-determined.”

Contributions. Our main contribution is the algorithm
BiComNLOJ for efficiently computing full disjunctions in
the general case. This algorithm is superior to previous ones
in three ways. Foremost, it is the first algorithm that com-
putes a full disjunction with polynomial delay. Second, the
total runtime is linear in the size of the output, whereas
the best previously known algorithm [2] runs in time that is
quadratic in the size of the output. Third, by dividing the
scheme graph of the relations into biconnected components,
our algorithm can further optimize the runtime (and shorten
the delay) by incorporating outerjoins into the computation.

Before discussing BiComNLOJ, we first present two algo-
rithms, namely NLOJ and PDelayFD, that we build upon
to derive this general algorithm. Section 3 describes the al-
gorithm NLOJ that uses left-deep outerjoins to compute a
full disjunction of an acyclic1 set of relations. This algo-
rithm is highly efficient with linear delay (in the size of the
input) between results. The algorithm PDelayFD (Sec-
tion 4) computes a full disjunction for an arbitrary set of
relations with a polynomial delay between tuples. We note
that PDelayFD is already a significant improvement over
the state of the art [2], since it runs in polynomial delay and
in total time that is linear (rather than quadratic) in the
size of the output. Finally, BiComNLOJ, which combines
the efficiency of NLOJ with the generality of PDelayFD, is
presented (Section 5). The combination of NLOJ and PDe-
layFD is rather intricate, since special techniques must be
applied to retain the polynomial delay between tuples.

In this paper, we also show how full disjunctions can be
integrated with standard SQL operators (Section 6). In par-
ticular, we show how and when selection, projection and
order-by can be integrated directly into the processing of a
full disjunction.

All algorithms discussed in this paper, as well as the al-
gorithm of [2], were implemented as block-based algorithms
within an open-source database system. Extensive exper-
imentation was performed to prove the superiority of Bi-
ComNLOJ over the state-of-art algorithm ([2]) in the total
computation time as well as the delays between tuples in the
result (Section 7). Our experimentations also show that the
technique employed in BiComNLOJ of dividing the scheme
graph into biconnected components is of great importance
for deriving an algorithm that can be efficiently integrated
into a real database system.

2. PRELIMINARIES
In this section, we present our data model, we define the

concept of a full disjunction, and we discuss enumeration
algorithms that act as iterators.

2.1 Relations and Schemes
In this work, we use the relational data model. Relations,

1Our notion of acyclicity is defined in Section 2.1.

rel. attributes

R1 A, B,C, D
R2 B, E
R3 A, E,F, G
R4 F, H
R5 G, H
R6 C, I
R7 D, J, K
R8 K, L
R9 J, L, M
R10 M, N

(a) Schemes of R1

sc(R4)sc(R5)

sc(R3)

sc(R1)

sc(R2)

sc(R6)

sc(R7)sc(R8)

sc(R9) sc(R10)

(b) Scheme graph Gsc(R1)

rel. attributes

Ra A, B, C, D, E, F, G
Rb A, E, F, G, H
Rc C, I
Rd D, J, K, L, M
Re M, N

(c) Schemes of R1a

sc(Rb)

sc(Rc) sc(Rd)

sc(Re)

sc(Ra)

(d) Scheme graph Gsc(R1a)

Figure 1: Schemes of relation sets R1 and R1a

tuples and schemes are defined in the usual way2. Given a
tuple t and an attribute A of t, we use t[A] to denote the
value of t for A. We use ⊥ to denote the null value. Given a
relation R, we use sc(R) to denote the scheme of R, i.e., the
set comprising all the attributes of R. Given a tuple t1 of a
relation R1 and a tuple t2 of another relation R2, we say that
t1 and t2 are join consistent if they agree (i.e., are equal and
nonnull) on common attributes, that is, t1[A] = t2[A] 6= ⊥
holds for every attribute A in sc(R1) ∩ sc(R2).

We use R (possibly with a subscript) to denote a set of
relations. Consider a set R = {R1, . . . , Rn} of relations.
The scheme graph of R, denoted Gsc(R), is the undirected
graph that is defined as follows. The nodes of Gsc(R) are the
schemes sc(R1), . . . , sc(Rn). There is an edge between two
schemes if they share one or more common attributes. More
formally, Gsc(R) contains an edge between sc(Ri) and sc(Rj)
if i 6= j and sc(Ri)∩ sc(Rj) 6= ∅. We say that R is connected
if Gsc(R) is connected. R is cyclic if Gsc(R) contains a cycle;
otherwise, it is acyclic. Note that our notion of acyclicity
implies γ-acyclicity, but the two are not equivalent.

Example 2.1. The scheme graphs of two sets of relation
R1 = {R1, . . . , R10} and R1a = {Ra, . . . , Re} is depicted
in Figure 1. The dotted polygons in Figure 1(b) should
be ignored for now—their meaning will be explained later.
Note that both R1 and R1a are connected, R1 is cyclic and
R1a is acyclic.

2.2 Full Disjunctions
Consider a set of relations R = {R1, . . . , Rn}. A tuple set

of R is any set of tuples T = {t1, . . . , tm} consisting of at

2The algorithms in this paper assume that relations are sets
of tuples, but they can be easily adapted to the case where
relations are multisets of tuples.

A B C

t1 1 10 1

t2 2 21 2

t3 1 ⊥ 3

(a) R11

A B D

u1 1 10 1

u2 2 22 2

(b) R12

A E F

v1 1 11 1

v2 2 20 2

(c) R13

A E G

w1 1 12 1

w2 2 20 2

(d) R14

Figure 2: Relations R11, R12, R13 and R14

most one tuple from each relation (hence, m ≤ n). We say
that T is connected if the tuples of T belong to a connected
subset of R; that is, if {Ri1 , . . . , Rim} is connected, where
each Rij

is the relation that contains tj . We say that T is
join consistent if every two tuples in T are join consistent;
that is, for every 1 ≤ j < k ≤ m, the tuples tj and tk are join
consistent. For clarity, we assume that different tuples from
the same relation are not join consistent. JC(T) denotes
that T is join consistent and JCC(T) denotes that T is both
join consistent and connected.

Definition 2.2. Let R be a set of relations. MaxJCC(R)
is the set of all tuple sets T of R, such that (1) JCC(T), and
(2) T is maximal, that is, no tuple set of R that is both join
consistent and connected also properly contains T .

Example 2.3. Let R = {R11, R12, R13, R14}, where R11,
R12, R13 and R14 are the relations of Figure 2. Consider
the tuple set T = {t1, u1, v1}. It is easy to see that JCC(T)
holds, since (1) the scheme graph of {R11, R12, R13} is con-
nected and (2) t1, u1 and v1 agree on their common at-
tributes. Furthermore, T is in MaxJCC(R), since JCC(T ′)
does not hold for any tuple set T ′ that properly contains
T . The reader can easily verify that MaxJCC(R) comprises
the following six tuple sets: {t1, u1, v1}, {t2, v2, w2}, {t3, v1},
{u2, v2, w2}, {t1, u1, w1} and {t3, w1}.

Consider a join-consistent tuple set T . Let S be a scheme
that contains all the attributes that appear in the tuples of
T and perhaps additional attributes. We use embedS(T) to
denote the tuple over S that is obtained by first applying
the natural join to the tuples of T and then adding columns
with nulls for the remaining attributes of S. In other words,
embedS(T) is the tuple t, such that for all attributes A of
S, if T contains a tuple t′ with the attribute A, then t[A] =
t′[A]; otherwise, t[A] = ⊥. We use embedS(t) as a shorthand
notation for embedS({t}).

