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Scaling Trend of Al Systems

Training compute (FLOPs) of milestone Machine Learning systems over time
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Scaling Trend of Al Systems

Training compute (FLOPs) of milestone Machine Learning systems over time
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Scaling Unlocks New Capabilities

GPT-2

Write coherent story

For today's homework assignment, please describe the reasons for the US Civil War.

By Donny Ferguson

It is easy to identify why the Civil War happened, because so
many people and so many books and so much television and films
tell us that it was the cause, that it has something to do with
race or economics or religion. There is much agreement that it
was essentially a war of slavery on behalf of capitalism, about a
century of slavery. But that's not what most people think of when
they think of the Civil War. Many people think of the war as
about states rights. You're not wrong about that, but it's kind
of misleading to say that the Civil War was a conflict between
states' rights and federalism. So let's try again. What's the
idea that has inspired so many people to go onto the battlefields
of Gettysburg and Antietam and Gettysberg and Petersburg and
Fredericksburg? The American idea of the republic--a notion of
limited government--is a great part of the history.

Aschenbrenner, 2024. “Situational Awareness”
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Scaling Unlocks New Capabilities

GPT-3

Write simple code

Describe a layout.

Just describe any layout you want, and it'll try to render below!

a button that looks like a watermelon

utton style={{backgroundColor:
. 20 Wi t

S011C jree
%', padding: 20, width: 100, height: 100))>Watermelon</button>

Aschenbrenner, 2024. “Situational Awareness”
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Scaling Unlocks New Capabilities

GPT-

Write complex code & proof

PI'()I]I])(: Can you generate a pyplot for the following data: = 1,3,5,6,8], yl 2,3,5,18,1],y2 3,5,6,8,1],y3

[5,1,2,3,4],y4 [9,7,2,3,1]. I want y1,y2 to be in the same plot, but ¥3 is in another plot next to that plot, y4 is in
below. I want the legend of y1 to be "bob”, 2 to be "alice”, y3 to be "bilbo”, y4 to be "allie”. I want the x-axis to be
labeled with "time"” and y axis to be labeled with "money”. 1 want to add a 10 %-40% random error bar to each curve,

through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not

use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make

it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the

fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the
Interpolate the missing fractions! I also want vertical line animation in other three

pie chart in **continuous time**
plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

T DT N ) .
GPT-4: [We give two snapshots from the animation resulting from the produced code

Aschenbrenner, 2024. “Situational Awareness”
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Scaling Unlocks New Capabilities

GPT- GPT- GPT-

Write coherent story Write simple code Write complex code & proof
Power Al assistants & agents

Pl‘()lllpt: Can you generate a pyplot for the following data: = (1,3,5,6, .\]. yl .’ 3,5,18 II. y2 13,5,6,8, l]. y3

[5,1,2,3,4],94 = [9,7,2,3,1]. I want y1,y2 to be in the same plot, but y3 is in another plot next to that plot, y4 is in
below. I want the legend of y1 to be "bob”, y2 to be "alice”, y3 to be "bilbo”, y4 to be "allie”. | want the x-axis to be
labeled with "time" and y axis to be labeled with "money”. I want to add a 10 %-40% random error bar to each curve,
I want smoothed curves to show the plot, and smoothed error bar. Do not

ST Can you write out an Adobe After Effects expression to make a shape layer wiggle when a
null object is within 50 pixels of the shape's anchor point.

through all times (including non-integers)
use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make

it look more real. T want to put a baseline as the mean of each line. I want to put a pie chart below indicating the

fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the

pie chart in **continuous time**. Interpolate the missing fractions! I also want vertical line animation in other three

plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4: [We give two snapshots from the animation resulting from the produced code]

Bob and Alce

Aschenbrenner, 2024. “Situational Awareness”
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Scaling Unlocks New Capabilities

GPT- GPT- GPT-

Write coherent story Write simple code Write complex code & proof
Power Al assistants & agents

