
Maintaining Semantic Mappings between
Database Schemas and Ontologies

Yuan An1 and Thodoros Topaloglou2

1 College of Information Science and Technology
Drexel University, USA
yan@ischool.drexel.edu

2 Department of Mechanical and Industrial Engineering
University of Toronto, Canada
thodoros@mie.utoronto.ca

Abstract. There is a growing need to define a semantic mapping from
a database schema to an ontology. Such a mapping is an integral part
of the data integration systems that use an ontology as a unified global
view. However, both ontologies and database schemas evolve over time
in order to accommodate updated information needs. Once the ontology
and the database schema associated with a semantic mapping evolved,
it is necessary and important to maintain the validity of the semantic
mapping to reflect the new semantics in the ontology and the schema. In
this paper, we propose a formulation of the mapping maintenance prob-
lem and outline a possible solution using illustrative examples. The main
points of this paper are: (1) to differentiate the semantic mapping mainte-
nance problem from the schema mapping adaptation problem which only
adapts mappings when schemas change; (2) to develop an approach for
specifying the validity of a semantic mapping in terms of two-way legal
instances translation between two models; (3) to explore the approach of
using simple correspondences to capture changes to ontologies/schemas;
and (4) to sketch a solution using examples.

1 Introduction

A semantic mapping from a database schema to an ontology defines a semantic
relationship between the schema and the ontology. For example, a many-to-
many relationship between a concept C1 and a concept C2 in an ontology may
be mapped to relational tables storing attributes of C1 and C2 and a linking
table that maintains the association of the identifiers3 of C1 and C2. Such a
semantic mapping can be expressed in a declarative language that encodes the
formal semantics of the schemas. In recent years, we are witnessing a growing
demand for defining semantic mappings from database schemas to ontologies.
For example, semantic mappings are integral part of ontology-based information
integration systems [8, 13], and data integration efforts in the context of the
3 We assume that a subset of attributes of a concept in an ontology acts as identifier

of the concept

Semantic Web. Furthermore, a recent work [1] suggests that the semantics of
database schemas expressed in terms of semantic mappings from schemas to
conceptual models/ontologies provide opportunities to improve the capabilities
of traditional schema mapping tools, even when different database schemas are
associated with different conceptual models or ontologies.

However, both ontologies and schemas change over time in order to accom-
modate new information needs. Such change may cause an existing semantic
mapping invalid. Therefore, once a semantic mapping from a schema to an ontol-
ogy has been created, it is important and necessary to automatically, at least to
some extent, maintain the validity of the semantic relationship when the schema
and ontology evolve. We call this process maintaining semantic mappings under
evolution or mapping maintenance for short. A typical solution to the mapping
maintenance problem is to regenerate the semantic mapping between the evolved
ontology and schema. The problem of the mapping regeneration solution is that
the solution can be costly in terms of human effort and expertise. The reason is
that semantic mapping creation is a demanding task which requires huge amount
of human effort, because both the schema and the ontology that are related by a
semantic mapping are complex artifacts which may contain hundreds and thou-
sands modeling constructs. There are existing methods and tools, e.g., [3, 2], for
creating semantic mappings from database schemas to ontologies. But almost
all the current tools are semi-automatic and interactive, requiring humans in-
volved in the process. A better solution to the mapping maintenance problem is
to incrementally update the existing semantic mapping to reflect changes in the
ontology or schema. In this paper, we report on our preliminary study on the
problem of incrementally maintaining a special type of semantic mapping, which,
in a local-as-view fashion, relates a single atom (e.g., a table) in a schema with
a conjunctive formula encoding a substructure in an ontology. The formalism is
presented in Section 3.

The aims of the maintenance are two-fold: first, to preserve the semantic
relationship between the schema and the ontology when the schema and ontology
are modified; second, to reuse the existing semantic mapping as much as possible.
A similar problem has been studied for adapting schema mappings under schema
evolution. Two possible approaches are proposed in the literature: a schema
change approach (SCA) [15] and a mapping composition approach (MCA) [16].
Both solutions focus on reusing the semantics encoded in previous mappings for
merely adapting the mappings. Schemas are not updated accordingly. In our
situation, adapting the ontology/schema associated with a semantic mapping
along with the mapping will be essential for achieving desired goals. Consider
a very simple case. Suppose the semantics of a relational database schema is
expressed in terms of an ontology. If the database engineer wants to modify the
schema by adding a new column to a table representing a concept in the ontology,
it may be desirable to add a new attribute to the concept in the ontology in
order to maintain the semantic relationship that covers the new element of the
schema. Maximizing the coverage over schema will be one of the desired goals
for maintaining a semantic mapping.

