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1 Introduction

In this writeup we’re going to discuss Smolensky’s algebraic method according to
his 1993 paper On Representations by Low-Degree Polynomials. Lecture notes
usually only cover the case of parity, but Smolensky’s method is more general.
In particular, it directly gives lower bounds for majority.

Smolensky’s circuit lower bound approach consists of two parts (the first of
which is due to Razborov):

1. Show that a small, bounded depth circuit can be approximated by a low
degree polynomial.

2. Show that a specific function (for example, parity or majority) cannot be
approximated by a low degree polynomial.

The first step is described in many lecture notes. For the second step, only an
argument for parity is given usually. We reproduce this argument below for
completeness in section 5. However, Smolensky’s 1993 paper takes a slightly
different approach, which generalizes to majority as well as to other functions.

2 Framework

We will be interested in Boolean functions over the Boolean cube {0, 1}n and
their polynomial approximations. Razborov’s method for approximating an
AC0[p] circuit produces a polynomial over Zp (in fact, this generalizes to prime
powers); Smolensky’s lower bounds work for any field F. For the rest of the
writeup, we will assume all polynomials are over some fixed field F, unless ex-
plicitly noted. Razborov’s polynomial takes the values 0, 1 ∈ Zp; Smolensky’s
method works for the following weaker concept.

Definition 2.1. A polynomial P (x1, . . . , xn) over F represents a Boolean func-
tion PB with domain {0, 1}n defined by

PB(x1, . . . , xn) =

{
1 if P (x1, . . . , xn) = 0,
0 if P (x1, . . . , xn) 6= 0.
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Smolensky’s method uses the concept of the (affine) Hilbert function, which
is a measure of complexity of a subset of the Boolean cube; we will apply it to
zero-sets of Boolean functions.

Definition 2.2. Let S ⊆ {0, 1}n. For each polynomial P over F, its image P |S
on S can be considered as a vector of length |S|. The (affine) Hilbert function
hk(S) is the dimension of the vector space spanned by P |S for all polynomials
P of degree at most k.

Clearly hk(S) ≤ |S| and hk(S) ≤
∑

t≤k

(
n
t

)
(since x2 = x for Boolean x).

Below we will see several example where the latter inequality is tight.
It turns out that the Hilbert function of low degree polynomials is small, in

the sense that hk(S) ≤ |S|/2. This prompts the following definition.

Definition 2.3. Let S ⊆ {0, 1}n. The Hilbert excess function αk(S) is

αk(S) = 2hk(S)− |S|.

We will be comparing the value of the Hilbert function on the zero-set of a
difficult function to that of the non-zero-set of a low-degree polynomial (this is
the zero-set of the Boolean function the low-degree polynomial repersents). We
will show that the Hilbert functions are far apart, and we’d like to conclude that
the sets themselves are quite different. Is is natural therefore to consider what
happens to the Hilbert function when a point is added or removed from S. It is
easy to see that adding a point to S can at most increase the Hilbert function
by 1. In particular, we obtain the following:

Lemma 2.4. For any k and two subsets S, T of the Boolean cube we have

|αk(S)− αk(T )| ≤ |S4T |.

Proof. Clearly, it is enough to prove the lemma for the case T = S ∪ {x} for
some x /∈ S. It is easy to see that

hk(S) ≤ hk(T ) ≤ hk(S) + 1,

from which we easily deduce

αk(S)− 1 ≤ αk(T ) ≤ αk(S) + 1.

We can now outline Smolensky’s method:

1. Show that the non-zero-set of a low-degree polynomial has small excess,
for an appropriate value of k.

2. Show that the zero-set of some hard function (e.g. parity or majority) has
high excess, by explicitly calculating its Hilbert function.

3. Conclude that the corresponding zero-sets are far apart, i.e. the low degree
polynomial correlates weakly with the hard function.

In the next section, we will prove the first step, and conclude Smolensky’s
end result. The following section will prove the second step for parity and
majority. We will also mention how the usual proof for parity appears in this
framework.
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3 Low-degree polynomials

In this section we will show that the non-zero-set of a low-degree polynomial
has small excess αk for k slightly smaller than n/2.