Pl‘()lll[)t: Can you generate a pyplot for the following data: = = [1,3,5,6, 8], y1 [2,3,5,18,1],y2 = [3,5,6,8,1],y3

[5,1,2,3,4],94 = [9,7,2,3,1]. I want y1,y2 to be in the same plot, but y3 is in another plot next to that plot, y4 is in
below. I want the legend of y1 to be "bob”, y2 to be "alice”, y3 to be "bilbo”, y4 to be "allie”. | want the x-axis to be
labeled with "time" and y axis to be labeled with "money”. I want to add a 10 %-40% random error bar to each curve,

ST Can you write out an Adobe After Effects expression to make a shape layer wiggle when a
null object is within 50 pixels of the shape's anchor point.

through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not
use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make

it look more real. T want to put a baseline as the mean of each line. I want to put a pie chart below indicating the
fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the % Devin's Werkspace
**continuous time**. Interpolate the missing fractions! I also want vertical line animation in other three @ . Q -

pie chart in
plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4: 'we give two snapshots from the animation resulting from the produced code]

ke Beb and Aice L

using all the same tools that a human software engineer would use

Aschenbrenner, 2024. “Situational Awareness”
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Scaling Unlocks New Capabilities

GPT-N-Equivalent
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Aschenbrenner, 2024. “Situational Awareness”



Understanding LM Scaling is Critical

Do complex downstream (e.g., agentic) capabilities scale predictably?
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Understanding LM Scaling is Critical

Do complex downstream (e.g., agentic) capabilities scale predictably?

Non-smooth, emergent behaviour

Capability

X unpredictability
X safety concerns




Understanding LM Scaling is Critical

Do our proposed algorithmic interventions stand the test of future scale?

Solve rate (%)

CSQA StrategyQA Date Sports SayCan —~25 —#— Self Consistency
100 90 _ ____ 80 100 100 D ,0 Greedy Decode
—&— Chain of thought ©
60 70 40 60 . . 5 10
60 Prior supervised best O
40 60 20 40 - = = Human é() 5
I —
20 50 0 40 [ 20 |
8 62540 8 62540 8 62540 8 62540 8 62540 1 2 o 10 20 50 100200

Model scale (# parameters in billions) Model size (#param in billions)

Wei et al., 2022. “Chain-of-Thought Prompting Wang et al., 2023. “Self-Consistency Improves
Elicits Reasoning in Large Language Models” Chain of Thought Reasoning in Language Models”



Understanding LM Scaling is Critical

Do our proposed algorithmic interventions stand the test of future scale?
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Understanding LM Scaling is Critical

Do our proposed algorithmic interventions stand the test of future scale?
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Scaling Laws are the Tools

Scaling laws demonstrate a predictable power-law relationship between
LM’s performance (e.qg., pretraining loss) and compute measures

7 4.2 1 OpenAl codebase next word prediction
6 L =(D/5.41013)~0.095 5.6 1 — L =(N/8.8:1013)70.076 Bits per word
39 ] 48 | Obse.‘rv.ed
5‘ Prediction
N gpt-4
8 3.6 1 4.0
— 4]
- ]
@ 3.3 3.2
= 3
3.0
, 2.4
L = (Cmin/2.3 + 108)~0.050
102 10°7 10 10=* 10! 10! 108 10¢ 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding
Kaplan et al., 2020. “Scaling Laws for Neural Language Models” OpenAl, 2023. “GPT-4 Technical Report”
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Scaling Laws are the Tools

Compute scaling laws have been used in a broad range of applications

Capability prediction

Capability prediction on 23 coding problems

— Mean Log Pass Rate
5

1T

Resource allocation

—— Approach 1

Hyperparameter tuning

226, % 7B MHA 2T Token
% 67B GQA 2T Token

_K9IM

® Observed 100B Ty 24,
Prediction —— Approach 2 E 2
gpt-4 ” Approach 3 ° _-*9.2M
9 108 --- Kaplan et al (2020) @27
3 o A ® .-
5 ¥ Chinchilla (70B) S 220 OO%mm
— o)
© Y Gopher (280B) @ DO O
a 1.0B — 0 0o OO
> % GPT-3(175B) 218 B
Y Megatron-Turing NLG (530B) S ® 0000
[=% ©_ 00 00
100M O s
/
7/
0 : 10M .~ . 1076 1018 1020 10%4
7} L m 0.00 0.0 1017 101° 1021 1023 1025 ) . o
Compute FLOPs Non-Embedding Training FLOPs

