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Abstract
We give a formal definition of generalized planning
that is independent of any representation formal-
ism. We assume that our generalized plans must
work on a set of deterministic environments, which
are essentially unrelated to each other. We prove
that generalized planning for a finite set of en-
vironments is always decidable and EXPSPACE-
complete. Our proof is constructive and gives
us a sound, complete and complexity-wise op-
timal technique. We also consider infinite sets
of environments, and show that generalized plan-
ning for the infinite “one-dimensional problems,”
known in the literature to be recursively enu-
merable when restricted to finite-state plans, is
EXPSPACE-decidable without sequence functions,
and solvable by generalized planning for finite sets.

1 Introduction
Generalized planning, where a single plan works for multiple
environments, has recently been drawing increasing attention
in the AI community [Levesque, 2005; Srivastava et al., 2008;
Bonet et al., 2009]. This form of planning has the advantage
that if a generalized solution is found for a problem class, then
solving any particular instance in the class only requires the
execution of the generalized plan, which is extremely efficient
since no search is needed in the execution.

Consider the following example, which is a slightly simpli-
fied version of the problem proposed by Bonet et al.[2009]:
Figure 1(a) shows a linear grid world, in which the robot, ini-
tially at cell A, can move left and right within the cells, and
can observe whether it is at cell B. The goal is to make it at
B. This problem has a simple sequential plan consisting of
4 consecutive right moves, but a more interesting solution is
the one shown in Figure 1(b), which says “repeatedly move
right, until atB is observed,” in that it does not only solve this
particular instance, but also any linear grid of arbitrary size.

Even in this simple example it is not immediately clear
what it means that the plan “solves any linear grid.” The diffi-
culty comes from the heterogeneity of the problem instances.
For this 1 × 5 example, we may have five boolean fluents to
represent the grid, but for the 1 × 3 case, we may have only
three. So the state space, among other things, is different
across the problem instances. Then, what does it mean that
the plan in Figure 1(b) is a valid solution for all of them?

Figure 1: Grid world example and its generalized plan.

To the best of our knowledge, the closest formal definition
to planning of this type is given by Hu and Levesque [2010] in
the situation calculus. However, they assume a fixed dynamic
domain where the only uncertainty comes from the incom-
plete knowledge about the initial situation. As a result, the
grid problems informally expressed above do not have a di-
rect translation into their framework due to the variable num-
ber of propositions, although they can formulate a variant of
this problem in terms of an unknown integer. Similarly, it
is possible but indirect to understand this problem within the
relational framework of Srivastava et al. [2011].

This raises the question whether one can find a general def-
inition of generalized planning that is independent of any spe-
cific representation. In this paper, we give such a definition,
making only minimal assumptions: we assume that a gener-
alized plan must work on a set of deterministic environments,
each with its own associated goal, whose state spaces may be
completely unrelated, and which share only actions (used in
plans), and observations (used as tests in plans).

We show that our definition is a natural extension of clas-
sical planning, conformant and conditional planning with de-
terministic actions. More importantly it captures and extends
most generalized planning formalisms, including the ones
mentioned above. We argue that our definition facilitates the
research in this area, by presenting new insights into general-
ized planning in both finite and infinite environment sets.

For the finite case, we prove that generalized planning is
always decidable and essentially EXPSPACE-complete. No-
tably, this is the same complexity as conformant and condi-
tional planning under partial observability with deterministic
actions. Our proof is constructive and gives us a sound, com-
plete and complexity-wise optimal technique for generalized
planning in finite environment sets. Interestingly, it turns out
that the technique is based on compilation to classical plan-
ning, similar, in the spirit, to the methods used by Palacios
and Geffner [2009] and Albore et al. [2009].

For the infinite case, we focus on planning for one-
dimensional (1d) problems, which is recursively enumerable



when restricted to finite state controllers, in light of Hu and
Levesque’s finite verifiability theorem [2010]. We give a sim-
pler reformulation of their finite verifiability theorem in our
framework, and further show that concentrating on finite-state
plans as generalized plans is actually not a restriction. Fi-
nally, we prove, somewhat surprisingly, that planning for this
type of infinite environment sets is in fact decidable in EX-
PSPACE, assuming no sequence functions, and solvable by
generalized planning in finite sets.