As an example, let T = {t1, u1, v1} be the tuple set from
Example 2.3. Suppose that S is the set of all attributes ap-
pearing in the relations R11, R12, R13 and R14 of Figure 2,
i.e., S = {A, B, C, D, E, F, G}. Then, embedS(T) is the tu-
ple t = (A : 1, B : 10, C : 1, D : 1, E : 11, F : 1, G : ⊥). Note
that t[G] = ⊥, since G does not appear in R11, R12 or R13.

Given a set of relations R, the full disjunction of R is
obtained by first applying the natural join to the tuples of
each T ∈ MaxJCC(R) and then taking the outer union.
Following is a formal definition.

Definition 2.4 (Full Disjunction). Let R be a set

A B C D E F G

s1 1 10 1 1 11 1 ⊥

s2 2 21 2 ⊥ 20 2 2

s3 1 ⊥ 3 ⊥ 11 1 ⊥

s4 2 22 ⊥ 2 20 2 2

s5 1 10 1 1 12 ⊥ 1

s6 1 ⊥ 3 ⊥ 12 ⊥ 1

Figure 3: FD({R11, R12, R13, R14})

of relations and S be the union of the schemes of the rela-
tions in R. The full disjunction of R, denoted FD(R), is
the relation {embedS(T) | T ∈ MaxJCC(R)}.

As an example, consider again the relations R11, R12, R13

and R14, presented in Figure 2. The full disjunction of these
relations consists of 6 tuples and is shown in Figure 3. Tuple
s1, for instance, is the tuple embedS({t1, u1, v1}), where S =
{A, B, C, D, E, F, G}.

Our definition of full disjunctions differs from that of [13]
in that we allow the source relations to contain null val-
ues. When source relations do not have null values, the two
definitions are equivalent.

2.3 Enumeration Algorithms
In this paper, we develop enumeration algorithms for com-

puting full disjunctions. An enumeration algorithm E is an
algorithm that acts as an iterator [10] but is written as an
ordinary algorithm, i.e., next() and hasNext() functions
are not defined explicitly (in Section 2.4 we explain how
iterators are used in enumeration algorithms). An enumer-
ation algorithm generates, for a given input x, a sequence
e1, . . . , em of results. Each element ei is produced by the
operation output (·). We say that E(x) enumerates the set
S if, in the execution of E(x), every element of S is pro-
duced exactly once. Next, we discuss measures of efficiency
for enumeration algorithms.

Polynomial time complexity is not a suitable yardstick of
efficiency when analyzing an enumeration algorithm. This
is because the size of the output could be much larger (e.g.,
exponentially larger) than the size of the input. In [11], sev-
eral definitions of efficiency for enumeration algorithms are
discussed. The weakest definition is polynomial total time,
where the running time is polynomial in the combined size of
the input and the output. Two stronger definitions consider
the time that is needed for generating the ith element, after
the first i−1 elements have already been created. Incremen-
tal polynomial time means that the ith element is generated
in time that is polynomial in the combined size of the in-
put and the first i− 1 elements. The strongest definition is
polynomial delay, where the ith element is generated in time
that is polynomial only in the input. It is easy to see that
every algorithm that enumerates with polynomial delay also
runs in total time that is linear in the size of the output. For
instance, if the delay is O(d), where d is polynomial in the
size of the input, and there are m elements in the result,
then the runtime will be O(m · d).

Note that, in general, SQL queries cannot be evaluated in
polynomial total time, i.e., the evaluation may take expo-
nential time if the size of the query is not fixed. For example,
the join of a set of relations cannot be evaluated in polyno-
mial total time, since it is NP-complete just to determine
whether the result of the join is nonempty [1]. It was shown

that full disjunctions can be computed in polynomial total
time [12] and even in incremental polynomial time [2].

2.4 Iterators
We use iterators in our enumeration algorithms. An itera-

tor is a programming construct that makes it possible to it-
erate over the results of an enumeration algorithm, and even
pause the computation while retaining the internal state.

Iterators are needed in order to realize polynomial delay
when enumeration algorithms use each other. If an enumer-
ation algorithm Ê calls another enumeration algorithm E
and then waits until E generates all of its output, the delay
could be exponential. Instead, E should halt after gener-
ating and returning the first result to Ê. Later, E should
resume its operation, in order to generate the next result
when Ê is ready to get it. Formally, an iterator is an object
that operates on top of a specific execution of an enumer-
ation algorithm. The iterator outputs each result of the
underlying algorithm only upon an explicit next request.

Consider an enumeration algorithm E and an input x. An
iterator I over E(x) is constructed by the operation

I ← new Iterator(E, x).

Suppose that E(x) enumerates {e1, . . . , em}. When execut-
ing I.next() for the first time, the execution of E(x) starts
and continues until the first result e1 is generated. Specifi-
cally, the command output (Y) in the execution of E(x) re-
turns both the value of Y and the control of the execution to
the procedure that called I.next(). Note that the value of Y
is returned to the user (i.e., printed) only when output (Y)
is executed by the outermost procedure. When I.next() is
executed again, the execution of E(x) is resumed until e2

is generated and so on. Hence, the elements e1, . . . , em are
enumerated by repeatedly executing m times the command
I.next(). The cost of executing these m calls to I.next() is
the total cost of executing E(x).

The operation I.hasNext() returns true if there are more
elements to be generated; otherwise, it returns false. Note
that I can implement hasNext() by actually continuing the
execution of E(x) to check if another result is generated. In
our algorithms, however, hasNext() can be implemented
by a simple inspection of the data structures.

3. ACYCLIC SETS OF RELATIONS
Full disjunctions are an associative generalization of bi-

nary outerjoins to any number of relations. Left-deep se-
quences of outerjoins (or just left-deep outerjoins for short)
are also a generalization of outerjoins to any number of re-
lations, but they are not associative. Nevertheless, we will
show that in common cases, namely, when the given set of
relations is acyclic, full disjunctions can be formulated as
left-deep outerjoins. For these cases, a polynomial-delay al-
gorithm is presented in this section. This algorithm forms
the basis of our algorithm for the general case (presented
in Section 5). We note in passing that [13] showed how to
compute full disjunctions for a special case using outerjoins.
However, their algorithm did not run with polynomial delay.
See Section 1 for details.

We use R1
o

./ R2 to denote the outerjoin of R1 and R2.
When R1 and R2 are connected, the outerjoin and the full
disjunction of the two relations are the same. If, however,
R1 and R2 do not share any attribute and both are non-
empty, then the outerjoin is the Cartesian product whereas

NLOJ((R1, . . . , Rn))

1: if n = 1 then

2: output all tuples of Rn

3: else

4: S := sc(R1) ∪ · · · ∪ sc(Rn)
5: I := new Iterator(NLOJ, (R1, . . . , Rn−1))
6: while I.hasNext() do

7: t̂ := I.next()
8: for all tuples t ∈ Rn, s.t. JC({t, t̂}) do

9: mark t
10: output

�
embedS({t, t̂})�

11: if 6 ∃t ∈ Rn, s.t. JC({t, t̂}) then

12: output
�
embedS(t̂)�

13: for all unmarked tuples t ∈ Rn do

14: output (embedS(t))

Figure 4: Computing
o

./(R1, . . . , Rn)

the full disjunction is the outerunion of the two relations.