Theorem 3.1. Suppose degP = d, and let k < (n−d)/2. Put S = {x : P (x) 6=
0}. Then αk(S) ≤ 0.

Proof. The proof is by contradiction: we assume that hk(S) > |S|/2, and reach
a contradiction.

Recall that hk(S) is the dimension of the linear subspace {Q|S : degQ ≤ k}.
This subspace is spanned by all monomials of degree at most k. We can construct
a matrix whose rows correspond to monomials of degree at most k and whose
columns correspond to points of S, such that hk(S) is the rank of this matrix.
In particular, there is a set U ⊆ S of hk(S) linearly independent columns. The
set U satisfies

hk(U) = hk(S) = |U |.

By assumption 2hk(S) > |S|, and so hk(S) > |S| − |U | = |S \ U |. Therefore
we can find a non-zero k-degree polynomial A which is equal to zero on all of
S \ U . We will transform A into a delta-function for the entire Boolean cube.
The following notation will be useful: δ(T, x) is the collection of functions which
are non-zero on x and zero on the rest of T .

The first step is transforming A to a delta-function on S. Since A(S \
U) = 0, all we need to do is multiply A by an appropriate delta-function on U .
Notice that since hk(U) = |U |, we can realize any function on U by a k-degree
polynomial. In particular, picking any x ∈ U such that A(x) 6= 0, there is a
k-degree polynomial B ∈ δ(U, x). Multiplying, we find that AB ∈ δ(S, x).

In order to transform AB to a delta-function on the entire Boolean cube,
all we need to do is multiply AB by the original polynomial P : indeed, ABP ∈
δ({0, 1}n, x). Notice that degABP ≤ 2k + d < n. By translation, we can
assume that x is the all-1 point. We get a contradiction since every monomial
of degree less than n is zero on x.

Smolensky’s method is an easy corollary of the preceding theorem.

Theorem 3.2. Let f be any Boolean function, P any d-degree polynomial, and
PB the Boolean function represented by P . Then

Pr[f 6= PB ] ≥ 2−nα(n−d−1)/2(f−1(0)).

Proof. Let k = (n− d− 1)/2. Theorem 3.1 implies that

αk(f−1(0))− αk(P−1
B (0)) ≥ αk(f−1(0)).

The theorem now follows from lemma 2.4.
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4 Hilbert function of parity and majority

In this section we will show that for k < n/2, the Hilbert function of the zero-
sets of both the parity function and majority is maximal. In particular, we get
the same correlation bounds for both.

Corollary 4.1. Let f be a Boolean function such that for some k < n/2,

hk(f−1(0)) =
∑
t≤k

(
n

t

)
.

Then for any polynomial P of degree smaller than n− 2k,

Pr[f 6= PB ] ≥ 2 Pr[Bin(n, 1
2 ) ≤ k]− Pr[f = 0],

where PB is the Boolean function represented by P .

Proof. Easy corollary of theorem 3.2.

The conditions of the corollary are true for both parity and majority, as we
are going to show presently. We will use the following test.

Lemma 4.2. Let S be some subset of the Boolean cube. Then for any k, we
have

hk(S) =
∑
t≤k

(
n

t

)
if and only if the only polynomial P of degree at most k which is zero on all of
S is the zero polynomial.

Proof. Recall that hk(S) is the dimension of the linear subspace {P |S} for all
polynomials of degree at most k. This subspace is spanned by {M |S} for all
monomials of degree at most k. The monomials are linearly independent iff
there is no non-trivial linear combination of them which gives the zero vector.
Any such linear combination corresponds to a non-zero polynomial of degree at
most k which is zero on all of S.

4.1 Parity

In order to analyze parity, we will use a transformation {0, 1} → {1,−1}, which
is reversible if char F 6= 2; naturally, if char F = 2 then parity is easy. We need
an easy lemma.

Lemma 4.3. Let B = {a, b}n be some Boolean cube (a 6= b). The set of
square-free monomials over the cube {M |B} forms a basis for the linear space
of polynomials over the cube {P |B}.

Proof. Clearly the set {M |B} spans the linear space {P |B}. The degree of the
latter is 2n, which is also the number of monomials. Hence the monomials must
be linearly independent.
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Theorem 4.4. Denote by S the set of vectors with even parity. If char F 6= 2
then for all k < n/2,

hk(S) =
∑
t≤k

(
n

t

)
.

