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Proposed approach: Regression by Stratification to predict BI/ELISA.
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Protein microarrays provide a new opportunity for developing a more efficient M=> [ Classification Model ]_
diagnostic approach for infection diseases than the other three.

Regression model list: zeroR: predict the mean of continuous class; LinearReg: Multivariate Linear Regression;
PLS: Partial Least Squared Regression; SVMreg: Support Vector Machine for Regression; IBK: K-Nearest Neigh-

—>©I:> [ BI/ELISA Regression Model L ]—)M bor using Linear Nearest Neighbor Search; MSP: M5 Model Tree Improved; Multilayer: Multilayer Perceptron;

RegByStrat: Regression By Stratification method uses IBK+MS5P for predicting ELISA and IBK+IBK for BI.

I1I. Hypothesis: VI. Results VII. Conclusion and Future Work

A. Binary Classification of Leprosy Sera Sample into T or L form Serological reactivity patterns can be exploited for predicting other diagnostic
values via appropriate machine-learning methods. Potential improvements of
the regression by stratification method are: 1) use a mixed training set for each
Model | zeroR IDMNB| VP Bagging| KM | J48 JRip| LWL |LTree regression model, 2) incorporate a preceding feature selection stage, and 3)

crobial antigen.
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imize parameters of the model in the method. Many other approach
Model  DTable. NB BNet LRegr SVM NNet RF AdaBoost NN optimize parameters of the models used in the method. Many other approaches
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Using an appropriate machine-learning approach, humoral response measure-
ments from protein microarrays can be used to reliably predict other diagnostic Accuracy of eighteen classification models 1n predicting leprosy states
values including clinical diagnostic state, and BI or ELISA to a particular mi-

Classifiers full name list: zeroR: predict the mode of nominal class; DMNB: Discriminative Multinomial Naive
Trained utpu [ Sereeel el ] Bayes; Bagging: meta-method using fast decision tree learner; KM: classification via simple K-means cluster; VIII ACknOWIed gmﬁnt
J48: C4.5 decision tree classifier; JRip: Repeated Incremental Pruning to produce error reduction; LWL: Locally
Weighted Learning; LTree: Logistic Boost Decision Tree; DTable: Decision Table majority classifier; NB: Naive
] Bayes; BNet: Bayes Net; LRegr: Logistic Regression; SVM: Support Vector Machine; NNet: Neural Network; All the machine learning methods are used via:
RF: Random Forest with 10 decision trees ; AdaBoost: Adaptive Boosting using Decision Stump as classifier; NN:
Nearest Neighbor using normalized Euclidean distance.
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