
Subramanian’s stable matching algorithm

Yuval Filmus

November 2011

Abstract

Gale and Shapley introduced the well-known stable matching problem
in 1962, giving an algorithm for the problem. Subramanian later showed
that the problem can be solved by comparator circuits. Lê, Cook and Ye
simplified his construction.

We present an algorithm interpolating (in some sense) between the
two. Our algorithm is a symmetrized “lazy” version of Gale-Shapley,
while Subramanian’s algorithm in turn can be viewed as a lazy version
of our algorithm. Subramanian’s algorithm employs three-valued logic, a
device which arises more naturally in the setting of our algorithm.

1 Stable matching problem

An instance of the stable matching problem consists of a set M of n men and
a set W of n women. In addition, each person p ∈ M ∪ W has an order of
preference over persons of the opposite sex:

p : π1(p) � π2(p) � · · · � πn(p).

Person p prefers π1(p) the most, and πn(p) the least. If i > j then p prefers
πi(p) over πj(p), in symbols πi(p) �p πj(p). The person most preferred by p
among a list P is denoted maxp P . The one least preferred is minp P . Beware
that in terms of indices πi(p), maxp P is the person with lowest index!

A matching S is a list of pairs (m,w) ∈ M × W such that each man is
matched with exactly one woman. We will denote the match of a person p by
S(p).

A pair (m,w) /∈ S is unstable if w �m S(m) and m �w S(w). In words, an
unmatched pair (m,w) is unstable if both parties prefer the other person over
their current partner. A matching is stable if there is no unstable pair.

Gale and Shapley [1] have shown that a stable matching always exists, by
giving an algorithm computing it. Their algorithm constructs a stable matching
S with the additional property that for each man m, S(m) �m T (m) for any
stable matching T . In words, in S every man is matched with the best woman
he could ever get in a stable matching. This matching is called the man-optimal
stable matching. The same algorithm also shows the existence of the woman-
optimal stable matching.

1



2 Gale-Shapley algorithm

The Gale-Shapley algorithm proceeds in rounds. In the first round, each man
proposes to his top woman, and each woman selects her most preferred suitor.
In each subsequent round, each rejected man proposes to his next choice, and
each woman selects her most preferred suitor (including her choice from the
previous round). The situation eventually stabilizes, and the woman’s choices
are finalized. They form the man-optimal stable matching.

We can keep track of the workings of the algorithm using a bipartite graph,
which lists for each person their potential spouses. Algorithm 1 follows this
viewpoint.

Algorithm 1 Gale-Shapley

G←M ×W
repeat

top(m)← maxm{w : (m,w) ∈ G} for all m ∈M
best(w)← maxw{m : top(m) = w} for all w ∈W (maxw ∅ = ⊥)
G← {(m,w) : m �w best(w)} (m �w ⊥ for all m ∈M)

until best(w) is defined for all w ∈W
return {(best(w), w) : w ∈W}

It is straightforward to prove by induction that top(m) can only decrease,
best(w) can only increase, and the graph G keeps shedding edges. Moreover,
induction shows that each stable matching is a subgraph of G: indeed, if m ≺w

best(w) then, in any matching where m is matched to w, (best(w), w) is an
unstable pair. At the end, each woman w is matched to a man m such that
top(m) = w. It follows that the matching is the man-optimal stable matching.

Why does the algorithm terminate? Say that a man m and a woman w are
engaged if m = best(w) (and so w = top(m)). Suppose that at some iteration,
the women in Wf are unengaged. Engaged couples come in pairs, so some
man m is unengaged. Either top(m) ∈ Wf , in which case top(m) will become
engaged in the next round, or top(m) is engaged to some m′. In the latter case,
the two men will compete in the next round, resulting in an update of the graph.
So G keeps reducing until all women get engaged.

At the end of the algorithm, it is clear that if m = best(w) then m is the
only man with that property, and so m = minw{m : (m,w) ∈ G}. So not only
is the resulting stable matching man-optimal, but also woman-pessimal.

3 Interval algorithm

The Gale-Shapley algorithm has one disadvantage: it finds only the man-optimal
stable matching. Algorithm 2 finds both the man-optimal and the woman-
optimal stable matchings at the same time.