Although mapping maintenance is important and necessary for many ap-
plications, solutions to the problem are rare. This is due to many challenges
involved, including: how to define validity/consistency of mapping and detect
inconsistency of a mapping; what is a right mapping language; how to capture
changes to ontologies and database schemas; how to devise a plan for updating
mappings according to the intent and expectation of the user; and what are the
principles for a systematic maintenance solution.

In this paper, we formulate the maintenance problem. We propose a speci-
fication for the validity of a semantic mapping. Subsequently, we describe the
desired goals for maintaining semantic mappings between database schemas and
ontologies, and we outline our solution for addressing the problem using a com-
prehensive set of examples.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 introduces our formalism for a semantic mapping from a schema to
an ontology. Section 4 characterizes schema and ontology evolution. Section 5
outlines a solution to the problem of semantic mapping maintenance. Finally,
Section 6 concludes this paper.

2 Related Work

The directly related work is the study on schema mapping adaptation [15, 16].
The goal of schema mapping adaptation is to automatically update a schema
mapping by reusing the semantics of the original mapping when the associ-
ated schemas change. Yu & Popa [16] explore the schema mapping composition
approach. Schema evolutions are captured by formal and accurate schema map-
pings, and schema adaptation is achieved by composing the evolution mapping
with the original mapping. On the other hand, the schema change approach in
[15] proposed by Velegrakis et al. incrementally changes mappings each time a
primitive change occurs in the source or target schemas. Both solutions focus
on reusing the semantics encoded in existing mappings for merely adapting the
mappings without considering the synchronization between schemas. This is due
to the nature of their problems where schema mappings are primarily used for
data exchange [10], i.e., translating a data instance under a source schema to
a data instance under a target schema. If a schema mapping connecting two
schemas which are semantically inconsistent, then the data exchange process
simply does not always produce a target instance. Our approach is different
from these solutions in that we aim to maintain the semantic validity of seman-
tic mappings through incremental updates on the mappings as well as associated
ontologies/schemas.

Other related work includes schema evolution in object-oriented databases
(OODB). The problem of schema evolution in OODB is to maintain the consis-
tency of an OODB when its schema is modified. The challenges are to update the
database efficiently and minimize information loss. A variety of solutions, e.g., [6,
5, 9, 12], have been proposed in the literature. Our problem is different from the
schema evolution problem in OODB in that we aim at the semantic consistency

between a schema and an ontology. However, we can draw some insights from
the extensive study of the schema evolution problem in OODB. In AutoMed [7,
11], schema evolution and integration are combined in one unified framework.
Source schemas are integrated into a global schema by applying a sequence of
primitive transformations to them. The same set of primitive transformations
can be used to specify the evolution of a source schema into a new schema. In
our approach, we do not ask users to specify a sequence of transformations.

Another mapping maintenance problem studied in [14] mainly focus on de-
tecting inconsistency of simple correspondences between schema elements when
schemas evolve. This problem is complementary to the problem we consider here.

3 Semantic Mappings between Ontologies and Schemas

3.1 Relational Schemas and Ontologies

Here we focus on relational schemas described in the relational model. The basic
data representation construct of the relational model is relation, which consists
of a set of tuples. The schema of a relation or a table specifies the name of the
relation, the name of each column (or attribute or field), and the type of each
column. Furthermore, we can make the description of the collection of data more
precise by specifying integrity constraints, which are conditions that the tuples
in a table must satisfy. Here, we consider key and foreign key (abbreviated as
f.k. henceforth) constraints. A key in a table is a subset of the columns of the
table that uniquely identifies a tuple. A f.k. in a table T is a set of columns F
that references the key of another table T ′ and imposes a constraint that the
projection of T on F is a subset of the projection of T ′ on the key of T ′. A
relational schema thus consists of a set of relational tables and a set of key and
f.k. constraints. Formally, we use the notation T (k1, k2, ..., kn, y1, y2, ..., ym) to
represent a relational table T with key K = (k1, k2, ..., kn).

