Overview

ML experiences **distribution shifts** from train (source) and test (target)

Goal: learn representations Z of data X from which source predictors perform well on target

Previous work:

- \odot lack of theoretical characterization of optimal Z^*
- ③ no practical methods uniformly outperform ERM [2]

Our work:

- \odot prove minimal sufficient condition for optimal Z^*
- \bigcirc derive practical **SSL** objectives for learning Z^*
- ③ show why CLIP [3] is so robust
- **SOTA** results on DomainBed!

Characterizing Optimally Robust Representations

Optimal Z^* : all source (d_s) optimal predictors achieve target (d_t) Bayes risk **Goal:** minimize the *idealized domain generalization* (IDG) risk w.r.t. Z

 $\operatorname{R}_{\operatorname{IDG}}\left[Y \mid Z\right] := 1$

17-5	
$\mathbb{E}_{p_{D_{s},D_{t}}}$	sup
	$h {\in} \mathcal{H}_{Ds}^*$
random	

domains worst source risk. min.

Theorem (Optimal coniditions)

S requires access to labeled target domain

source

(ii) (ii)

target

Optimal Representations for Covariate Shift

Yangjun Ruan^{* 12} Yann Dubois^{* 2} Chris J. Maddison ¹²

¹University of Toronto ²Vector Institute *Equal contribution

No Free Lunch Without Target Information

Theorem (No free lunch)

Without accessing to target you cannot learn useful Z. You can construct many "bad" target domains where any Z will be worse than a constant C.

③ explain the failure of current practical methods ③ is getting access to targets realistic?

Learning Optimal Representations with SSL

Key idea: exploit large unlabeled data with self-supervised learning (SSL)

Proposition (Learning Z^* in practice)

One can learn optimal Z^* with **SSL** using:

- large-scale unlabeled data
- contrastive learning with **domain-agnostic** augmentations
- domain bottlenecks

Domain-agnostic augmentations

- Require: uncorrelated with domain
- Example: image-text aug. (e.g., CLIP [3])
- X Counterexample: standard image aug. (e.g., SimCLR [1])

(a) image-text augmentations

③ explain the incredible robustness of CLIP over other SSL models

Domain bottleneck: enforce **support invariance**

- \Box Contrastive adversarial domain (CAD) bottleneck I[Z; D] ③ Requires **no trainable** domain classifier
- \Box Entropy (Ent) bottleneck H[Z]
- ③ Requires no access to domain information

(b) standard augmentations

Exploiting Pretrained CLIP for Robust Representations

Motivation: CLIP was trained

Idea:

Algorithm

ERM DomainBed SOTA $\mathsf{DINO} + \mathsf{CAD}$ CLIP CLIP + CAD

SOTA result with **domain-agnostic** aug. and **bottlenecks**!

Towards Generic Robust Representations with SSL

Evaluate: natural distribution shift [5]

	IN	IN-V2	IN-S	YT-BB	IN-Vid	ObjNet	IN-A	IN-R	Avg.
Pretrained	75.2	64.2	41.0	58.4	71.6	42.8	27.5	62.9	52.6
Tuned w/o Ent	73.8	62.1	37.0	56.9	68.8	41.3	26.0	58.1	50.0
Tuned w/ Ent	74.2	62.7	38.9	58.1	70.1	42.1	26.2	60.8	51.3

References

- arXiv:2111.02114, 2021.
- *arXiv:2007.00644*, 2020.

with 400M image-text augmentations **X** without explicit domain bottlenecks

• Finetune CLIP with bottlenecks on available data • Evaluate with linear probe on DomainBed [2]

	VLCS	PACS	OfficeHome	DomainNet
	77.6 ± 0.3	86.7 ± 0.3	66.4 ± 0.5	41.3 ± 0.1
L	79.9 ± 0.2	87.2 ± 0.1	68.4 ± 0.2	41.8 ± 0.1
	69.6 ± 0.6	76.1 ± 0.1	56.9 ± 0.5	33.6 ± 0.1
	80.7 ± 0.4	93.7 ± 0.8	79.9 ± 0.1	52.8 ± 0.1
	$\textbf{81.4} \pm \textbf{0.8}$	$\textbf{94.7}\pm\textbf{0.4}$	$\textbf{80.2}\pm\textbf{0.2}$	54.1 ± 0.1

Idea: learn task- and domain-agnostic robust representations

• Task-agnostic: use large-scale data [4] with image-text contrastive loss • Domain-agnostic: finetune CLIP with Ent bottleneck

Consistently improved robustness with bottlenecks! ③ Gains could be larger if **end-to-end** trained with bottlenecks!

[1] T. Chen et al. A simple framework for contrastive learning of visual representations. In *ICML*, 2020. [2] I. Gulrajani and D. Lopez-Paz. In search of lost domain generalization. In ICLR, 2021.

[3] A. Radford et al. Learning transferable visual models from natural language supervision. In *ICML*, 2021.

[4] C. Schuhmann et al. Laion-400m: Open dataset of clip-filtered 400 million image-text pairs. *arXiv preprint*

[5] R. Taori et al. Measuring robustness to natural distribution shifts in image classification. *arXiv preprint*