Considering Algorithm 2, if we change the quantification of p, q to p ∈M and
q ∈ Q, then we get an algorithm very similar to Gale-Shapley. The undirected

2



Algorithm 2 Interval algorithm

I0(m)←W for all m ∈M
I0(w)←M for all w ∈W
t← 0
repeat

topt(p) = maxp It(p) for all p ∈M ∪W
bestt(q) = maxq{p : q = topt(p)} for all q ∈M ∪W
It+1(q)← {p ∈ It(q) : p �q bestt(q)} for all q ∈M ∪W
It+1(p)← It+1(p) \ topt(p) for all p ∈M ∪W such that p /∈ It(topt(p))
t← t+ 1

until It = It−1
return {(m,maxm It(m)) : m ∈M}, {(maxw It(w), w) : w ∈W}

graph G is replaced by a directed graph represented by sets of neighbors I(p).
When a woman removes a man from her neighborhood, he is not immediately
informed of the fact; he will eventually find out, when she becomes his top
choice. The stopping condition is also different, but the proof shows that when
the situation stabilizes, all women are engaged.

In contrast to Gale-Shapley, Algorithm 2 is symmetric in both parties. The
analysis in the previous paragraph should convince the reader that it returns
both the man-optimal and the woman-optimal stable matchings. The rules
updating It(p) ensure that these always remain intervals within p’s preference
order, hence the name Interval algorithm.

4 Three-valued logic

There is a curious connection between Algorithm 2 and three-valued logic. In
three-valued logic, apart from the usual definite boolean values 0, 1 (which we
think of as singletons {0},{1}), we have a further indefinite value ∗ = {0, 1}.
The boolean operators ¬,∧,∨ are generalized in the natural way:

¬x = {¬b : b ∈ x}, x∧y = {b∧c : b ∈ x, c ∈ y}, x∨y = {b∨c : b ∈ x, c ∈ y}.

So we have ¬∗ = ∗, 0 ∨ ∗ = ∗, 1 ∨ ∗ = 1, ∗ ∨ ∗ = ∗, and so on.
Our aim is to reformulate Algorithm 2 using three-valued logic. The sets

It(p) will be replaced by two matrices Mt(m,w), Wt(m,w), defined according
to the following rules (m ∈M , w ∈W ):

Mt(m,w) =


1 w �m maxm It(m)

∗ maxm It(m) �m w �m minm It(m)

0 minm It(m) �m w

Wt(w,m) =


0 m �w maxw It(w)

∗ maxw It(w) �w m �w minw It(w)

1 minw It(w) �w m

3



Since the intervals It(p) always shrink during the course of Algorithm 2,
once a value in M or W becomes definite, it never changes. When does a
value become definite? Suppose that Mt(m,πi(m)) = ∗. The value can change
to 1 only if w , πi−1(m) = maxm It(m) is chopped. That, in turn, happens
if m /∈ It(w). In fact, we must have m ≺w minw It(w), for otherwise (m,w)
would be an unstable pair in any stable matching produced by the algorithm.
So Mt(m,w) = Wt(w,m) = 1. Our reasoning makes it clear that this condition
is not only necessary but also sufficient.

Consider the other case: given that Mt(m,πi(m)) = ∗, when does it change
to 0? That happens when w , bestt(m) �m πi(m). Since m = topt(w), we
see that Wt(w,m) = 0. So if Mt+1(m,πi(m)) = 0, we must have Wt(w,m) =
0 for some w �m πi(m). Conversely, suppose that Wt(w,m) = 0 for some
w �m πi(m). If m �w topt(w) then m = tops(w) at some earlier point in time
s < t. At that point, bests(m) �m w �m πi(m), and so πi(m) /∈ Is+1(m),
contradicting our assumption Mt(m,πi(m)) = ∗. Hence m = topt(w) after all,
and so Mt+1(m,πi(m)) = 0. We have completed the proof of the following
lemma.

Lemma 1. Suppose Mt(m,πi+1(m)) = ∗. Then Mt+1(m,πi+1(m)) = 1 if and
only if

Mt(m,πi(m)) = Wt(πi(m),m) = 1,

and Mt+1(m,πi+1(m)) = 0 if and only if

Wt(πj(m),m) = 0 for some j ≤ i.

Combining the two conditions together, we obtain a recurrence relation for
the array M.

Lemma 2. For all t, Mt(m,π1(m)) = 1. At the beginning of the algorithm,
M0(m,w) = ∗ for w 6= π1(m), and in general

Mt+1(m,πi+1(m)) = Mt(m,πi(m)) ∧
∧
j≤i

Wt(πj(m),m).

Proof. The first step is to relate Lemma 1 to the recurrence equation. We do
this by (implicit) induction on t. Suppose that Mt(m,πi+1(m)) = ∗, and let

R = Mt(m,πi(m)) ∧
∧
j≤i

Wt(πj(m),m).