Bi et al., 2024. “DeepSeek LLM: Scaling Open-
Source Language Models with Longtermism”

Hoffmann et al., 2022. “Training Compute-

OpenAl, 2023. “GPT-4 Technical Report Optimal Large Language Models”
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But compute scaling analyses remain uncommon
INn benchmarking or algorithmic studies...

Why?




Limitations of Compute Scaling Analyses
Substantial Cost

Fitting reliable scaling laws requires training a large family of models across scales

We investigate the optimal model size and number of tokens for training a transformer language model
under a given compute budget. We find that current large language models are significantly under-
trained, a consequence of the recent focus on scaling language models whilst keeping the amount of
training data constant. By training over 400 language models ranging from 70 million to over 16 billion
parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and

the number of training tokens should be scaled equally: for every doubling of model size the number

Hoffmann et al., 2022. “Training Compute-Optimal Large Language Models”
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Hoffmann et al., 2022. “Training Compute-Optimal Large Language Models”
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Limitations of Compute Scaling Analyses

Substantial Cost

What if we use existing, public models?

e ~
/—J TS «7 GShard Publicly Available
~
2021 A1 Jurassic.]
/ -4 = AlZ1 Jurassic-
GPT-3 .
Codex @ )-8 P 28N CPM-2
N ~
TO 0-1() — a FLAN a LaMDA
: nspur Yuan 1.0 7N .
Anthropic [ HyperCLOVANAVER \ 0 AlphaCode Ke) L
WebGPT ;! 1"\- ©) Chinchilla wss| Vieuna 0 InternLM I} Baichuan2
Ernie 3.0 Titan .ém.' InstructGPT @ 2022 - Y RWKV §"é PanGu-X A MPT
Gopher@ CodeGen O 1‘ » v UL2 @ Sparrow 7~ Bard {1} Baichuan
B -
g - PalLM ~ B
GLaM (J VMTNLG = OPT OQ \\ y dl Flan-T5 00 LLaMA 5 PalM2  =nn i)

A
CodeGeeX ““ GPT-NeoX-20B [

3 Flan-PaLM

» . ) CodeGen? E Skywork
- N / )’\( Luminous

StarCoder ... XVERSE

BLOOM GLM Tk-Instruct Ai2 710 oo (IS
10 AlexaTM a Cohere §2 / T [1-12 ~— ) Falcon X/' Grok-1
BLOOMZ WeLMG 2003 ~— ' __ _ ;|\y |
Galatica 09 | I oo —>
OPT-IML (09 ChatGPT @ GPT-4 00 LLaMA2

Zhao et al., 2023. “A Survey of Large Language Models”

17



Limitations of Compute Scaling Analyses

Restricted Coverage

Different model families (trained with heterogenous recipes) demonstrate
varying compute efficiencies

) Llama-2
0.9 Rgv =0.95 Llama
At Llama-3
Qwen1.5
Qwen
Mistral

O
oe)

Mixtral
Yi
Gemma
Falcon
Phi
Pythia
BLOOM

HellaSwag
o =
(@) ~

O
U

GPT-Neo/J
OPT

MPT

XGLM
CodelLlama

O
N

N
w

StarCoder
2 0 1 2 3 4 N/A StarCoder2
Log1o(FLOPs (1E21)) DeepSeek-Coder
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Limitations of Compute Scaling Analyses

Restricted Coverage

Compute scaling laws need to be established with a carefully controlled
training recipe (e.g., model arch., data dist.)