An ontology describes a subject matter in terms of concepts, relationships,
and attributes. In this study, we do not restrict ourselves to any particular lan-
guage for describing ontologies. Instead, we use a generic conceptual modeling
language (CML) which has the following features. The language allows the repre-
sentation of classes/concepts/entities (unary predicates over individuals), object
properties/relationships (binary predicates relating individuals), and datatype
properties/attributes (binary predicates relating individuals with values such as
integers and strings); attributes are single valued in this paper. Concepts are
organized in the familiar ISA hierarchy. Relationships and their inverses (which
are always present) are subject to constraints such as specification of domain and
range, plus cardinality constraints of the form k..l; if the lower bound, k = 1,
the relationship is called , total, if the upper bound, l = 1, the relationship is
called functional. In addition, a subset of attributes of a concept is specified
as the identifier of the concept. As in the Entity-Relationship model, a strong
entity has a global identifier, while a weak entity is identified by an identifying
relationship plus a local identifier. An ontology thus contains a set of concepts,

relationships, and attributes as well as a set of identification and cardinality
constraints.

We can represent a given ontology using a labeled directed graph, called an
ontology graph. We construct the ontology graph from an ontology by considering
concepts as nodes and relationships as edges. A many-to-many relationship p
between concepts C and D will be written in text as C ---p--- D . It will be
important for our approach to distinguish functional edges – ones with upper
bound cardinality of 1, and their composition: functional paths. If the relationship
p is functional from C to D, we write C ---p->-- D .

3.2 Semantic Mappings between Ontologies and Schemas

In this study, we use the semantic mapping notion that is proposed in [4] which
relates tables in a schema with formulas over an ontology. The formula over an
ontology is in a subset of conjunctive formulas and encodes a subtree in the ontol-
ogy graph. In particular, we assume that the semantics of a table is represented
by a subtree (subgraphs can be transformed into subtrees by duplicating nodes
in cycles). We call such a subtree a semantic tree (or s-tree), where columns of
the table associate uniquely with attribute of the concepts in the s-tree. This as-
sumption also corresponds to the standard database design practice where each
table is derived from a structure, usually, a subtree, in a conceptual model. After
encoding s-trees in conjunctive formulas by using unary predicates for concepts,
binary predicates for attributes, and binary predicates for binary relationships
(see [4]), we can represent a semantic mapping between a relational schema and
an ontology using a set of formula of the form T (X) ↔ Φ(X,Y), where T is a ta-
ble with columns X and Φ is a conjunctive formula over predicates representing
an s-tree. X and Y are quantified variables as specified later.
Example 1 Gene expression databases maintain information on genes, bio-
logical samples and measurements on genes over samples. Biological sample is a
central concept being modeled in a gene expression database. To record informa-
tion about a sample which can be a tissue, cell, or RNA material that originates
from a donor of a given species, one needs to create a sub-schema that we will
refer to as the sample database (SDB). Suppose that a SDB contains a table

sample(sample ID, species, organ, pathology,..., donor ID),
where the underlined column sample ID is the key of the table and donor ID is a
foreign key to a table called donor.

The semantics of the sample table can be expressed in terms of an s-tree in
an ontology as shown in Figure 1 which is described in the UML notation, where
identifier of a concept is indicated by the keyword key. The s-tree contains two
concepts, SAMPLE and PERSON, and a relationship, originates, between the two
concepts.

Graphically, we use dashed double-arrows to indicate the correspondences
between columns of the relational table and attributes of concepts in the ontol-
ogy. The correspondences plus the s-tree gives rise to a semantics of the table.
Furthermore, the semantics of the table is expressed in the following formula

SAMPLE

SID: key
species
organ
pathology
diagnosis

PERSON

PID: key
type
age
gender
autopsy

originates1..* 1..1

sample(sample_ID, species, organ, pathology,…, donor_ID)

Fig. 1. The sample table and Its Semantics

sample(sample ID, species,..., donor ID) ↔
SAMPLE(x1), SID(x1, sample ID), species(x1, species),
..., PERSON(x2), originates(x1, x2), PID(x2, donor ID). �

