Learning to Learn by Zeroth-Order Oracle

Yangjun Ruan¹, Yuanhao Xiong², Sashank Reddi³, Sanjiv Kumar³, Cho-Jui Hsieh^{2,3}

¹Zhejiang University, ²UCLA, ³Google Research

Learning to learn (L2L)

• Use neural networks to automatically learn optimization algorithms

 $\theta_{t+1} = \theta_t + g_t(\nabla f(\theta_t), \varphi)$

- f: the optimizee (optimization problems) specified by its parameters θ
- g: the learned optimizer specified by its parameters φ
- The optimizer *g* is usually modeled as recurrent neural networks (RNNs)

(b) Computational graph for training the optimizer

Figure: Andrychowicz et al., 2016

Learning to learn (L2L)

✓ Improve hand-designed algorithms with learned optimization rules

Learning to learn (L2L)

✓ Improve hand-designed algorithms with learned optimization rules

★ Gradient-based: cannot be applied when gradients are difficult or infeasible to obtain (i.e., zeroth-order optimization)

- Setting: explicit gradients are not available
- Widely used application: black-box adversarial attacks

- Setting: explicit gradients are not available
- Widely used application: black-box adversarial attacks
- Basic method: approximate gradients along Gaussian sampled query directions $\widehat{\nabla}f(\theta) = \frac{1}{q} \sum_{i=1}^{q} \frac{f(\theta + \mu u_i) - f(\theta)}{\mu} u_i$
 - $\{u_i\}$: query directions sampled from standard Gaussian distribution
 - *q*: number of query directions
 - μ : smoothing parameter

- Existing ZO algorithms: suffer from the high variance of ZO gradient estimator
 - Mainly results from random query directions
 - Hamper convergence: usually *d* (parameter size) times slower than its first-order counterpart

- Existing ZO algorithms: suffer from the high variance of ZO gradient estimator
 - Mainly results from random query directions
 - Hamper convergence: usually *d* (parameter size) times slower than its first-order counterpart
- Our work: apply the L2L framework to learn an efficient ZO optimizer

- Jointly learn the parameter update rule and the Gaussian sampling rule
 - UpdateRNN: learn how to propose parameter updates given approximated gradients $\theta_t = \theta_{t-1} + \text{UpdateRNN}\left(\hat{\nabla}f(\theta_t)\right)$
 - QueryRNN: learn to identify the important sampling subspace and adaptively modify the search distribution

 $\Sigma_{t} = \text{QueryRNN}([\widehat{\nabla}f(\theta_{t-1}), \Delta\theta_{t-1}])$

- Jointly learn the parameter update rule and the Gaussian sampling rule
 - UpdateRNN: learn how to propose parameter updates given approximated gradients $\theta_t = \theta_{t-1} + \text{UpdateRNN}\left(\hat{\nabla}f(\theta_t)\right)$
 - QueryRNN: learn to identify the important sampling subspace and adaptively modify the search distribution

 $\Sigma_{t} = \text{QueryRNN}([\widehat{\nabla}f(\theta_{t-1}), \Delta\theta_{t-1}])$

- Jointly learn the parameter update rule and the Gaussian sampling rule
 - UpdateRNN: learn how to propose parameter updates given approximated gradients $\theta_t = \theta_{t-1} + \text{UpdateRNN}\left(\hat{\nabla}f(\theta_t)\right)$
 - QueryRNN: learn to identify the important sampling subspace and adaptively modify the search distribution

 $\Sigma_{t} = \text{QueryRNN}([\widehat{\nabla}f(\theta_{t-1}), \Delta\theta_{t-1}])$

Training the ZO optimizer

- Backpropagate through the Gaussian sampling module (non-differentiable)
 - ✓ Apply reparamerization trick to generate query directions $u \sim N(0, \Sigma_t)$

$$z \sim N(0, I)$$
$$u = \Sigma_t^{1/2} z$$

Training the ZO optimizer

- Backpropagate through the Gaussian sampling module (non-differentiable)
 - ✓ Apply reparamerization trick to generate query directions $u \sim N(0, \Sigma_t)$

$$z \sim N(0, I)$$
$$u = \Sigma_t^{1/2} z$$

- Backpropagate through the optimizee (zeroth-order)
 - ✓ Apply coordinatewise ZO gradient estimator (optional)

$$\widehat{\nabla}f(\theta) = \sum_{i=1}^{d} \frac{f(\theta + \mu e_i) - f(\theta - \mu e_i)}{2\mu} e_i$$

- $\{e_i\}$: standard basis vector with i^{th} coordinate being 1, and others being 0s
- *d*: optimizee dimension
- μ : smoothing parameter

Experiments

• Black-box adversarial attack

Experiments

• Black-box adversarial attack

• Promising Application: automatically learned efficient "attacker"

Analytical experiments

- Ablation study
 - ✓ Effectiveness of both modules

Analytical experiments

- Ablation study
 - ✓ Effectiveness of both modules

- Estimated gradient evaluation
 - ✓ QueryRNN leads to more accurate gradient estimators

Paper link: https://openreview.net/forum?id=ryxz8CVYDH

Thank you!