If R = 1, then the lemma implies that Mt+1(m,πi+1(m)) = 1. Con-
versely, if Mt+1(m,πi+1(m)) = 1 then the lemma implies that Mt(m,πi(m)) =
Wt(πi(m),m) = 1. If i > 1, then the recurrence equation for Mt(m,πi(m))
shows that Wt−1(πj(m),m) = 1 for j ≤ i − 1. As mentioned above, once a
value of W becomes definite it remains constant, and so R = 1.

If Mt+1(m,πi+1(m)) = 0, then the lemma shows that R = 0. Conversely, if
R = 0, then either Mt(m,πi(m)) = 0, or Wt(πj(m),m) = 0 for some j ≤ i. In

4



the first case, the definition of M directly implies that Mt+1(m,πi+1(m)) = 0.
In the latter case, we reach the same conclusion by way of the lemma.

Summarizing, the recurrence equation holds in case Mt(m,πi+1(m)) = ∗. If
Mt(m,πi+1(m)) is boolean, then either all values in R are equal to 1, or at least
one of them is equal to 0. Since boolean values in the arrays remain constant,
the correctness of the recurrence equation for t + 1 follows directly from its
correctness for t.

The lemma allows us to reformulate Algorithm 2 as a three-valued logic
algorithm, Algorithm 3.

Algorithm 3 Interval algorithm, three-valued logic formulation

M0(m,w) =

{
1 w = π1(m)

∗ otherwise

W0(w,m) =

{
0 m = π1(w)

∗ otherwise
t← 0
repeat

Mt+1(m,πi(m)) =

{
1 i = 1

Mt(m,πi−1(m)) ∧
∧

j≤i−1 Wt(πj(m),m) otherwise

Wt+1(w, πi(w)) =

{
0 i = 1

Wt(w, πi−1(w)) ∨
∨

j≤i−1 Mt(πj(w), w) otherwise
t← t+ 1

until Mt = Mt−1 and Wt = Wt−1
SM ← {(m,w) : Mt(m,w) = 1 and Wt(w,m) ∈ {0, ∗}}
SW ← {(m,w) : Wt(w,m) = 0 and Mt(m,w) ∈ {1, ∗}}
return SM , SW

The lemma shows that at the end of Algorithm 3, Mt and Wt correspond
to It at the end of Algorithm 2. The latter algorithm returns the man-optimal
stable matching

TM = {(m,max
m

It(m)) : m ∈M} = {(min
w
It(w), w) : w ∈W}.

The definitions of Mt,Wt makes it plain that SM ⊆ TM . Conversely, sup-
pose that Mt(m,w) = 1 and Wt(w,m) ∈ {0, ∗}. In terms of intervals, w �m

maxm It(m) and m �w minw It(w). So w = maxm It(m) and m = minw It(w),
for otherwise (m,w) would be an unstable pair in TM . We conclude that
SM = TM is the man-optimal stable matching.

5 Subramanian’s algorithm

Subramanian’s paper [3] is concerned with comparator circuits. These can be
thought of as programs in a language with boolean variables and a single in-

5



struction, known as comparison:

(x, y)← (x ∧ y, x ∨ y).

For the sake of computation, we are additionally allowed to initialize some of
the variables by constants.

Lê, Cook and Ye [2] show that if we enlarge the language by allowing three-
valued variables and by adding a negation instruction x← ¬x, then the resulting
program can be simulated by a comparator circuit; this includes a final step in
which each ∗ is replaced by a predetermined value. For more information on
comparator circuits, consult their paper.

Comparator circuits simulate boolean formulas, but they are conjectured not
to simulate general circuits. The problem is with gates whose fan-out is larger
than 1: once a variable is compared against another variable, its original value is
irretrievably lost. Subramanian’s goal was to come up with a comparator circuit
for the stable matching problem. Algorithm 3 cannot be used for this purpose
as it stands, since a value Wt(πj(m),m) is compared against Mt(m,πi(m)) for
all i ≥ j.

The main result of Subramanian’s paper is a comparator circuit algorithm
for stable matching. He presents his algorithm in terms of X-networks; our
presentation follows the one by Lê et al.

Looking at Lemma 1, we see that we only need to consider several values
of Wt(·,m) when checking whether an entry Mt+1(m,πi(m)) changes to zero.
What if we only looked at Wt(πi(m),m)? A zero in Wt(πj(m),m) for j < i will
change Mt+1(m,πj+1(m)) to zero, and the zero will propagate in i− j steps to
M(m,πi+1(m)). This prompts Algorithm 4, which is realizable as a comparator
circuit.