Proof. We use the technique of lemma 4.2. Assume we are given a polynomial
P of degree at most k which is zero on all of S. Since char F 6= 2, the element 2
is invertible. Substitute xi = (1− yi)/2 to get a new polynomial Py(y1, . . . , yn)
of the same degree. Notice that xi = 0 corresponds to yi = 1, and that xi = 1
corresponds to yi = −1. Therefore, the original condition that P is zero on S
translates to the condition that Py is zero on

Sy = {y : y1 · · · yn = 1}.

Now form the polynomial

Qy = Py(1 + y1 · · · yn).

This polynomial is clearly zero on the entire Boolean cube {1,−1}n. The poly-
nomial Qy breaks as the sum

Qy = Py + y1 · · · ynPy.

Using the identity y2
i = 1, we see that the first summand is a combination of

monomials of degree less than n/2, and the second summand is a combination
of monomials of degree more than n/2. Lemma 4.3 implies that Py = 0 and so
P = 0.

The proof can be generalized for a version of the mod-q function.

Theorem 4.5. Let q be a prime different from char F. Denote by S the set of
vectors whose Hamming weight is not a multiple of q. For all k < n/2,

hk(S) =
∑
t≤k

(
n

t

)
.

Proof. The proof is very similar to the proof of the previous theorem. We can
assume, without loss of generality, that F is algebraically closed (enlarging F can
only lower the dimension of the linear space of polynomials). The polynomial
xq−1 is coprime to its derivative, and so has no repeated roots. Therefore some
λ 6= 1 is a primitive q-th root of unity in F.

In view of using lemma 4.2, consider some polynomial P of degree at most
k which is zero on all of S. The substitution xi = (1− yi)/(1− λ) translates P
into a polynomial Py over {1, λ}n. The condition that P is zero on S translates
to the condition that Py is zero on

Sy = {y : y1 · · · yn 6= 1}.
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Therefore the polynomial

Qy = Py(1− y1 · · · yn) = Py − y1 · · · ynPy

is zero over {1, λ}n. Over this cube, we have y2
i = (λ+ 1)yi−λ. Thus, for every

monomial M , we have (over {1, λ}n)

y1 · · · ynM = cM + · · · ,

where M is the monomial formed by complementing the set of indices, c is
some non-zero constant, and the dots represent monomials of higher degree. In
this way Qy corresponds to some polynomial Ry, all of whose monomials are
square-free, which is zero on {1, λ}n. Lemma 4.3 implies that Ry is the zero
polynomial. We wish to conclude that Py is the zero polynomial. Otherwise,
pick a monomial M ∈ Py with maximal degree. Notice that this condition forces
M ∈ Ry (here we use k < n/2), which contradicts our assumption that Ry = 0.
Thus Py = 0, and so P = 0.

4.2 Majority

The analysis for majority has a completely different flavor. The technique ac-
tually gives a lower bound for any Boolean function, but this bound is tight
only for monotone functions. We will use the following correspondence between
points and monomials.

Definition 4.6. Let z ∈ {0, 1}n be some point in the Boolean cube. Its corre-
sponding monomial M(z) is

M(z) =
n∏

i=1

xzi
i =

∏
zi=1

xi.

The reverse mapping P(M) takes a monomial
∏

i∈S xi to the point z defined by
zi = 1 for i ∈ S and zi = 0 for i /∈ S.

Theorem 4.7. Denote by S the vectors with Hamming weight smaller than
n/2. For k < n/2,

hk(S) =
∑
t≤k

(
n

t

)
.

Proof. We use lemma 4.2. Let P some polynomial of degree at most k which
is zero on all of S. Suppose that P is not the zero polynomial, and let M be
some monomial of minimal degree in P . Set z = P(M). Notice that M(z) = 1
whereas N(z) = 0 for all other monomials N ∈ P . This is contradictory since
it implies P (z) 6= 0. We conclude that necessarily P is the zero polynomial.