2 Generalized Planning
When dealing with planning, we need to consider two things:
(i) the agent that executes the plan, and (ii) the environment in
which the agent’s plan is executed. These two parts are usu-
ally merged, together with the goal, in a so-called planning
problem, but to highlight our notion of generalized planning
as synthesizing a plan for multiple environments, we start by
keeping them separated.

Agent. Plans are always executed by some agent, which has
limitations on what it can observe and what actions it can
perform. To formalize this intuition, we define an agent A as
a tuple A = 〈Acts,Obs〉, where
• Acts is a set of actions the agent can perform, and
• Obs is a set of observations the agent can make.

To this, we may add constraints on the behavior of the agent,
e.g., on the sequences of actions that it can perform, in order
to further specify the agent’s “capability.” Such constraints
could be in the form of transition systems, or more generally,
temporal logic formulae over Acts and Obs . Being not a key
element for this paper, we will not elaborate the details here.

Given an agent A = 〈Acts,Obs〉, a plan is a partial func-
tion p : Obs∗ → Acts ∪ {stop}, where stop stands for plan
termination. Such a partial function is required to be prefix
closed: if p(o1, . . . on) is defined, then so is p(o1, . . . oi) for
all i < n. This is a very general notion of plan that com-
pletely abstracts from syntactic or structural characterization
of a plan representation. Such a notion of plan is common
in automated process synthesis [Pnueli and Rosner, 1989] as
well as in POMDP-based planning [Ghallab et al., 2004]. No-
tice that in order to define a plan, we only need the specifica-
tion of the agent. In particular, we do not need any knowl-
edge about the environment the agent acts in, so it is possible
that the plan of an agent can be executed in multiple environ-
ments, which we define next.

Environment. An environment, in which an agent’s plan is
executed, is a tuple E = 〈Events, S, s0, δ〉, where
• Events is the set of all events in the environment;
• S is the internal state space of the environment;
• s0 ∈ S is its initial (internal) state;
• δ : S × Events → S is the (partial) transition function.
As in classical planning we assume the environment is de-

terministic, i.e., there is only one initial state, and every event,
if it happens in one state, may only take the environment to at
most one single next state.

A trace on E is a sequence t = s0e1s1e2 · · · ensn,
where s0 is the initial state of the environment E, and

si = δ(si−1, ei) (and hence δ(si−1, ei) is defined) for all
i = 1, . . . , n. We denote by last(t) the last state sn of t.

A goal for the environment E is a specification of de-
sired traces on E. Note that (possibly by allowing for in-
finite traces) this definition is general enough to capture
several types of goals, including temporally-extended and
long-running (infinite) ones [Bacchus and Kabanza, 1998;
De Giacomo and Vardi, 1999; Pralet et al., 2010]. For the pur-
pose of this paper, however, we only concentrate on classical
reachability goals, consisting in reaching one (anyone) of the
desired states in G ⊆ S. We observe that in order to specify
goals, we only require knowledge about the environment, and
nothing on the agent that acts in such an environment.

Executing an agent’s plan in an environment. In order to
characterize the execution of an agent’s plan in an environ-
ment, we need to know how the agent observations are related
to the environment states, and the agent actions to the events
happening in the environment. In particular, we need:
• An observation function obs : S → Obs , which de-

termines how much of the environment the agent can
observe for the purpose of plan execution, i.e., when se-
lecting an action to perform, the states s1 and s2 cannot
be distinguished by the agent if obs(s1) = obs(s2);
• An execution function exec : Acts → Events , which

determines the events in the environment that the agent
causes by doing its actions. This function enables sepa-
ration between what the agent can do and what changes
the environment may have. This is akin to Srivastava et
al. [2011] where they distinguish between abstract ac-
tions of a plan and concrete actions in its execution.1

Given the observation and execution functions, we can de-
termine the execution of an agent A’s plan p in the environ-
ment E. A run r of plan p in environment E is the trace
trace(p) = s0e1s1e2 · · · ensn such that for all i = 1, . . . , n,
ei = exec

(
p(obs(s0), . . . obs(si−1))

)
. We call r com-

plete if p(obs(s0), . . . obs(sn)) = stop and for all i < n,
p(obs(s0), . . . obs(si)) 6= stop. Notice that a plan, being
deterministic, has at most one complete run in any given en-
vironment.