In order to convince ourselves that Algorithm 4 is valid, we show that, in
some sense, Algorithms 3 and 4 simulate each other. Since we will be considering
both algorithms at the same time, it will be convenient to use MI ,WI for
Algorithm 3 and MS ,WS for Algorithm 4.

Lemma 3. If MI(m,w) = b ∈ {0, 1} at the end of Algorithm 3, then MS(m,w) =
b at the end of Algorithm 4. The same is true for W.

Proof. The proof is by induction on the time t in which an entry becomes definite
in Algorithm 3. We only consider M, the proof for W being dual. The lemma is
trivial for entries which become definite during the initialization phase. Suppose
an entry MI

t+1(m,πi+1(m)) = b becomes definite at time t+ 1.
If b = 1 then MI

t (m,πi(m)) = WI
t (πi(m),m) = 1, and so the induction

hypothesis implies that at some time s, MS
s (m,πi(m)) = WS

s (πi(m),m) = 1.
At the following step, MS

s+1(m,πi+1(m)) = 1.
If b = 0, then either MI

t (m,πi(m)) = 0, or WI
t (πj(m),m) = 0 for some

j ≤ i. In the first case, argue as before. In the second, the induction hypoth-
esis implies that at some time s, WS

s (πj(m),m) = 0. At the following step,
MS

s+1(m,πj+1(m)) = 0, and i− j steps later, MS
s+1+i−j(m,πi+1(m)) = 0.

6



Algorithm 4 Subramanian’s algorithm

M0(m,w) =

{
1 w = π1(m)

∗ otherwise

W0(w,m) =

{
0 m = π1(w)

∗ otherwise
t← 0
repeat

Mt+1(m,πi(m)) =

{
1 i = 1

Mt(m,πi−1(m)) ∧Wt(πi−1(m),m) otherwise

Wt+1(w, πi(w)) =

{
0 i = 1

Wt(w, πi−1(w)) ∨Mt(πi−1(w), w) otherwise
t← t+ 1

until Mt = Mt−1 and Wt = Wt−1
SM ← {(m,w) : Mt(m,w) = 1 and Wt(w,m) ∈ {0, ∗}}
SW ← {(m,w) : Wt(w,m) = 0 and Mt(m,w) ∈ {1, ∗}}
return SM , SW

Lemma 4. If MS(m,w) = b ∈ {0, 1} at the end of Algorithm 4, then MI(m,w) =
b at the end of Algorithm 3. The same is true for W.

Proof. The proof is by induction on the time t in which an entry becomes definite
in Algorithm 4. We only consider M, the proof for W being dual. The lemma is
trivial for entries which become definite during the initialization phase. Suppose
an entry MS

t+1(m,πi+1(m)) = b becomes definite at time t+ 1.
If b = 0 then either MS

t (m,πi(m)) = 0 or WS
t (πi(m),m) = 0. In both

cases, the induction hypothesis implies that the same is true at some time s for
MI

s(m,πi(m)) or WI
s(πi(m),m), and so MI

s+1(m,πi+1(m)) = 0.
If b = 1, then MS

t (m,πi(m)) = WS
t (πi(m),m) = 1. The induction hypothe-

sis implies that at some time s, MI
s(m,πi(m)) = WI

s(πi(m),m) = 1. The recur-
rence equation for MI

s(m,πi(m)) in Algorithm 3 implies that WI
s(πj(m),m) =

WI
s−1(πj(m),m) = 1 for all j < i, and so MI

s+1(m,πi+1(m)) = 1.

The two lemmas together imply that at the end of both algorithms, MI =
MS and WI = WS . So Subramanian’s algorithm correctly computes the man-
optimal and woman-optimal stable matchings. Each value of Mt,Wt is used
twice in the computation of Mt+1,Wt+1, once as an input to an ∧ gate and
once as an input to an ∨ gate. In both cases, it is compared against the same
value: indeed Mt(m,w) is always compared against Wt(w,m). This shows that
the algorithm can be implemented as a comparator circuit, if we replace the
repeat-until loop with 2n2 fixed iterations.

7



References

[1] David Gale and Lloyd S. Shapley. College admissions and the stability of
marriage. The American Mathematical Monthly, 69(1):9–15, 1962.

[2] Dai Tri Man Lê, Stephen Cook, and Yuli Ye. A formal theory for the
complexity class associated with the stable marriage problem. In Computer
Science Logic (CSL’11), 2011.

[3] Ashok Subramanian. A new approach to stable matching problems. SIAM
Journal of Computing, 23:671–701, August 1994.

8