Valid Semantic Mappings Given a semantic mapping formula T (X)↔ Φ(X,Y)
which relates a table T (X) in a schema with a conjunctive formula Φ(X,Y) en-
coding an s-tree G in an ontology. We say that T (X) ↔ Φ(X,Y) is valid if
the table and the s-tree G are “semantically compatible”. More specifically, we
define the validity by using two logical formulas ∀X(T (X) → ∃Y.Φ(X,Y)) and
∀X,Y (Φ(X,Y) → T (X)), plus the key and f.k. constraints of the schema and
the identification and cardinality constraints of the ontology.

The formula ∀X(T (X) → ∃Y.Φ(X,Y)) can be considered as the formal spec-
ification for translating instances from the table to the s-tree, and the formula
∀X,Y (Φ(X,Y) → T (X)) can be considered as the formal specification for trans-
lating instances from the s-tree to the table. Let ΣT be the set of key and f.k.
constraints of T . Let ΣS be the set of identification and cardinality constraints
of S. An instance I of T is a legal instance if I satisfies all constraints in ΣT . An
instance J of S is a legal instance if J satisfies all constraints in ΣS . For each
legal instance I of T , we can generate an instance J ′ of S through ∀X(T (X) →
∃Y.Φ(X,Y)) by instantiating Y . For each legal instance J of S, we can generate
an instance I ′ of T through ∀X,Y (Φ(X,Y) → T (X)). If both J ′ and I ′ are legal
instances of S and T , respectively, then we say that T and S are “semantically
compatible.”

We now define a valid semantic mapping using semantically compatible in-
stances. Specifically, a formula T (X) ↔ Φ(X,Y) relating a table T (X) in a
schema with a conjunctive formula Φ(X,Y) encoding an s-tree G in an ontol-
ogy is a valid semantic mapping formula, if and only if for each legal instance
of T , we can generate a legal instance of G through ∀X(T (X) → ∃Y.Φ(X,Y)),
and for each legal instance of G, we can generate a legal instance of T through
∀X.Y (Φ(X,Y) → T (X)).

Having the definition about a valid semantic mapping formula, we attempt
to (semi-)automatically maintain the validity of each formula when the schema
and the ontology related by the formula evolve. In the next section, we begin
with a characterization of possible changes in schemas and ontologies.

4 Evolution of Schemas and Ontologies

Changes to schemas and ontologies can be characterized by mappings [16] or by
sequences of evolution primitives [15, 5]. Consider a mapping M between two
schema S1 and S2. If one of the schemas, e.g., S1, evolves to a new schema S ′

1,
the mapping composition approach (MCA) for schema mapping adaptation will
compose the mapping M with an evolution mapping M′ between S ′

1 and S1 to
derive a new mapping between S ′

1 and S2, while the schema change approach
(SCA) will look at a sequence of primitive changes for adapting M.

Both MCA and SCA approaches are inadequate in dealing with the problem
of maintaining a semantic mapping M between a schema S and an ontology O.
First of all, neither MCA nor SCA approach attempts to maintain the validity
of the semantic mapping. For example, if the key information of a table in S
changes, the mapping M may not change, but the ontology O may need to be
modified in order to keepM as a valid semantic mapping. However, current MCA
and SCA approaches only consider mapping adaptation. Second, the MCA does
not capture the changes of adding elements to schemas. If an element is added, it
will leave the existing mapping unchanged. Third, it is not guaranteed that the
current SCA approach would maintain the semantics of the existing mapping
by using a sequence of primitive changes, as the set of primitive changes for
schema evolution may not cover some changes encountered in ontology evolution.
For example, one of primitive changes that may happen in ontology evolution
but are not captured by the set of primitive changes for schema evolution is
adding/deleting an ISA relationship between two concepts.