We use
o

./(R1, . . . , Rn) to denote the left-deep outerjoin of

R1, . . . , Rn. Formally,
o

./(R1, R2)
def

= (R1
o

./ R2), and for
n > 2, recursively,

o

./(R1, R2, R3, . . . , Rn)
def

=
o

./(R1
o

./ R2, R3, . . . , Rn).

For example,

o

./(R1, R2, R3, R4)
def

= ((R1
o

./ R2)
o

./ R3)
o

./ R4.

Consider a connected set of relations R = {R1, . . . , Rn}.
A connected-prefix ordering of R is an ordering R1, . . . , Rn

of the relations of R, such that {R1, . . . , Ri} is connected
for all 1 ≤ i ≤ n. Note that every connected set of relations
has a connected-prefix ordering. Moreover, this ordering
can easily be created (e.g., by a DFS traversal of the scheme
graph). As an example, one connected-prefix ordering of the
relation set R1a of Figure 1(d) is Rc, Ra, Rb, Rd, Re.

Proposition 3.1 shows that when the scheme graph is a
tree, a connected-prefix ordering yields a left-deep outerjoin
that is equivalent to the full disjunction. This can be proven
using the results of [13].

Proposition 3.1. Let R be a connected and acyclic set
of relations. If R1, . . . , Rn is a connected-prefix ordering of

R, then FD(R) =
o

./(R1, . . . , Rn).

We now describe the algorithm NLOJ (Nested-Loop Out-
erJoin) for computing left-deep outerjoins with polynomial
delay. This algorithm is shown in Figure 4. The input to
the algorithm NLOJ consists of a tuple (R1, . . . , Rn) of rela-
tions, where the order of the relations is a connected-prefix

ordering. The output is the relation
o

./(R1, . . . , Rn). Es-
sentially, this algorithm is similar to the nested-loop join,
but it also generates tuples that cannot be joined. In order
to simplify the presentation, NLOJ is presented as a recur-
sive algorithm. In our implementation of NLOJ (and of all
the other algorithms considered in this paper), we used a
nonrecursive version, to improve the efficiency.

When the input consists of only one relation (i.e., n = 1),
all the tuples of that relation are enumerated (Line 2). When

n > 1, all the tuples of
o

./(R1, . . . , Rn−1) are recursively enu-
merated (Lines 5–14) by the recursive iterator I constructed

PDelayFD(R)

1: let R be an arbitrary relation in R
2: Q¬R ← an empty queue
3: for all t ∈ R do

4: TupExtFD(R, R, t,Q¬R)
5: RelExcFD(R, R,Q¬R)

Figure 5: Computing FD(R)

in Line 5. For each enumerated tuple t̂, the algorithm iter-
ates, in Line 8, over all the tuples t ∈ Rn that can be joined
with t̂. In Lines 9–10, each such tuple t is marked and its
natural join with t̂ is sent to the output. If no such tu-
ple t exists, then in Line 12 the algorithm outputs t̂ after
padding it with nulls for the attributes of sc(Rn) that are
missing from t̂. Finally, in Lines 13–14, the algorithm out-
puts all the tuples of Rn that are not marked (i.e., those
tuples that are never chosen in Line 8). Each such tuple t
is padded with nulls for the attributes of R1, . . . , Rn that it
does not include.

Note that NLOJ can be viewed as a pipelined computa-
tion of binary outerjoins. The iterator I produces the results
of the previous stage in the pipeline. It is easy to show that
this algorithm has an O(N) delay, where N is the total num-
ber of tuples in the relations. Furthermore, Line 8 forms the
bottleneck of the computation. Thus, by using standard join
techniques (e.g., ones that are based on indices), the delay
can be substantially reduced. Such techniques are beyond
the scope of this paper.

From Proposition 3.1, we conclude that NLOJ can be
used for computing full disjunctions of acyclic and connected
sets of relations. If the given set of relations is not connected,
then we can separately compute the full disjunction of each
connected component and pad each generated tuple with
nulls for all the attributes of the other connected compo-
nents. In other words, we compute the full disjunctions of
the different components and then compute the outerunion
of these full disjunctions. Given that N is the total number
of tuples in the relations of R, the delay of NLOJ is O(N)
as formally stated in the following theorem.

Theorem 3.2. Given an acyclic set of relations R con-
taining N tuples altogether, the algorithm NLOJ computes
FD(R) with O(N) delay.

For some cyclic sets of relations, the full disjunction is
still equivalent to a left-deep sequence of outerjoins; how-
ever, characterizing these cases is beyond the scope of this
paper. In such cases, the full disjunction can be computed
by NLOJ. In Section 5, we use NLOJ as part of an algo-
rithm for computing full disjunctions in the general case.

4. GENERAL SETS OF RELATIONS
In this section, we present PDelayFD which is the first

algorithm that computes full disjunctions of general sets of
relations with polynomial delay. By definition, having poly-
nomial delay guarantees that the total time of this algorithm
is linear in the size of the output. This improves the best
known upper bound [2] for computing full disjunctions which
is quadratic in the size of the output.

TupExtFD(R, R, t,Q¬R)

1: Ct := ∅
2: Qt := {ExtendToMax(R, {t})}
3: S := �

R′∈R sc(R′)
4: while Qt is not empty do

5: remove the top element T from Qt

6: output (embedS(T))
7: Ct.insert(T)
8: for all s ∈ R \ {R} do

9: let Ts be the maximal tuple set, s.t. s ∈ Ts,
Ts ⊆ T ∪ {s} and JCC(Ts)

10: T̂ :=ExtendToMax(R, Ts)

11: if t ∈ T̂ and T̂ /∈ Ct ∪Qt then

12: Qt.insert(T̂)

13: if T̂ ∩R = ∅ and T̂ /∈ Q¬R then

14: Q¬R.insert(T̂)

Figure 6: Computing FD|t(R)

Consider a relation R ∈ R. The set comprising all tu-
ple sets in MaxJCC(R) that contain a given tuple t ∈ R is
denoted by MaxJCC|t(R). The subset of FD(R) that cor-
responds to MaxJCC|t(R) is denoted by FD|t(R); that is,
FD|t(R) is the relation {embedS(T) | T ∈ MaxJCC|t(R)},
where S is the union of all the schemes of the relations of R.
The set consisting of all tuple sets in MaxJCC(R) that con-
tain no tuple from R is denoted by MaxJCC|¬R(R). The
corresponding subset of FD(R) is denoted by FD|¬R(R).
Clearly, FD(R) = FD|¬R(R) ∪ � t∈R FD|t(R).

We compute FD(R) in the following manner. We first
choose a relation R ∈ R. We then enumerate FD|t(R) for
all tuples t ∈ R. Finally, we enumerate FD|¬R(R). This is
basically the algorithm PDelayFD of Figure 5. To explain
this algorithm, we examine the algorithms that it calls.

We first describe the algorithm TupExtFD of Figure 6.
The input of this algorithm consists of a set R of relations, a
relation R ∈ R, a tuple t ∈ R and a queue Q¬R. This algo-
rithm computes FD|t(R) with polynomial delay. It uses (in
Lines 2 and 10) the algorithm ExtendToMax of Figure 7
that, given a setR of relations and a join consistent and con-
nected set T of tuples in R, returns an arbitrary maximal
set T̂ of tuples in R that satisfy JCC(T̂) and T ⊆ T̂ . In par-
ticular, if T is a singleton {t}, then ExtendToMax(R, T)
returns an arbitrary tuple set of MaxJCC|t(R).

