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Weight Update (related to part 1&2)

Math Matlab
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PART 1 (3 points)
• Using numhid=100 and maxepoch=2000 and weightcost=0,

play around with epsilon and finalmomentum to find
settings that make tE low after 2000 epochs.

• Briefly report what you discover. Include the values of
epsilon and finalmomentum that work best and say what
values they produce for the test errors and the cross-entropy
error.

• If you were instead asked to find the epsilon that produced
the best minimum value (not the best final value) for test set
cross entropy, would you expect to find a larger or smaller
epsilon (assuming the minimum value occurs before the last
epoch)? In a sentence, justify your answer.



1. The best ε = 10x was first searched within a wide range,
where x ∈ [−8,−1]. The minimum test error (tE) was
observed between ε = 10−5 and 10−3.
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2. A finer search within the smaller ranges of
[10−5 : 10−5 : 10−4, 10−4 : 10−4 : 10−3] found the best
ε = 2.0e − 04 with tE = 1831.45.
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3. Fixing ε = 2.0e − 04, numhid=100, maxepoch=2000,
weightcost=0, the best final momentum was searched in the
range [0.1 : 01 : 1] and found to be 0.7 with tE = 1827.25.

0.2 0.4 0.6 0.8 1
1800

2000

2200

2400

2600
c
ro

s
s
−

e
n
tr

o
y
 (

tE
)

Test Error vs Final Momentum

η

 

 

0.2 0.4 0.6 0.8 1
500

550

600

650

700

m
is

c
la

s
s
fi
c
a
ti
o
n
 (

te
rr

o
rs

)

tE

terrors



4. Thus, the results suggest the best epsilon = 2.0e-04 and
finalmomentum = 0.7, which gives the minimum tE =
1827.25 with other setting fixed to numhid=100,
maxepoch=2000, weightcost=0.

5. Remark: The small learning rate and a fairly large final
momentum suggest that the network is prone to overfitting at
the beginning of the training phase.

But once the network enters a stead progress toward a
global/local optimal state, the learning can be accelerated
with a large momentum to obtain the best setting within a
reasonable number of iterations (maxepoch = 2000).



6. An epsilon slightly larger than the epsilon (2e-4) found above
would be expected to produce a smaller minimum
cross-entropy that occurs before the last epoch.
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At epsilon = 2e-4, the minimum and final cross-entropy
coincide whereas the minimum cross-entropy is slightly better
at 1e-3.5 despite the worse final cross-entropy.

This trend shows that the network can still be improved with
slightly larger epsilon within the 2000 epochs. However, a
even larger epsilon (e.g. 0.1) will ”skip” the minimum
cross-entropy and is worse off for both values.



PART 2 (2 points): Using the best epsilon = 2e-4 found in
Part 1 together with numhid=100, maxepoch=2000,
finalmomentum=0.7, it was found that tE generally increases
with increasing weightcost.
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Common issues in part 1 or 2:

• If fixing the best tE, the epsilon and final momentum are
inversely correlated in a non-linear way. That is, if epsilon is
large (e.g., 1e-3), final momentum has to be small (e.g., 1e-2)
and vice versa.

• What’s the relation b/w epsilon and weightcost: The epsilon
and weightcost are positively correlated. That is, for small
epsilon (e.g., 1e-4), weightcost is almost not needed, which
can be set to zero. But if you find a large epsilon in step 1
(e.g., 1e-3), then with finalmomentum now fixed at 0.7, you
will need a large weightcost to avoid overfitting.



PART 3: (5 points)
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p(W|D) =
p(W) · p(D|W)

p(D)
(Bayes’ Rule)

where

• the weight vector is W = (w1,w2,w3,w4);

• the input data matrix D contains N training cases of (x1, x2)
(i.e. an N × 2 matrix);

• p(W) is the prior (belief) for the weight W (assumed to be
uniformly distributed);

• p(D|W) = exp(−cost) is the likelihood under the weights W,
where cost = −

∑
i=1[ti log t̂i + (1− ti ) log(1− t̂i )]

• p(D) =
∑

W p(W)p(D|W) probability of the data, considered
as a normalization factor;

• p(W|D) is the posterior probability of the weights.



Prediction on test data Xj :
Bayesian estimate:

t̂
(Bayes)
j = p(tj |Xj) =

∑
W

p(W|D)p(t|Xj ,W)

MAP:

WMAP = arg max
W

p(W|D)

= arg max
W

p(W)p(D|W)

p(D)

= arg max
W

p(W)p(D|W)

= arg max
W

p(D|W) (for uniform prior)

= WML

t̂
(MAP/ML)
j = p(tj |Xj) = p(tj |Xj ,WMAP)



Bayesian estimate (bayespredictions):

p(t|D) =
∑
∀W

p(W|D)p(t|D,W)
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MAP (bestpredictions):

WMAP = arg max
W

p(W|D)

p(t|D) ≡ p(t|D,WMAP)
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Evaluation (Contrastive Divergence):

ErrorSum =−
N′∑
i=1

[
tn log(t̂i ) + (1− ti ) log(1− t̂i )

]
+
∑
i

[t log(ti ) + (1− ti ) log(1− ti )]

ErrorPerBit =
ErrorSum

N ′ log(2)

where N ′ is the number of test cases (i.e., testnumcases).

Note: Use ErrorPerBit to evaluate Bayesian and MAP estimate
rather than ErrorSum.



Describe the effects of changing the number of training cases.
1. Experimental approach:

• To have a stable estimate of the model performance,
the experiment was repeated 10 times for the same
number of training cases.

• In each time the four weights from teacher net were
randomly sampled from the uniform distribution
(-1,1).

• The averaged bayestesterr per bit and besttesterr
per bit were then taken over the 10 experiments (for
the same number of training cases).



2. With varying number of training cases (1:1:20 and
100:100:1000), the Bayesian estimation has a more robust and
generally better performance than MAP/ML method in terms
of the discrepancy in cross-entropy when comparing with the
ideal model estimate (i.e. the teacher net).
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3. Bayesian method averages over all of the model estimates
weighted by their posterior probability. Thus, the approach
spreads the uncertainty across the entire model spectrum. In
contrast, MAP/ML method only employs the model with the
highest posterior probability to predict test data.
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4. For smaller number training cases (numcases < 100), the
histogram of the posterior probability distribution suggests
that even the highest posterior probability is only about 0.001.
Thus, considerable uncertainty exists even in “best” model.

When the number of training cases increases to 1000, the
highest posterior probability increases by more than 2 orders
to 0.14.

5. The results explain why MAP/ML performs more poorly than
Bayesian method when the number of training cases is small
but become more comparable to the latter method for larger
number of training cases.



• Part3 b: Modifying maketeacher by changing wteacher
= 2*rand(1,4) - 1; to

• wteacher = randn(4, 1);

or

• wteacher = mean(randn(5000,4), 1);
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6. When the true weights of teacher net were sampled from a
standard normal distribution (N(0,1)), (or other non-uniform
distribution), the assumption of a uniform prior used in both
Bayesian and MAP/ML methods is violated. As expected, the
performance of both method decreases. However, Bayesian is
still more robust than MAP/ML.



Common issues in part 3:

• How do Bayesian and MAP/ML compare and why one is
better than the other?

• How does changing wteacher to non-uniform affect both
models?

• Due to random fluctuation, the test needs to be repeated
multiple times and then average the error per bits to obtain a
reliable error estimate.



A2 Marks distribution

A2 mark

Mark

F
re
q
u
e
n
c
y

5 6 7 8 9 10

0
5

1
0

1
5



Midterm Review



TA office hours now-1:30 at DV1160