In this study, we use a set of correspondences to link elements of the previous
schema/ontology to elements of the new schema/ontology when a schema/ontology
changes. We then analyze the existing semantic mapping and the semantics in the
new schema/ontology. Through the set of correspondences, we will then (semi-
)automatically adapt both the semantic mapping and the schema/ontology to
maintain the validity of the semantic mapping.
Example 2 Figure 2 depicts on the left an old ontology O1 consisting of a single
concept BIOSAMPLE. On the right is the new ontology O′

1 which was evolved
from O1 by adding a new concept TISSUE. The dashed double-arrows from
attributes of the BIOSAMPLE concept in O1 to attributes of the BIOSAMPLE
and TISSUE concepts in O′

1 capture the relationship between the old ontology
and the new ontology. �

Changes to schemas and ontologies can be classified along two orthogo-
nal axes. First, on the action axis, changes can be classified into (1) changes
for adding/deleting elements; (2) changes for merging/splitting elements; (3)
changes for moving/copying elements; (4) changes for renaming elements; and
(5) changes for modifying constraints. Second, on the effect axis, changes can
be classified into (i) changes that cause mapping modification; (ii) changes that
cause the related schema (or ontology) modification; and (iii) changes that cause
both mapping and the related schema (or ontology) modification. The classifi-
cation along the effect axis is mainly concerned with maintaining the validity of
a semantic mapping as specified in Section 3. In the next section, we discuss our

BIOSAMPLE

biosample_ID: key
species

organ
….

TISSUE

biosample_ID: key
donor_disease
….

ISA

BIOSAMPLE

biosample_ID: key
species
organ
donor_disease
….

O1

O’
1

Fig. 2. The Correspondences between Old and New Ontologies

solution to the maintenance problem by associating changes classified along the
action axis with changes classified along the effect axis.

5 Maintaining the Semantic Mappings

We outline an algorithm for maintaining semantic mappings between relational
schemas and ontologies. The input to the algorithm consists of a relational
schema S, an ontology O, an existing valid semantic mapping M between S
and O, a new schema S ′ (or ontology O′) evolved from S (or O), and a set of
element correspondences M′ between S and S ′ (or between O and O′). The
output of the algorithm is an ontology O′′ (or a schema S ′′) and the semantic
mapping M′′ between S ′ and O′′ (or between O′ and S ′′). The ontology O′′ may
be just the original ontology O, if the schema S evolved and only the semantic
mapping gets adapted without any changes in the original ontology. Similarly,
the schema S ′′ may be just the original schema S, if what evolved was the on-
tology O and there are no needs to change the original schema in order to adapt
the semantic mapping.

Figure 3 graphically describes the semantic mapping maintenance settings.
Figure 3 (a) shows the situation where the schema S evolved to a new schema
S ′. M is the existing semantic mapping; M′ is the set of correspondences from
elements of S ′ to elements of S. The aim of the mapping maintenance is to adapt
M to a new semantic mapping M′′ between S ′ and O (or O′′ if the original
ontology needs to be modified.) Likewise, Figure 3 (b) show the situation when
the ontology O evolved to O′, M needs to be adapted to M′′ between S (or S ′′)
and O′.

The maintenance algorithm is based on the knowledge about the existing
semantic mapping and the analysis of the semantics in the changes to the
schema/ontology. We first explore the knowledge encoded in a semantic mapping
as studied in the previous work for discovering semantic mappings from schemas

(a)

(b)

S’ S O/O’’

S/S’’ O O’

M

M

M’

M’

M’’

M’’

Fig. 3. Maintenance of Semantic Mapping

to ontologies [4]. Then we illustrate the algorithm by analyzing the semantics in
changes using means of examples.

A semantic mapping formula T (X) ↔ Φ(X,Y) associates a table T (X)
with an s-tree in an ontology. There is additional knowledge about the asso-
ciation/relationship [4]. Specifically, an s-tree can be decomposed into several
skeleton trees: a skeleton tree corresponding to the key of the table, skeleton
trees corresponding to f.k.s of the table, and skeleton trees corresponding to the
rest of the columns of the table. Each skeleton tree has an anchor concept which
is the root of the skeleton tree. To satisfy the semantics of the key in a table,
the s-tree is connected by functional paths from the anchor of the key skeleton
tree to the anchors of f.k. skeleton trees and other skeleton trees.
Example 3 Figure 4 shows a table sample(sid,tid,donor) storing the information
about a sample, where sid is the sample identifier, tid is the identifier of the test
that screens the sample, and donor is the identifier of the person donating the
sample. The concept SAMPLE is modeled as a weak entity owned by the TEST
concept. Therefore, the key of the sample table is the combination of the key of

tid: key sid: key

SAMPLETEST

pid: key

PERSON

screenedIn

1 1

originates

sample(sid,tid,donor)

Fig. 4. Skeleton Trees in a Semantic Mapping

a table for the TEST concept and the local identifier sid. In addition, the donor
column is a f.k. referencing the key of a table for the PERSON concept.