Coeff. a where Coeff. b where

Approach

PP Nopt (Mopt) oc C* Dopt o
OpenAl (OpenWebText2) 0.73 0.27
Chinchilla (MassiveText) 0.49 0.51
Ours (Early Data) 0.450 0.550
Ours (Current Data) 0.524 0.476
Ours (OpenWebText2) 0.578 0.422

Bi et al., 2024. “DeepSeek LLM Scaling Open-Source Language Models with Longtermism”
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Inspiration

There are a lot of standard, unified evaluation benchmarks that measure
various base capabilities of LMs

(&) Open LLM Leaderboard

Model Revision Average £ ARC (25-shot) HellaSwag (10-shot) E3 MMLU (5-shot) EJ T
llama-65h main 58.3 57.8 84.2 48.8 4
llama-30b main 56.9 57.1 82.6 45.7 4
stable-vicuna:-13b main 52.4 48.1 76.4 38.8 4
llama-13b main 51.8 50.8 78.9 37.7 3
alpaca-13b maln 51.7 51.9 77 .6 37.6 3
llama-7hb main 47 .6 46.6 75.6 34.2 3
EleutherAl/spt-neox-20b main 45.9 45.2 73.4 33.3 3
togethercomputer/RedPajama:INCITE-Base-7B-v0.1 main 45.7 44.4 71.3 34 3
togethercomputer/RedPajama-INCITE-Base-3B:v] main 42.2 40.2 64.7 30.6 3
Salesforce/codegen-16B-multi main 39.2 33.6 51.2 28.9 4
facebook/opt-1.3b main 37.7 29.6 54.6 27.7 3
facebook/opt-350m main 32.2 23.6 36.7 27.3 A
facebook/opt-125m main 31.2 23.1 31.5 27.4 4
gpt2 main 30.4 21.9 31.6 27.5 4

20



Observational Scaling Laws

Idea: use observable, base capablility measures as the surrogate, unified “scale”
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Observational Scaling Laws

Idea: use observable, base capablility measures as the surrogate, unified “scale”

v Low cost: no training required
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Observational Scaling Laws

Idea: use observable, base capablility measures as the surrogate, unified “scale”

v Low cost: no training required

v/ High resolution: leveraging public models

&) Open LLM Leaderboard

Model G9 (3
I : =
Low-rank PC1 Log-linear scaling
Q decomposition PC2 >
15 > Complex downstream
2 H H HF A 5 O="="" agug =
P”“Clpal Capablllty , capab“rhes
measures (PC) fitad o X

Standardized
benchmark leaderboard

Accuracy

M Extrapolated
>

wiPC1 + w2PC2

?

surrogate “scale”

21



Observational Scaling Laws

Idea: use observable, base capablility measures as the surrogate, unified “scale”

v Low cost: no training required
v/ High resolution: leveraging public models

v Broad coverage: covering different families

&) Open LLM Leaderboard

Model G9 (3
I : =
Low-rank PC1 Log-linear scaling
Q decomposition PC2 >
15 > Complex downstream
2 H H HF A 5 O="="" agug =
P”“Clpal Capablllty , capab“rhes
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Standardized
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>

wiPC1 + w2PC2

?

surrogate “scale”

21



Observational Scaling Laws

Observational scaling laws generalize compute scaling laws
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Observational scaling laws generalize compute scaling laws
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Observational Scaling Laws

Observational scaling laws generalize compute scaling laws
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Observational Scaling Laws
Observational scaling laws generalize compute scaling laws

Compute measures
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Extracting Principal Capability Measures



Extracting Principal Capability Measures

100+ Public, Heterogenous
Pretrained Models

- Standard: Llama, Gemma, ...
- Code: CodelLlama, StarCoder, ...
- Multilingual: BLOOM, XGLM, ...