The algorithm ExtendToMax works as follows. It starts
with T as the arbitrary set T̂ . It marks as visited all the
relations of R that contain a tuple of T (Lines 2–4). Then,

it iteratively extends T̂ while keeping T̂ connected and join
consistent (Lines 5–10). In each iteration, a tuple is taken

from a relation that has not yet been visited (hence, T̂ never
includes two tuples from the same relation). The tuple is
chosen arbitrarily from a relation that has a shared attribute
with T̂ , since tuples of other relations are not connected to
T̂ . Only tuples that are connected and join consistent with
T̂ are added to T̂ (Lines 8–9). The iterations continue until

T̂ cannot be extended anymore.
We continue now with the description of TupExtFD. The

algorithm TupExtFD uses a repository Ct for storing tuple
sets that have been printed and a queue Qt for storing tu-

ExtendToMax(R, T)

1: T̂ := T
2: for all R ∈ R do

3: if R ∩ T̂ = ∅ then visited[R]:=false

4: else visited[R]:=true

5: while there is R ∈ R, s.t. visited[R]=false and

R and T̂ share a common attribute do

6: visited[R]:=true

7: for all t ∈ R do

8: if JCC(T̂ ∪ {t}) then

9: T̂ := T̂ ∪ {t}
10: break

11: return T̂

Figure 7: Extending a tuple set

ple sets awaiting to be printed. Initially, Ct is empty and
Qt is a singleton containing one tuple set of MaxJCC|t(R).
Lines 5–14 are then executed repeatedly, until Qt is empty.
In Lines 5–7, a tuple set T ∈ Qt is moved from Qt to Ct,
transformed into the corresponding tuple of FD(R) (by join-
ing and adding nulls) and printed. Then, Lines 9–14 are re-
peatedly executed for each tuple s of some relation inR\{R}
(by a slight abuse of notation, we write s ∈ R \ {R}). In
these lines, the algorithm tries to add the tuple s to the set
T . Since JCC(T ∪ {s}) does not necessarily hold, the max-
imal among all subsets of T ′ ⊆ T ∪ {s} satisfying s ∈ T ′

and JCC(T ′) is produced. Let Ts denote this set. It is easy
to show that Ts is unique.3 In Line 10, Ts is extended to a
maximal tuple set T̂ ∈ MaxJCC(R) by executing Extend-
ToMax(R, Ts). In Lines 11–12, the algorithm tests whether

t is contained in T̂ . If so, then T̂ is added to Qt, provided
that T̂ is in neither Ct nor Qt. Lines 13–14 are used for
enumerating FD|¬R(R) and are discussed in detail later.

By now, we have described how to enumerate FD|t(R)
with polynomial delay. Thus, FD(R) can be enumerated
with polynomial delay if FD|¬R(R) can be likewise enumer-
ated. However, the following proposition indicates that this
is not likely to be true (and one has to expect an exponential
first delay when computing FD|¬R(R)).

Proposition 4.1. Testing whether FD|¬R(R) 6= ∅ is NP-
complete.

To overcome this problem, we use the fact that the re-
lation FD|¬R(R) is computed only after generating the re-
lations FD|t(R) for all t ∈ R. It turns out that we can
collect enough information, during the enumeration of all
the FD|t(R), in order to enumerate FD|¬R(R) with polyno-
mial delay. In particular, in Lines 13–14 of TupExtFD, we
test whether the maximal tuple set T̂ is in MaxJCC|¬R(R).

If so, then we store T̂ in a queue Q¬R. Note that in the al-
gorithm PDelayFD, all executions of TupExtFD use the
same Q¬R and, furthermore, Q¬R is given by reference. Fi-
nally, Q¬R (that contains all the collected tuple sets) is used

3The tuple set Ts can be obtained from T ∪ {s} as follows.
First, remove all the tuples t′ such that {s, t′} is not join
consistent (i.e., for some attribute A, either s[A] 6= t′[A] or
s[A] = t′[A] = ⊥). In particular, t′ is removed if it is from
the same relation as s. Then, remove tuples that are no
longer in the same connected component as s.

RelExcFD(R, R,Q¬R)

1: C¬R := ∅
2: S := �R′∈R sc(R′)
3: while Q¬R is not empty do

4: remove the top element T from Q¬R

5: output (embedS(T))
6: C¬R.insert(T)
7: for all s ∈ R \ {R} do

8: let Ts be the maximal tuple set, s.t. s ∈ Ts,
Ts ⊆ T ∪ {s} and JCC(Ts)

9: T̂ :=ExtendToMax(R, Ts)

10: if T̂ ∩R = ∅ and T̂ /∈ Q¬R ∪ C¬R then

11: Q¬R.insert(T̂)

Figure 8: Computing FD|¬R(R)

for enumerating FD|¬R(R) with polynomial delay by apply-
ing the algorithm RelExcFD (shown in Figure 8).

The algorithm RelExcFD is very similar to TupExtFD,
except for the following small differences. RelExcFD ex-
tends tuples of Q¬R (instead of tuples of Qt). Note that
RelExcFD does not use Qt at all, since the tuples of all
the FD|t(R) have already been printed. RelExcFD uses
C¬R to store tuple sets that have already been removed from
Q¬R and printed. In comparison, TupExtFD does not re-
move any element from Q¬R and, so, it does not need C¬R.
Tuple sets T̂ , which are created by extending Ts in Line 9,
are inserted into Q¬R only if they do not contain any tuple
of R and are in neither Q¬R nor C¬R.

Next, we prove the correctness of the algorithm PDe-
layFD. For that, we use the following lemma.

Lemma 4.2. Consider a set of relations R and a relation
R ∈ R.

1. For a tuple t ∈ R and a queue Q¬R ⊆ MaxJCC|¬R(R),
TupExtFD(R, R, t,Q¬R) enumerates FD|t(R).

2. Suppose that Q¬R is initially an empty queue. After
executing TupExtFD(R, R, t,Q¬R) for all tuples t ∈
R, RelExcFD(R, R,Q¬R) enumerates FD|¬R(R).

Proof. We will first prove Claim 1. Consider an execu-
tion of the algorithm TupExtFD(R, R, t,Q¬R). Lines 10–
12 of the algorithm guarantee that only tuples of FD|t(R)
are enumerated and that each tuple is printed at most once.
It remains to prove that every tuple of FD|t(R) is printed.

Suppose, by way of contradiction, that there is some T ′ ∈
MaxJCC|t(R), such that embedS(T ′) is not printed by the
algorithm. Clearly, the algorithm prints at least one tuple
set of MaxJCC|t(R). Let T ∈ MaxJCC|t(R) be a tuple set,
among all the printed ones, that yields a maximal Tm, such
that (1) t ∈ Tm (2) Tm ⊆ T ′∩T , and (3) JCC(Tm). Note that
Tm could be the set {t}. Since T ′ is connected, there exists a
tuple s ∈ T ′ \Tm, such that Tm ∪{s} is connected. Consider
the iteration of Lines 5–14 in which T is printed. Let Ts be
the tuple set that is generated in Line 9 when the tuple s is
chosen in Line 8. Since Ts is maximal and JCC(Tm ∪ {s}),
it follows that Tm∪{s} ⊆ Ts. Thus, Tm∪{s} is contained in

the tuple set T̂ ∈ MaxJCC(R) that is generated in Line 10.

Since t ∈ T̂ , one of the following three options must hold:

(1) T̂ is inserted into Qt, (2) T̂ is in Qt, or (3) T̂ was in Qt

in the past (and is now in Ct). Since the algorithm prints

every tuple set that is inserted into Qt, the existence of T̂
contradicts the choice of T and, hence, the existence of T ′.