The semantics of the sample table is represented in terms of the s-tree above it
in Figure 4. This s-tree consists of the skeleton tree SAMPLE ---screenedIn->--

TEST for the key of the sample table and the skeleton tree PERSON for the f.k.
of the sample table. The anchor of the key skeleton tree is the concept SAMPLE,
while the anchor of the f.k. skeleton tree is the concept PERSON. The s-tree is
connected by a functional edge originates from the anchor SAMPLE to the anchor
PERSON. �

Each s-tree in a semantic mapping that consists of a key skeleton tree cor-
responding to the key of the table, skeleton trees corresponding to f.k.s of the
table, skeleton trees corresponding to other columns of the table, and functional
paths from the anchor of the key skeleton tree to anchors of other skeleton trees.
To maintain a semantic mapping when the schema/ontology changes, we aim
at maintaining the s-tree associated with the table. Our goals for maintaining
semantic mappings are as follows.
Goal 1 For a valid semantic mapping M between a schema S and an ontology
O, if M has been adapted to M′′ after some changes to the schema/ontology,
then each mapping formula m ∈M′′ must be a valid semantic mapping formula
as specified in Section 3.
Goal 2 For a valid semantic mapping M between a schema S and an ontology
O, if M has been adapted to M′′ after some changes to the schema/ontology,
then for each element e ∈ S that was covered by M (i.e., e was referred to by
some mapping formulas in M), e is covered by M′′ if e was not deleted from S,
and for each new element e′ added to S, e′ is also covered by M′′.

The first goal specifies the fundamental requirement for semantic mapping
maintenance, that is, to maintain the validity of a semantic mapping accord-
ing to the definition. The second goal requires that the semantic mapping after
adapted should cover as much the remaining schema as covered by the exist-
ing semantic mapping and cover any newly added elements. The second goal
comes from our intention of using semantic mappings for expressing seman-
tics for database schemas. That is, for a database schema, we do not want to
lose semantic information expressed in terms of the semantic mapping from the
schema to an ontology after the semantic mapping is adapted due to changes to
the schema/ontology.

The following examples outline the mapping maintenance algorithm in an
intuitive way. The complete algorithm will be available in a full paper. At the
present, the maintenance algorithm focuses on a pair of a schema and an ontology
that are related by a semantic mapping.
Example 4 The following semantic mapping formula relates a relational table
sample(sid,donor) with an s-tree in an ontology as shown in Figure 5 (a):

sample(sid, donor) ↔
SAMPLE(x1), sid(x1, sid), PERSON(x2),
originates(x1, x2), pid(x2, donor).

First, we consider changes that add new column(s) to the relational table.
(1) Add a column that is neither part of the key nor a f.k.. For example, a new
column species was added to the sample table. In this case, the algorithm will
suggest to add a new attribute to the anchor of the skeleton tree corresponding

sid: key

SAMPLE

pid: key

PERSON
1*

originates

sample(sid,donor)

tid: key sid: key

SAMPLETEST

pid: key

PERSON

screenedIn

1 1

originates

sample(sid,test,donor)

sid: key
species

SAMPLE

pid: key

PERSON
1*

originates

sample(sid,species,donor)

sid: key

SAMPLE

pid: key

PERSON
1*

originates

sample(sid,disease, donor)

dsid: key

DISEASE_STAGE
1

disease
*

(a)

(d)

(c)

(b)

sample(sid,donor)

sample(sid,donor)

sample(s id,donor)

Fig. 5. Add Element to Schema

to the key as shown in Figure 5 (b) and update the semantic mapping formula
to:

sample(sid, species, donor) ↔
SAMPLE(x1), sid(x1, sid), PERSON(x2),
species(x1, species), originates(x1, x2), pid(x2, donor).