- Synthetic: Phi
- MoE: Mixtral, DeepSeek-V2, ...
- Mamba-Hybrid: Jamba
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Extracting Principal Capability Measures

100+ Public, Heterogenous Diverse Metrics from
Pretrained Models Standardized Benchmarks

- Aggregated: MMLU

- Commonsense: ARC-C, HellaSwag,
Winogrande

- Math: GSM8K

- Code: HumanEval

- Truthfulness: Truthful QA

- Multilinguality: XWinograd

- Standard: Llama, Gemma, ...
- Code: CodelLlama, StarCoder, ...
- Multilingual: BLOOM, XGLM, ...

- Synthetic: Phi
- MoE: Mixtral, DeepSeek-V2, ...
- Mamba-Hybrid: Jamba
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Extracting Principal Capability Measures

PC measures are low-dimensional and interpretable (to some extent)

PCA Explained Variance _ 0.8
- . : . 0.08 0. .
.O l ‘
= 0.8 o0z
© N :
= G- 012 -0.30 030 0.19 0.19 040
Q O -0.2
= 0.6
= - -0.32 004 010 -000 027 035 009 -0.0
g o
- 0.4 --0.2
= o 014 034 014 031 [ee| 023 -0.09 04
— al
(©
- 0.2 -0.6
n - 014 026 006 021 001 -0.12 BEKFZM 0.09
ol -0.8
0.0 1 0 I G 1 g | 6 1 P | \l\ 6 1 \
7 (e
4 5 \“\\\\, P?\O Q2 Oq(é ¢ \>\O. g\% g(ﬁ 6(&/\\
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PC Measures as Surrogate Scale

PC measures linearly correlate with log-compute within each model family
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PC Measures as Surrogate Scale

PC measures provide a smooth and unified capability measure for models
from heterogeneous sources

Log1o(FLOPs (1E21))
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Observational Scaling Analyses

Observational scaling laws are applicable to many types of scaling analyses

v Complex model capabilities (e.g., agentic or “emergent” behaviours)
v Post-training techniques

X Pretraining algorithmic dev

Validation: measure how well fitted scaling laws extrapolate from smaller-
scale, weaker models to larger-scale, stronger models

Preregistration: test on newly released models after the paper release (05/2024)
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Predictability of “Emergent” Capabilities

There have been ongoing debates about whether “emergent” capabilities are
truly discontinuous or inherently smooth
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Predictability of “Emergent” Capabilities

There have been ongoing debates about whether “emergent” capabilities are
truly discontinuous or inherently smooth

“Emergence” could be an artifact of low-resolution data points?
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Wei et al., 2022. “Emergent Abilities of Large Language Models”
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Predictability of “Emergent” Capabilities

Emergent capabilities can be accurately predicted with obs. scaling laws
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Predictability of “Emergent” Capabilities

Emergent capabilities can be accurately predicted with obs. scaling laws
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Predictability of “Emergent” Capabilities

Emergent capabilities can be accurately predicted with obs. scaling laws
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Predictability of “Emergent” Capabilities

Compute scaling laws provide poor extrapolations
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Predictability of Agentic Capabilities

There has been lots of excitement about developing autonomous agent
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How do LMs’ agentic capabilities scale?
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Predictability of Agentic Capabilities

Agentic capabillities can be predicted with LMs’ simple benchmark metrics
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Predictability of Agentic Capabilities

Programming capabillities are essential
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Predicting the Impact of Post-Training Techniques

Effective post-training techniques should persist gains across scales
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Predicting the Impact of Post-Training Techniques

LMs’ performance with post-training methods are predictable
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Predicting the Impact of Post-Training Techniques

Different techniques demonstrate different scaling properties
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Takeaways

LM capabillities are highly correlated and low-dimensional

* Observational scaling laws offer a lower-cost, higher-resolution, broader-coverage
alternative for complex capability and post-training analyses

 Many downstream LM capabilities—including seemingly emergent ones—may be
smoothly predictable
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Future Directions

 Reasoning models

* Are obs. scaling laws still applicable?

 Can we predict the gains of RL training from various base LMs with obs. scaling?
« Complex downstream capability analyses

 More reliable capability forecasts with obs. scaling (e.g., Pimpale et al., 2025)?

o Simpler optimization surrogate from fitted obs. scaling predictions?
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