The proof of Claim 2 is similar, except for the following
differences. First, we assume that T ′ ∈ FD¬R(R). Second,
among all the tuple sets of MaxJCC(R) that are printed
either in one of the executions of TupExtFD or in the exe-
cution of RelExcFD, we choose a tuple set T that yields a
maximal Tm, such that (1) Tm ⊆ T ′ ∩ T , and (2) JCC(Tm).

Third, the set T̂ is generated in either Line 10 of TupExtFD
or Line 9 of RelExcFD. Note that a contradiction is ob-
tained immediately if T̂ ∈ FD¬R(R). Otherwise, we use the
correctness of Claim 1.

Correctness of the algorithm PDelayFD follows imme-
diately from Lemma 4.2 and is formally stated in the next
theorem. This theorem also analyzes the running time of
PDelayFD. We assume that Qt, Ct, Q¬R and C¬R pro-
vide logarithmic access time; that is, insertion, removal and
membership test require O(log k) comparisons, where k is
the number of elements in the repository. For simplicity,
our analysis assumes that the relations of R have a bounded
number of columns. Therefore, operations such as testing
join consistency of two tuples can be done in constant time.
We use n to denote the number of relations in R and N to
denote the total number of tuples in the relations of R.

Theorem 4.3. PDelayFD(R) computes FD(R) with an
O(n2N + N2 + nN log N) delay.

Theorem 4.3 states that PDelayFD computes full dis-
junctions with polynomial delay and in total time that is
linear in the size of the output, for any arbitrary set of rela-
tions. In both these aspects, PDelayFD is superior to the
state of the art algorithm [2].

5. THE MAIN ALGORITHM
The algorithm NLOJ for computing left-deep outerjoins

is more efficient than PDelayFD, since its delay is linear
compared with the quadratic delay of PDelayFD. How-
ever, NLOJ only applies to acyclic sets of relations. In fact,
in [13], it was shown that there are full disjunctions that can-
not be formulated as any sequence of outerjoins (i.e., with
arbitrary placement of parentheses). In this section, we show
that the problem of computing full disjunctions can be de-
composed into smaller subproblems, such that PDelayFD
is needed only for solving subproblems and NLOJ can com-
pute the full disjunction using the solutions of the subprob-
lems. For now, we assume that there are no null values in
the input relations. Toward the end of the section, we ex-
plain why this assumption is needed and we provide a simple
solution for the case of input relations with null values.

Let R be a set of relations. A subset R1 of R is said to
be biconnected if for each pair of relations R1, R2 ∈ R1, the
scheme graph of R has (at least) two node-disjoint paths
connecting sc(R1) and sc(R2). A biconnected component of
R is a biconnected subsetRm that is maximal w.r.t. contain-
ment (that is, no biconnected subset of R properly contains
Rm). Note that a relation can belong to more than one
biconnected component (such a relation is an articulation
point). Also note that a biconnected component may con-
tain only one relation. For instance, if R is acyclic, then all

rel. attributes

R15 A, B, C
R16 A, D, E
R17 A, B, F
R18 E, G, H, I
R19 H, J
R20 I, J, K
R21 D, G

(a) Schemes of R4

sc(R17)

sc(R16)

sc(R18)

sc(R19)

sc(R15)

sc(R20)

sc(R21)

Rf

Rg Rh

(b) Scheme graph Gsc(R4)

Figure 9: Schemes of a relation set R4

the biconnected components ofR are singletons. It is known
that biconnected components can be efficiently constructed
by detecting articulation points [3].

Example 5.1. The biconnected components of R1 (Fig-
ure 1(a)), surrounded by dotted polygons in the scheme
graph of Figure 1(b), are the following: Ra = {R1, R2, R3},
Rb = {R3, R4, R5}, Rc = {R6}, Rd = {R7, R8, R9} and
Re = {R10}.

Consider a connected set R of relations with the bicon-
nected components R1, . . . ,Rk. We say that the sequence
R1, . . . ,Rk is a strong connected-prefix order (abbr. SCP or-
der) if for all 2 ≤ i ≤ k, the following two conditions hold.
First, Ri has an attribute that appears in R1 ∪ · · · ∪ Ri−1.
Second, ifRj∩(R1∪· · ·∪Ri−1) 6= ∅ for some i ≤ j ≤ n, then
Ri∩(R1∪· · ·∪Ri−1) 6= ∅. It is straightforward to show that
an SCP order of the biconnected components exists (pro-
vided that R is connected) and can be obtained efficiently
by the following procedure. First, choose an arbitrary con-
nected component R1. Having chosen R1, . . . ,Ri−1 (and
i ≤ k), check whether one of the remaining components
contains a relation R that is in R1 ∪ · · · ∪ Ri−1. If so,
choose Ri to be such a component. Otherwise, choose Ri

to be a component that has an attribute A that appears
in R1 ∪ · · · ∪ Ri−1. In Example 5.1, Ra,Rb,Rc,Rd,Re

is an SCP order for the biconnected components of R1.
Ra,Rc,Rb,Rd,Re is not an SCP order, since among Rb

and Rc, only Rb contains a relation of Ra.
The next theorem shows that the full disjunction of R can

be obtained by first computing the full disjunction of each
biconnected component Ri and then applying a left-deep
sequence of outerjoins in an SCP order. Note that if Ri is
a singleton {R}, then FD(Ri) is actually R itself.

Theorem 5.2. Suppose that R is a connected set of re-
lations and R1, . . . ,Rk are the biconnected components of R

in an SCP order. Then, FD(R) =
o

./(FD(R1), . . . ,FD(Rk)).

Note that in Theorem 5.2, the scheme graph of the re-
lations {FD(R1,), . . . ,FD(Rk)} is not necessarily acyclic.
Thus, the proof is different from that of Proposition 3.1 and
more intricate.

Example 5.3. Figure 9 depicts the scheme of the rela-
tion set R4 = {R15, . . . , R21}. The biconnected components
of R4, surrounded by dotted rectangles in Figure 9(b), are
the sets Rf, Rg, and Rh. It is easy to see that the se-
quence Rf,Rh,Rg is an SCP order of the three biconnected

components. It follows from Theorem 5.2 that FD(R4) =
o

./(FD(Rf),FD(Rh),FD(Rg)). In comparison, Rf,Rg,Rh

is not in an SCP order, since Rh shares a relation with
Rf (the relation R16) while Rg does not share a relation
with Rf. In this specific case, it can also be shown that

FD(R4) is not equivalent to
o

./(FD(Rf),FD(Rg),FD(Rh)).
That is, there are relations R15, . . . , R21 for which FD(R4) 6=
o

./(FD(Rf),FD(Rg),FD(Rh)).

It is important to emphasize that an SCP order is not
a necessary condition for equivalence between FD(R) and
o

./(FD(R1), . . . ,FD(Rk)). It is only a sufficient condition
for having an equality between the two expressions.

Theorem 5.2 implies the following three-step algorithm
for computing the full disjunction of a connected set of re-
lations R. First, find the biconnected components of R
and obtain an SCP order R1, . . . ,Rk. Second, compute
the full disjunctions FD(R1), . . . ,FD(Rk). Third, compute
o

./(FD(R1), . . . ,FD(Rk)) and return it as the answer. This
algorithm enumerates, in polynomial total time, the full dis-
junction of a connected set of relations.

In the above algorithm, the full disjunctions of the bi-
connected components are completely generated before ap-
plying the left-deep outerjoins. The size of any relation
FD(Ri) can be exponential in the size of the original rela-
tions and, therefore, the delay of the whole algorithm is not
polynomial—an exponential time is needed for computing
intermediate full disjunctions that are the input to NLOJ,
and the delay of NLOJ is linear in the size of its input. Next,
we show how the algorithm presented above can be modified
to enumerate full disjunctions with polynomial delay.