(2) Add a column that is a f.k.. For example, a new column disease was added
to the table sample where disease is a f.k. referencing to the key of a table T ′ for
the concept DISEASE STAGE. In this case, the algorithm finds a functional path
from the anchor of the key skeleton tree for the key of the table sample to the
anchor of the skeleton tree for the key of table T ′ as shown in Figure 5 (c), and
updates the semantic mapping as the following candidate formula:

sample(sid, disease, donor) ↔
SAMPLE(x1), sid(x1, sid), PERSON(x2),
DISEASE STAGE(x3), disease(x1, x3), dsid(x3, disease),
originates(x1, x2), pid(x2, donor).

Note that there may be multiple functional paths connecting the anchor SAMPLE
to the anchor DISEASE STAGE, so the user will examine the candidate formulas

to choose the expected one.
(3) Add a column that becomes part of the key of the table. For example, a new
column test was added to the table sample. If test is not a f.k., then the algorithm
suggests to add an attribute as part of the identifier of the anchor of the skeleton
tree for the key of the table. If test is a f.k., then the algorithms recomputes the
skeleton tree for the key of the table as shown in Figure 5 (d), and suggests to
update the semantic mapping as the following candidate formula:

sample(sid, test, donor) ↔
SAMPLE(x1), sid(x1, sid), PERSON(x2),
TEST(x3), screenedIn(x1, x3), tid(x3, test),
originates(x1, x2), pid(x2, donor).

As in case (2), the user needs to examine all candidate formulas.

Let us now consider changes that add new element(s) to the ontology. The
following changes do not affect the semantic mapping: adding a new attribute
which does not become part of the identifier of concepts in the s-tree, adding a
new concept, and adding a new ordinary relationship. If an attribute is added to
a concept in the s-tree such that the concept is an anchor of a skeleton tree, then
the algorithm suggests to update the table by adding a column as part of the
key or to update a f.k. that corresponds to the new identifier of the concept. Of
course, the update of the f.k. must be carried out in a cascade fashion starting
with the key referenced by the f.k.. If a new identifying relationship is added for
changing the anchor corresponding to the key of the table from a strong entity
to a weak entity, then the algorithm suggests to update the key of the table by
combining the identifier of the owner entity and the local identifier of the weak
entity. The semantic mapping formula is updated accordingly. �

For a semantic mapping, changes that delete elements from the schema can
be classified into: deleting a table, deleting an attribute that is not part of the
key nor a f.k. of a table, deleting a f.k. of a table, and deleting part of the
key of a table. The first three deletions result in updating a semantic mapping
formula that references the deleted elements without updating the ontology. The
last deletion would require updating the identifier of the associated concepts
in the ontology. Changes that delete elements from the ontology would require
updating the associated schema in order to maintain the validity of the semantic
mapping. In general, if some changes in the ontology (or schema) cause updates
in the associated schema (or ontology) in order to maintain the validity of the
semantic mapping, the updates will not be carried out automatically; instead,
the system will prompt the suggested updates and ask the user what next action
should be: executing the update or prohibiting the changes in the ontology (or
schema).

The next kinds of changes are merging/splitting elements and changing con-
straints in schema/ontology. For the sake of space, we omit discussion about
merging/splitting, and we use the following example to illustrate how to main-
tain a semantic mapping when some constraints are changed in the associated
schema and ontology.

Example 5 Suppose the following existing semantic mapping formula relate
a relational table treat(tid,sgid) with an s-tree TREATMENT ---appliesTo---

SAMPLE GROUP in an ontology:
treat(tid, sgid) ↔

TREATMENT(x1), tid(x1, tid), SAMPLE GROUP(x2),
appliesTo(x1, x2), sgid(x3, sgid).

where the key of the table is the combination of both columns tid and sgid which
are identifiers of concepts TREATMENT and SAMPLE GROUP, respectively, and
the relationship
appliesTo is many-to-many.

Later, the data modeler obtained a better understanding of the application
by realizing that each treatment only applies to one sample group. Consequently,
s/he changed the key of the treat table from the combination of columns tid and
sgid to the single column tid. Having this change in the schema, the maintenance
algorithm will suggest to change the relationship appliesTo from a many-to-
many relationship to a functional relationship TREATMENT ---appliesTo->--

SAMPLE GROUP .
Conversely, if the database designer obtained a better understanding of the

application and changed the appliesTo relationship from many-to-many to func-
tional, then the algorithm will suggest to update the key of the table treat from
the combination of tid and sgid to the single column tid.