The proof technique can be generalized to arbitrary subsets of the Boolean
cube. It is tight for downward-closed sets.
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Definition 4.8. A subset S ⊆ {0, 1}n is downward-closed if for any two points
x, y ∈ {0, 1}n such that xi ≤ yi, y ∈ S implies x ∈ S.

Theorem 4.9. Denote by Hk the vectors with hamming weight at most k. Then
for any subset S of the Boolean cube,

hk(S) ≥ |S ∩Hk|.

Moreover, equality holds if S is downward-closed.

Proof. The first part follows by showing that the set

B = {M(z) : z ∈ S ∩Hk}

of monomials of degree at most k is linearly independent over S. If it is not,
then there is some non-zero polynomial P with monomials from B which is zero
on all of S. If M ∈ P is a monomial of minimal degree, then just as in the proof
of the previous theorem, P (P(M)) 6= 0. This contradiction shows that the set
B is linearly independent.

Now suppose that S is downward-closed. If z ∈ Hk \ S then we claim that
M(z) is zero on S. Indeed, if M(z)(y) 6= 0 then y ≥ z, contradicting the fact
that z /∈ S. Thus the monomials in B span the space of all polynomials of
degree at most k.

5 Another proof for parity

The usual circuit lower bound for parity is proved by a variant of the method
explained in the previous section. In particular, we will argue directly with the
Hilbert function.

Lemma 5.1. Let S ⊆ T ⊆ {0, 1}n be two subsets of the Boolean cube. Then
for every d,

hd(S) ≤ hd(T ) ≤ hd(S) + |T \ S|.

Proof. The lemma follows from the fact that adding a point to S can increase
the dimension of the linear space of polynomials by at most 1.

Theorem 5.2. Let P by any polynomial of degree d. Denote by S the set of
points on which P agrees with parity. Then

hn(S) ≤
∑

t≤n+d
2

(
n

t

)
.

Proof. We show that any monomial M can be represented by some monomial
of degree at most (n+d)/2 on S. If degM ≤ (n+d)/2 then M represents itself.
Otherwise, let M̃ denote the monomial such that xi ∈ M iff xi /∈ M̃ , i.e. the
corresponding points P(M) and P(M̃) are complementary. Since on S we have
M = M̃P , the monomial M is represented by the monomial M̃P of degree at
most (n− d)/2 + d = (n+ d)/2.
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Corollary 5.3. Let P by any polynomial of degree d. Denote by π the parity
function. We have

Pr[P = π] ≤ Pr
[
Bin(n, 1

2 ) ≤ n+ d

2

]
.

Proof. Denote by S the set of points on which P = π. Since hn({0, 1}n) = 2n,
lemma 5.1 shows that hn(S) ≥ |{z : P (z) = π(z)}|. The corollary now follows
from the preceding theorem.

6 Circuit lower bounds

In order to obtain circuit lower bounds, we use the following well-known ap-
proximation obtained by Smolensky.

Theorem 6.1. Let C be an AC0[p] circuit of size S and depth h. For every l
there is a polynomial P over Zp of degree ((p− 1)l)h such that

Pr[C 6= P ] ≤ S

2l
.

Proof. See any lecture notes on the subject.

Using this, we can upper bound the correlation between an arbitrary AC0

circuit and either parity or majority.

Theorem 6.2. Let C be an AC0[p] circuit of size S and depth h. Let f be either
parity or majority. Then

Pr[C = f ] ≤ 1
2

+
O(log(nS))h

√
n

+
1
n
.

Proof. Choose l = log(nS) in the preceding theorem. We get a polynomial P
over Zp of degree d = ((p− 1)l)h which differs from C with probability at most
1/n. Combining corollary 4.1 with either theorem 4.4 or theorem 4.7, we get

Pr[C 6= f ] ≤ 2 Pr
[
Bin(n, 1

2 ) ≤ n

2
− t
]
− 1

2
− 1
n
,

where the parameter t is given by

t =
n

2
− n− d− 1

2
=
d+ 1

2
= O(log(nS))h.

In order to estimate the binomial tail, we use

Pr
[
Bin(n, 1

2 ) ≤ n

2
− t
]

=
1
2
− 2−n

t−1∑
k=0

(
n

k

)
=

1
2
−O

(
t√
n

)
,

where we estimated each binomial coefficient with the central one.
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