Consider a connected setR of relations and letR1, . . . ,Rk

be the biconnected components of R in an SCP order. For
i = 2, . . . , n, the connecting relation of Ri is defined as fol-
lows. If Ri contains a relation R that appears in R1 ∪ · · · ∪
Ri−1, then the connecting relation is R (note that in this
case, R is an articulation point); otherwise, the connecting
relation is a relation that contains an attribute A that ap-
pears in R1∪· · ·∪Ri−1. It can be shown that in both cases,
the connecting relation is unique.

We now describe how to enumerate the full disjunction
of a set of relations R, given that R1, . . . ,Rk is a sequence
of the biconnected components of R in an SCP order. Ac-
cording to Theorem 5.2, it is sufficient to enumerate the

expression
o

./ (FD(R1), . . . ,FD(Rk)). This is done in the
algorithm BiComNLOJ of Figure 10. BiComNLOJ can be
seen as an advanced version of NLOJ. The main difference
between BiComNLOJ and NLOJ is that while NLOJ enu-
merates the left-deep outerjoin of the relations of the input,
BiComNLOJ enumerates a left-deep outerjoin of relations
that are full disjunctions of biconnected components. Two
major changes are necessary due to the difference between
the algorithms. First, given a tuple t̂, we cannot enumerate
FD(Rk) with polynomial delay by simply looking for tuples
that can be joined with t̂, because of the following reason.
The size of FD(Rk) could be exponential in the size of the
input and, hence, the overall delay would not be polyno-
mial. The second problem is that of efficiently enumerating
the tuples of FD(Rk) that cannot be joined with any tuple

of
o

./(FD(R1), . . . ,FD(Rk−1)).
The solution to the first problem stems from the following

property. Let R be the connecting relation of Rk. A tuple

t̂ ∈
o

./ (FD(R1), . . . ,FD(Rk−1)) can be joined with some
tuple t′ ∈ FD(Rk) if and only if there is a tuple t ∈ R, such
that (1) t is join consistent with t̂ and (2) t′ ∈ FD|t(Rk).
Thus, we need to find all the tuples t ∈ R that are join
consistent with t̂ and enumerate FD|t(Rk). This is done
using an iterator over TupExtFD (Lines 12–14).

We now address the second problem. There are two types
of tuples of FD(Rk) that cannot be joined with any tuple

t̂ ∈
o

./ (FD(R1), . . . , FD(Rk−1)). One type consists of the
tuples in the relations FD|t(Rk), where t is a tuple of R

that is not join consistent with any tuple t̂. The second
type includes all the tuples of FD|¬R(Rk). For enumerating
tuples of the first type, we mark (in Line 11) the tuples of
R that are chosen in Line 10 (thus, we are interested in the
unmarked tuples). For the second type, we use an iterator
over RelExcFD (Lines 21-23). Note that RelExcFD is
executed only after TupExtFD is applied to all the tuples
of R.

If Rk is a singleton biconnected component {R}, the com-
putation can be done similarly to the way it was done in
NLOJ, which is simpler and more efficient. However, I
(in Line 7 of Figure 10) still has to be an iterator of Bi-
ComNLOJ rather than of NLOJ, since recursive calls may
encounter biconnected components that are not necessarily
singletons. Nonetheless, when R is acyclic, the computation
becomes identical to that of NLOJ.

The complexity of BiComNLOJ is considered in the fol-
lowing theorem. We use ni to denote the number of relations
in the biconnected component Ri and Ni to denote the total
number of tuples in Ri.

Theorem 5.4. Consider a connected set of relations R.
If R1, . . . ,Rk are the biconnected components of R in an
SCP order, then BiComNLOJ(R1, . . . ,Rk) enumerates the
full disjunction FD(R). The delay of the enumeration is

O(� k

i=1 Mi), where Mi = Ni if Ri is a singleton component
and Mi = n2

i Ni + N2
i + niNi log Ni otherwise.

Theorem 5.4 shows that BiComNLOJ runs with polyno-
mial delay, thereby implying a total time that is linear in the
size of the output. Observe that when k > 1, the delay of
BiComNLOJ is shorter than that of PDelayFD, due to our
strategy of decomposing the scheme graph into biconnected
components.

In Theorem 5.4, we assume that the set R is connected.
Recall that when R is not connected, the full disjunction
of R is simply an outerunion of the full disjunctions of the
connected components of R.

We now return to the problem of null values in the in-
put relations. First, we emphasize that all our algorithms,
except for BiComNLOJ, work correctly for relations that
contain null values. The problem with BiComNLOJ is illus-
trated by the following example. Consider two biconnected
components R1 and R2. Suppose that the intersection of
R1 and R2 is the relation (articulation point) R and, more-
over, R has an attribute A that appears in no other relation
of either R1 or R2. Also, we assume that R contains a single
tuple t that has a null in A. Let T̂1 and T̂2 be tuple sets
of R1 and R2, respectively, such that t is contained in both
T̂1 and T̂2. Because T̂1 and T̂2 are join consistent with the
tuple of the shared relation, they should be joined. How-
ever, since there is a null in A, the tuples embedS1

(T̂1) and

embedS2
(T̂2) (where S1 and S2 are the schemes of R1 and

R2, respectively) are not join consistent.

BiComNLOJ((R1, . . . ,Rk))

1: if k = 1 then

2: PDelayFD(R1)
3: else

4: S := �
R′∈(R1∪R2∪...Rk) sc(R′)

5: let R be the connecting relation of Rk

6: Q¬R := ∅
7: I := new Iterator(BiComNLOJ, (R1, . . . ,Rk−1))
8: while I.hasNext() do

9: t̂ := I.next()
10: for all tuples t ∈ R, s.t. JCC({t, t̂}) do

11: mark t
12: It := new Iterator

(TupExtFD, (Rk, R, t,Q¬R))
13: while It.hasNext() do

14: output �embedS({It.next(), t̂})�
15: if 6 ∃t ∈ R, s.t. JC({t, t̂}) then

16: output �embedS(t̂)�
17: for all unmarked tuples t ∈ R do

18: It := new Iterator(TupExtFD, (Rk, R, t,Q¬R))
19: while It.hasNext() do

20: output (embedS(It.next()))
21: I¬R := new Iterator(RelExcFD, (Rk, R, t,Q¬R))
22: while I¬R.hasNext() do

23: output (embedS(I¬R.next()))

Figure 10: Main algorithm for computing FD(R)

There are two possible solutions to the problem of null
values in the the input relations. One solution is to change
the algorithms so that they work with tuple sets—actual tu-
ples of the full disjunction are generated just before printing
them. A second solution is to slightly modify the functions
JC() and JCC(), used in lines 10 and 15 of BiComNLOJ, so
that embeddings of tuple sets that have a tuple in common
will be considered join consistent even when the common
tuple contains null values. Note that this requires some
bookkeeping to indicate whether embeddings were gener-
ated from tuple sets that included tuples from articulation
points.

6. FULL DISJUNCTIONS AND SQL
In this section, we discuss in general lines the incorpora-

tion of full disjunctions into query plans for SQL. By using
the algorithms presented in this paper, the full-disjunction
operator can be incorporated into query plans as a fully
pipelined component. Therefore, in many cases, full dis-
junctions need not be stored in temporary relations. Next,
we discuss how to optimize queries that involve full disjunc-
tions as well as additional operators. The query of Exam-
ple 1.1, for instance, also involves a projection, a selection
and sorting.