In both cases, the semantic mapping formula does not change. �
In summary, the basic principle of maintaining semantic mappings under

schema/ontology evolution is to repair the semantic relationship between a ta-
ble and an s-tree according to knowledge in existing mappings and changes.
Specifically, the algorithm attempts to align the key and foreign key constraints
in the table with integrity constrains in the ontology by suggesting necessary
updates.

6 Conclusions

A semantic mapping between a database schema and an ontology specifies a se-
mantic relationship between the schema and the ontology. For relational schemas,
we represented the semantic mapping as a set of relationships between relational
tables and s-trees in an ontology. Such a relationship can be represented in terms
of a formula with precisely defined semantics. Once such a semantic mapping
is established, it is important to maintain the validity of the semantic mapping
when the schema or ontology evolves. Mapping maintenance is a challenging
problem and it will benefit from a principled and systematic solution. Here we
reported on a preliminary effort to define such a solution which will empower
database designers, administrators, and integrators.

Unlike the traditional solutions to the problem of schema mapping adapta-
tion, our solution attempts to adapt both the semantic mapping and the asso-
ciated schema and ontology in order to maintain the validity of the semantic
mapping. Based on the previous study on discovering semantic mappings from

database schemas to ontologies, we aim at repairing the semantic relationship
between a table and an s-tree by analyzing the semantics in changes to align
integrity constraints in schemas and ontologies.

Future work includes developing the complete algorithm and conducting ex-
periments for testing the performance of the solution using both synthetic and
real-world semantic mapping evolution scenarios. In addition, we are interested
in developing solutions to the problem of maintaining general semantic map-
pings.

References

1. Y. An, A. Borgida, R. J. Miller, and J. Mylopoulos. A Semantic Approach to
Discovering Schema Mapping Expression. In ICDE’07.

2. Y. An, A. Borgida, and J. Mylopoulos. Constructing Complex Semantic Mappings
between XML Data and Ontologies. In ISWC’05.

3. Y. An, A. Borgida, and J. Mylopoulos. Inferring Complex Semantic Mappings
between Relational Tables and Ontologies from Simple Correspondences. In
ODBASE’05.

4. Y. An, A. Borgida, and J. Mylopoulos. Discovering the Semantics of Relational
Tables through Mappings. JoDS VII, pages 1–32, 2006.

5. J. Banerjee et al. Semantics and Implementation of Schema Evolution in Object-
Oriented Databases. In SIGMOD’87.

6. B. Benatallah. A Unified Framework for Supporting Dynamic Schema Evolution
in Object Databases. In ER’99.

7. P. M. Brien and A. Poulovassilis. Schema evolution in heterogeneous database
architectures, a schema transformation approach. In CAiSE’02, 2002.

8. D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R.Rosati. Data Inte-
gration in Data Warehousing. J. of Coop. Info. Sys., 10(3):237–271, 2001.

9. K. T. Claypool, J. Jin, and E. Rundensteiner. SERF: Schema Evolution through
an Extensible, Re-usable, and Flexible Framework. In CIKM’98.

10. R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and
Query Answering. In Proceedings of International Conference on Database Theory
(ICDT), 2003.

11. H. Fan and A. Poulovassilis. Schema evolution in data warehousing environments
— a schema transformation-based approach. In ER’04, 2004.

12. F. Ferrandina, G. Ferran, T. Meyer, J. Madec, and R. Zicari. Schema and Database
Evolution in the O2 Object Database System. In VLDB’95.

13. A. Y. Levy, D. Srivastava, and T. Kirk. Data Model and Query Evaluation in
Global Information Systems. J. of Intelligent Info. Sys., 5(2):121–143, 1996.

14. R. McCann et al. Maveric: Mapping Maintenance for Data Integration Systems.
In VLDB’05.

15. Y. Velegrakis, R. J. Miller, and L. Popa. Mapping Adapdation under Evolving
Schemas. In VLDB’03.

16. C. Yu and L. Popa. Semantic Adaptation of Schema Mappings when Schema
Evolve. In VLDB’05.

