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Abstract

Systematic identification of miRNA targets remains a challenge.
miRNA overexpression coupled with genome-wide expression pro-
filing 1s a promising new approach and calls for a new method that
integrates expression and sequence information. We developed a
probabilistic scoring method called TargetScore. TargetScore in-
fers miRNA targets as the transformed fold-changes weighted by
the Bayesian posteriors given observed target features. To this end,
we compiled 84 datasets from GEO corresponding to 77 human
tissue or cells and 113 distinct transtected miRNAs. Comparing
with other methods, TargetScore achieves significantly higher ac-
curacy in i1dentifying known targets in most tests. Moreover, the
confidence targets from TargetScore exhibit comparable protein
down-regulation and are more significantly enriched for Gene On-
tology terms. Using targetScore, we explored oncomir-oncogenes
network and predicted several potential cancer-related miRNA-
mRNA 1interactions. TargetScore 1s available at Bioconductor.

Introduction:

MicroRNAs (miRNAs) repress protein production in animal species
by forming Watson-Crick (WC) base-pairing to the 3’ UTR regions
of the target mRNAs (Friedman et al., 2009). The binding primar-
ily occurs at the 2-7 nucleotide (nt) positions from the 5’ end of the
miRNA, which is termed as the “seed” and the binding as the “seed
match” (Lewis et al., 2003). miRNA regulations are implicated in
many developmental and pathogenic processes.
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Current sequence-based algorithms achieve less than 50% speci-
ficity and having poor agreement among them (Alexiou et al., 2009).
Overexpression of miRNA coupled with expression profiling of
mRNA by either microarray or RNA-seq has proved to be a promis-
ing approach (Lim et al., 2005; Arvey et al., 2010). To take advan-
tage of the increasingly available data of such kind, we developed a
probabilistic approach termed TargetScore to infer miRNA targets
by integrating expression change due to miRNA overexpression
and sequence information such as context score and other orthog-
onal features such as conservation into a probabilistic score.

Methods:

Bayesian Gaussian Mixture Model

Assuming there are N genes, we denote x = (x1,...,% N)T as
the log expression fold-change (x ) or sequence scores (X;). Thus,
for L sets of sequence scores, x € {x FoX]y.e X 7, }. To simplify
the following equations, we use x to represent one of the inde-
pendent variables without loss of generality. To infer target genes
for a miRNA given x, we need to obtain the posterior distribu-
tion p(z|x) of the latent variable z € {z,..., 25}, where K=3
(K=2) for modeling signed (unsigned) scores such as logarithmic
fold-changes (sequence scores). The latent variables z are sam-
pled at probabilities 7= (mixing coefficient), that follow a Dirichlet
prior Dir(m|cy) with hyperparameters oy = (o 1, ..., k).
To account for the relative frequency of targets and non-targets
for any miRNA, we set the « | (associated with the target com-
ponent) to aN and other oy, = (1 — a) x N/(K — 1), where
a = 0.01 (by default). Assuming x follows a Gaussian distribu-
tion N (x|w, A~1), where A (precision matrix) is the inverse co-
variance matrix, p(u, A) together follow a Gaussian-Wishart prior

Hé( N (. |my, (50A)_1)W(Ak\WO, 1), where the hyperparam-
eters {mo, 50, W(), VO} — {ﬂ, 1, ID><D> D+ 1},

Variational Bayesian Expectation Maximization

Let 8 = {z,m, u, A}. The marginal log likelihood can be writ-
ten in terms of lower bound £L(q) (first term) and Kullback-Leibler
divergence KL(q||p) (second term):
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where ¢(@) is a proposed distribution for p(@|x), which does not
have a closed form distribution. Because Inp(x) is a constant,
maximizing £(q) implies minimizing KL(q||p). The general op-
timal solution In q}-k(ﬁj) is the expectation of variable j w.r.t other
variables, E;_;[In p(x, 0)]. In particular, we define ¢(z, 7, p, A) =

q(z)q(m)q(p, A). The expectations for the three terms (at log scale),

namely In ¢*(z), In ¢*(7), In ¢* (), have the same forms as the ini-
tial distributions due to the conjugacy of the priors. However, they
require evaluation of the parameters {z, 7, w, A }, which in turn all
depend on the expectations of z or the posterior of interest:
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Results:

(Methods continued)

where In p,,;. = E[ln 7] + SE[In |Ag|] — B In(27) — 3E,,, A, [(xn —
pi) L A (x, — pi)]. The inter-dependence between the expecta-
tions and model parameters calls for EM framework, namely VB-
EM. We first initialize the model parameters based on priors and
randomly sample K data points p. At the it iteration, we evaluate
(2) using the model parameters (VB-E step) and update the model
parameters using (2) (VB-M step). The EM iterates until £(q) con-
verges. Please refer to Bishop (2006) p485 for more details.

TargetScore

We define the targetScore as an integrative probabilistic score of a
gene being the target ¢ of a miRNA:
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targetScore = o(— log F'C p(tlx) | (3)

where o(—log F'C') = L

= TTopla FO p(t|x) is posterior in (2).

Test Data

We collected miRNA-overexpression data corresponding to 84 GEO
series, 6 platforms, 77 human cells or tissues, and 113 distinct
miRNAs. Validated miRNA-target interactions from MirTarBase
3.5 were used, which contains 3565 validated interactions between
432 human miRNAs and 1959 target genes.

Discussion and Future work:

We introduce TargetScore, a Bayesian probabilistic scoring method
taking into account both the fold-change (FC) due to miRNA over-
expresion and sequence information. The success of our method
underlines the importance of integrating independent informative
predictors into a unified framework. A few issues remain to be
addressed in future work. Several studies have shown that expres-
sion changes also depends on the initial abundance and the natural
decay of the corresponding mRNA species (Larsson et al., 2010).
Presumably, an algorithm will benefit from the use of this informa-
tion in a cell-specific context. TargetScore assumes that the mRNA
targets are independent of each other. Arvey et al. (2010) have
shown that miRNAs that have a higher number of available tar-
get transcripts will down-regulate each individual target gene to a
lesser extent than those with a lower number of targets. Thus, it
would be more realistic to consider the expressed target sites.

Results (continued):

orange boxes were illustrated on the right panels. (C) P-values from one-sided Wilcoxon signed-rank test by comparing the AUCs for ROC/PR from TargetScore with the AUCs from other

methods. (D) The number of miRNAs for which a particular prediction method has the best performance in ROC/PR.
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100% 7 on one-sided Wilcoxon signed-rank test. (B) The (white) grey boxes indicates that the cumulative GO enrichment scores from TargetScore is (not) significantly higher than those from
759% competitors based on one-sided paired KS-test at p<0.05. The columns are in the same order as the miRNAs in panel A. The cumulative density function (CDF) plot for the first and
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Fig.1. Evaluation on validated targets from 35 miRNAs. (A) and precision-recall (B) curves were constructed using scores from logFC, targetScanCS, targetScanPCT, expmicro, and e \ \“ , MAFB
targetScore. The left panels display the AUC of ROC/PR for each method across the 35 miRNAs, which were ordered by the decreasing differences between TargetScore-AUC and AUC ~y \ \ l’\ \G@S
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Fig.2. Cumulative sum of protein down-regulation. Cumulative sum of protein down-regulation as a function of the top 200 rankings of target predictions for hsa-miR-1, 124, and 181.
For each comparison method, cumulative sum of log2 fold-change of protein outputs measured in miRNA transfection experiments (Baek et al., 2008) is plotted as a function of the top 200
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rankings. At the same rank index, a superior method is expected to reach greater cumulative sum of protein down-fold, indicated by the steeper curve.
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Fig.4. Oncomir-oncogene network based on confidence targetScore. The network drawn by Cytoscape comprises 207 oncomir-oncogene interactions, where 166 (41) are validated
(predicted with targetScore > 0.6), involving 26 oncomirs (yellow) and 113 oncogenes (white). The red solid and blue dash edges are the validated and predicted interactions,
respectively. The size of the node is proportion to the connection degree. Edge widths are prop. to the targetScore.
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