We start by considering the ORDER BY operator. Suppose
that in a given query, this operator is applied to only one
attribute A (e.g., as in the query of Example 1.1). The algo-
rithm PDelayFD can be modified to enumerate the full dis-
junction in a sorted order, without increasing the delay. This
requires starting with the relations whose schema contain A.
Tuples from these relations are then taken ordered accord-
ing to A and extended as being done in PDelayFD. This
can be generalized to enumerating full disjunctions in ranked

order according to any ranking function that is “monotoni-
cally c-determined”, as defined in [2]. (Intuitively, a ranking
function is monotonically c-determined if for each tuple t in
the full disjunction it is possible to determine the relative
ranking of t by looking at a fixed number c of tuples among
the tuples that are joined to generate t.)

It follows that if the ORDER BY operator is applied to a
bounded number of attributes, such that the relations con-
taining these attributes form a clique in the scheme graph,
then the tuples of the full disjunction can be enumerated
with polynomial delay in sorted order. The algorithm Bi-
ComNLOJ can also be modified to enumerate the tuples in
sorted order (under the same conditions described above).
For that, all the attributes of the ORDER BY clause should be
in a single biconnected component; however, if this is not
the case, then we can combine all the biconnected compo-
nents that contain these attributes and treat them as one.
We leave further investigation of these to future work.

As for the selection operator, the situation is more com-
plicated. It is NP-complete to test whether the result of
selecting tuples from a full disjunction is not empty, even if
the condition consists of only two equalities [12]. Intuitively,
if we naively delete tuples that do not satisfy the condition of
a selection prior to computing the full disjunction, we might
end up with partial information that would not be there oth-
erwise, i.e., would be joined with tuples that do not satisfy
the condition of the selection. This means that, in general,
selections cannot be pushed through a full disjunction.

In the special case that a selection with a single attribute
is applied to a full disjunction, it is possible to compute the
selection of a full disjunction, while retaining polynomial
delay. Intuitively, this can be achieved by enumerating the
result in a special order. We can push a selection though
a full disjunction by applying a sorted enumeration that
terminates after a certain point. Suppose, for example, that
the selection consists of a condition cond(A) that involves a
single attribute A. We can enumerate the full disjunction in
a sorted order according to A, where the order is defined so
that values X satisfying cond(X) precede all other values.
Enumeration terminates when the first tuple that does not
satisfy the condition is generated.

In general, it is not possible to compute the result of a
projection4 of a full disjunction in polynomial delay, or even
polynomial total time, unless P 6=NP [12]. However, it is pos-
sible to improve the naive method of first completely com-
puting a full disjunction, and then applying a projection,
by pushing the projection through the full disjunction, sim-
ilarly to pushing it through a natural join. In other words,
attributes that do not appear in the query and are not used
for joining relations can be projected out early. Moreover, if
all the projection and selection attributes belong to a single
biconnected component, it is sufficient to compute the full
disjunction of this component. In general, given a set of pro-
jection (and selection) attributes we only need to compute
the full disjunction w.r.t. components that contain at least
one relation that is on a simple path, in the scheme graph,
between two relations that contain projection or selection
attributes.

7. EXPERIMENTATION
4We consider only projection that discards duplications, i.e.,
when distinct is used. Dealing with projection that retains
duplications is beyond the scope of this discussion.

{K,L,M}

{A,B,C}

{B,C,I} {A,D,E}

{D,F}

{G,H}

{E,G}

{J,K,M}

{J,L}

{I,J,K}

(a) Gsc(R2)

{A,B,C}

{J,L}

{I,L}{J,K}

{G,H,I}

{I,J,K}

{E,F,G}

{B,F}{A,D,E}

{C,D,E}

(b) Gsc(R3)

Figure 11: Scheme graphs used in the experiments

We implemented our algorithms for computing full dis-
junctions in the open-source database system PostgreSQL,
Version 8.0.3. The experiments were carried out on a Pen-
tium 4 with a CPU of 1.6GHZ and 512MB of RAM, running
the Linux Mandrake 2.6.3-7mdk operating system. We dis-
cuss implementation details and our experimentation.

7.1 Implementation Details
We implemented both PDelayFD and BiComNLOJ, and

we added basic optimizations to this implementation. For
example, we strategically discarded some intermediate re-
sults when it was possible to prove that these results would
not yield new tuples. We also tried different strategies for
choosing relations while extending tuple sets in Extend-
ToMax. The most important optimization in the imple-
mentation of BiComNLOJ is that in the execution of Tu-
pleExtFD, the generated tuples are cached on the disk.
If TupleExtFD is called more than once with the same
argument t, it retrieves the answer from the cache.

The presented algorithms are tuple based, however, our
implementations are block-based versions of these algorithms.
Intuitively, this means that whenever possible, they loop
over blocks of tuples, instead of over individual tuples. This
speeds up of the computation, in several places. For exam-
ple, ExtendToMax potentially reads the entire contents
of the database. In its block-based version, several tuples
are extended at once, thereby reducing the number of reads
from the disk. Our implementation of PDelayFD is fully
block based. Our implementation of BiComNLOJ is only
partially block based at present, due to the need for rather
complex bookkeeping in a fully block-based version of this
algorithm.

In addition to PDelayFD and BiComNLOJ, we have
also implemented (within the PostgreSQL setting) a fully
block-based version of the algorithm IncrementalFD [2].
This algorithm computes full disjunctions in incremental
polynomial time and it is the most efficient algorithm in
the literature.

7.2 Experiments and Results
We conducted our experiments on synthetic, randomly

generated databases with predefined schemes. We used data-

0
10
20
30
40
50
60

0 5000 10000 15000
Tuple Number

D
el

ay
 (

m
se

c)

� � � � � � � � � 	
 � �
 � �

(a) Execution over Gsc(R1)

0
10
20
30
40
50
60

0 5000 10000
Tuple Number

D
el

ay
 (

m
se

c)

� � � � � � � � � � � � � � � � �

(b) Execution over Gsc(R2)

0
10
20
30
40
50
60

0 5000 10000 15000 20000 25000 30000
Tuple Number

D
el

ay
)

m
se

c)

 ! " # $ % & ' () * + , - . / *

(c) Execution over Gsc(R3)

0
40
80

120
160
200

0 5000 10000 15000
Tuple Number

D
el

ay
 (

m
se

c)

0 1 2 3 4 5 6 7 8 9 : ; < = 4 = : > ? @ A B

(d) Execution over Gsc(R1)

Figure 12: Analysis of specific executions

bases with three different scheme graphs. The first graph
is Gsc(R1) shown in Figure 1(b) (the relation schemes are
given in Figure 1(a)). The other two graphs are Gsc(R2)
and Gsc(R3) shown in Figures 11(a) and 11(b), respectively.
Observe that these three scheme graphs contain many rela-
tions and are rather complex. The values in each tuple were
chosen randomly and uniformly. For each specific database,
all tables have the same size and all values were chosen from
the same sample space. However, the size of the sample
space varies in different databases, as explained later.

In the first experiment, the goal was to explore how the
delay varies during the execution. We chose a specific in-
stantiation for each of the three scheme graphs. We divided
the output into chunks of 100 tuples each and recorded the
average delay of the tuples in each chunk. Each of the ta-
bles contains 1000 tuples and the sample space is of size

0
10
20
30
40
50
60
70
80
90

1000 2000 3000 4000 5000
Number of Tuples in each Relation

A
ve

ra
ge

 D
el

ay
 (

m
se

c)

C D E F G H I D J K L M N O P Q R S J

C D E F G H I D T K L M N O P Q R S T

C D E F G H I D U K L M N O P Q R S U

(a) BiComNLOJ vs. PDelayFD

0
20
40
60
80

100
120
140

1000 2000 3000 4000 5000

Number of Tuples in each Relation

A
ve

ra
ge

 D
el

ay
 (

m
se

c)

V W X Y Z [Z W \] ^ _ ` a b c d e [f g h i a

V W X Y Z [Z W \] ^ _ ` j b c d e [f g h i j

V W X Y Z [Z W \] ^ _ ` k b c d e [f g h i k

(b) BiComNLOJ vs. IncrementalFD

Figure 13: Delay vs. input size

1000. Figures 12(a) through 12(c) show the results of this
experiment for the three scheme graphs and for the algo-
rithms BiComNLOJ and PDelayFD. Figure 12(d) shows
the results of this experiment for the scheme graph Gsc(R1)
and for the algorithms BiComNLOJ and IncrementalFD.
Note that the horizontal axis gives the number of the tuple
in the output stream and the vertical axis gives the delay
measured for this tuple. Also note that the graphs that
compare BiComNLOJ and IncrementalFD have a larger
scale than those comparing BiComNLOJ and PDelayFD,
due to the slower runtime of IncrementalFD.

For the algorithms BiComNLOJ and PDelayFD, the de-
lay is usually longest at the beginning of the execution, since
at this point the data structures are being loaded with tuples
from the database. The delay of BiComNLOJ diminishes
towards the end, due to caching. In contrast, the delay of
IncrementalFD is small at the beginning of the execution
and becomes substantially long towards the end. Note that
there are variations in the delay of all three algorithms due
to a mismatch between the number of tuples in an output
chunk (which was always 100) and the number of tuples in a
block (which varied). So, sometimes a single block included
more than 100 tuples of the full disjunction and sometimes
several blocks were needed to generate 100 tuples. PDe-
layFD particularly suffered from this phenomenon, since
its implementation is fully block based.

In the second experiment, the goal was to study how the
delay is affected by the size of the data. In the tables we
used, there is a constant ratio between the database size and

0
10
20
30
40
50
60
70

500 1000 2000 5000
The Size of the Sample Space

A
ve

ra
ge

 D
el

ay
 (

m
se

c)

� � � � � � � � � � 	
 � �
 � � � �

� � � � � � � � � � 	
 � �
 � � � �

� � � � � � � � � � 	
 � �
 � � � �

Figure 14: Delay vs. the size of the sample space

the size of the sample space. The results of this experiment,
depicted in Figure 13, show the superiority of BiComNLOJ
over both PDelayFD and IncrementalFD. (In fact, even
PDelayFD is superior to IncrementalFD.) The difference
in runtime becomes more significant as the size of the tables
grows, i.e., BiComNLOJ scales gracefully with respect to
the number of tuples in the input.

In the third experiment, the goal was to study how the
delay is affected by the density of values in the data. Only
BiComNLOJ and PDelayFD were tested in this experi-
ment. All the tables had constant size of 1000 tuples while
the size of the sample space varied. The results of this ex-
periment, depicted in Figure 14, show that BiComNLOJ is
significantly more efficient than PDelayFD, in particular
when the sample space is small and caching can be used
efficiently.

8. CONCLUSION
The algorithm BiComNLOJ for computing a full disjunc-

tion with polynomial delay was presented. This algorithm
builds on two other algorithms, which also run in polyno-
mial delay—NLOJ and PDelayFD. The NLOJ algorithm
is very efficient but can be applied only when the full dis-
junction is equivalent to a left-deep outerjoin (e.g., when the
scheme graph is a tree). PDelayFD can be applied to every
set of relations but is less efficient (i.e., has a longer delay)
than NLOJ. BiComNLOJ combines the two algorithms,
thereby providing efficiency while being able to compute
the full disjunction of every set of relations. We described
some optimizations that can be applied when integrating
full disjunctions into SQL query plans. Finally, our experi-
ments prove that indeed BiComNLOJ is more efficient than
PDelayFD, and both algorithms are more efficient than the
state of the art [2].

The algorithm of [13] uses sequences of outerjoins to com-
pute the full disjunction of a set of relations with a γ-acyclic
scheme graph. This algorithm has efficient total-time com-
putation, but does not run in polynomial delay. For the
special case that the scheme graph is acyclic, our algorithm
NLOJ computes a full disjunction in polynomial delay. As
future work, we will study whether NLOJ can be adapted
to deal with relations that have general γ-acyclic scheme
graphs.

As additional future work, we intend to further explore
how to enhance the efficiency of queries that involve full
disjunctions. For example, we intend to study how the spe-

cific choice of the left-deep sequence of outerjoins affects the
performance of the algorithm BiComNLOJ. Consequently,
we will seek techniques for optimizing the choice of such se-
quences, e.g., by taking indices into consideration. We will
also explore how existing techniques for outerjoin reorder-
ing [15, 8, 9, 14] can be used in our algorithms. Finally,
we intend to explore how histograms and other statistical
information can be exploited.

Acknowledgments
Sara Cohen was supported by the Israel Science Foundation
(Grant 1032/05). Yaron Kanza was supported by the Nat-
ural Science and Engineering Research Council of Canada.
Benny Kimelfeld and Yehoshua Sagiv were supported by the
Israel Science Foundation (Grants 96/01 and 893/05).

9. REFERENCES
[1] A. K. Chandra and P. M. Merlin. Optimal

implementation of conjunctive queries in relational
data bases. In STOC, 1977.

[2] S. Cohen and Y. Sagiv. An incremental algorithm for
computing ranked full disjunctions. In PODS, 2005.

[3] T. Corman, C. Leiserson, and R. Rivest. Introduction
to Algorithms. MIT Press, Cambridge, MA, 1990.

[4] C. J. Date. The outer join. In ICOD, 1983.

[5] C. J. Date. Relational Database: Selected Writings.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[6] R. Fagin. Degrees of acyclicity for hypergraphs and
relational database schemes. J. ACM, 30(3), 1983.

[7] C. Galindo-Legaria. Outerjoins as disjunctions. In
SIGMOD, 1994.

[8] C. A. Galindo-Legaria and A. Rosenthal. How to
extend a conventional optimizer to handle one- and
two-sided outerjoin. In ICDE, 1992.

[9] C. A. Galindo-Legaria and A. Rosenthal. Outerjoin
simplification and reordering for query optimization.
ACM Trans. Database Systems., 22(1), 1997.

[10] H. Garcia-Molina, J. D. Ullman, and J. Widom.
“Database Systems—The Complete Book”. Prentice
Hall, 2002.

[11] D. S. Johnson, M. Yannakakis, and C. H.
Papadimitriou. On generating all maximal
independent sets. Information Processing Letters, 27,
March 1988.

[12] Y. Kanza and Y. Sagiv. Computing full disjunctions.
In PODS, 2003.

[13] A. Rajaraman and J. D. Ullman. Integrating
information by outerjoins and full disjunctions. In
PODS, 1996.

[14] J. Rao, H. Pirahesh, and C. Zuzarte. Canonical
abstraction for outerjoin optimization. In SIGMOD,
2004.

[15] A. Rosenthal and C. A. Galindo-Legaria. Query
graphs, implementing trees, and freely-reorderable
outerjoins. In SIGMOD, 1990.