Basic planning problem. A (basic) planning problem P
consists of an agent A = 〈Acts,Obs〉, an environment
E = 〈Events, S, s0, δ〉 with a goal G for E, and related obs
and exec functions. Formally a basic planning problem is a
tuple P = 〈Acts,Obs,Events, S, s0, δ, G, obs, exec〉 where
all the components are as above. A solution to a basic plan-
ning problem P is a plan p that generates a complete run r
that fulfill the goal, i.e., such that last(r) ∈ G.

Generalized planning problem. A generalized plan-
ning problem P = {P1, P2, . . .} is a (finite or infi-
nite) set of basic planning problems Pi, where all of the
Pi = 〈Acts,Obs,Eventsi, Si, si0, δi, Gi, obsi, execi〉 share
the same agent, i.e., Acts and Obs are kept fixed. A solution

1Notice that for simplicity we assume in this paper that an action
of the agent corresponds to only one event in the environment (as
in Srivastava et al.), but this could possibly be generalized. As an
extreme case, an agent’s action could as well correspond to an entire
sequence, or a program, built from events. We leave exploring this
issue for future research.



for a generalized planning problem P is a plan p, such that p
is a solution for every Pi ∈ P . Intuitively, we require that the
plan p for a fixed agent A = 〈Acts,Obs〉 achieves, on all of
the environments Ei = 〈Eventsi, Si, si0, δi〉, their respective
goals Gi. In other words, p is a solution for the generalized
planning problem iff it generates, for each corresponding en-
vironment Ei, a complete run ri such that last(ri) ∈ Gi.

Example. With the definitions above, we can now formalize
the grid example in the introduction.

Following Bonet et al. [2009], we can use one proposition
for each cell in the grid, and define P = {P1, P2, · · · } with
Pi = 〈Acts,Obs,Eventsi, Si, si0, δi, Gi, obsi, execi〉, where
• Acts = Eventsi = {left, right}, execi is identity,

• Obs = {atB, atB},
• Si = {p0, p0} × {p1, p1} × · · · × {pi, pi},
• si0 = 〈p0, p1, · · · , pi−1, pi〉,
• δi(〈p0, · · · , pl−1, pl, · · · , pi〉, left)

= 〈p0, · · · , pl−1, pl, · · · , pi〉 for l = 1, · · · , i, and
δi(〈p0, · · · , pl, pl+1, · · · , pi〉, right)

= 〈p0, · · · , pl, pl+1, · · · , pi〉 for l = 0, · · · , i− 1,
• Gi = 〈p0, p1, · · · , pi−1, pi〉,

• obsi(s) =

{
atB if s = 〈p0, p1, · · · , pi−1, pi〉,
atB otherwise.

Alternatively, we can appeal to an integer parameter, like
in Hu and Levesque [2010], and get P = {P1, P2, · · · } with
Pi = 〈Acts,Obs,Eventsi, Si, si0, δi, Gi, obsi, execi〉, where
• Acts = Eventsi = {left, right}, execi is identity,

• Obs = {atB, atB}, Si = {0, 1, · · · , i}, si0 = i,
• δi(n, left) = n+ 1 for n = 0, · · · , i− 1, and
δi(n, right) = n− 1 for n = 1, · · · , i,
• Gi = {0},

• obsi(s) =

{
atB if s = 0,

atB otherwise.

This variant is an instance of “one-dimensional planning
problems” discussed later, so we can apply the results there
to generate a plan despite the problem set being infinite.

Relationship to standard planning. Our definition of gen-
eralized planning is a direct generalization of standard forms
of planning studied in the literature [Ghallab et al., 2004].
Classical planning. In a nutshell, classical planning is
generalized planning for singleton environment sets. In-
deed, classical planning can be formulated as P = {P},
where P = 〈Acts,Obs,Events, S, s0, δ, G, obs, exec〉, S
and Events are finite, Acts = Events , exec is the identity
function, Obs = {nil}, and obs(s) = nil for all s ∈ S.

It is well-known that if a plan exists, this can be computed
by solving a reachability problem from the initial state s0 to
some state s ∈ G. The resulting plan is simply a sequence
of actions. We call such plan classical. Classical plans do
not use the history of observations (which are all identical)
except for its size: p(o1, · · · , on) = p(n).
Conditional planning. In our setting, conditional planning
with partial observability, deterministic actions and unknown

initial states can be formalized as P = {P1, · · · , PN}, where
Pi = 〈Acts,Obs,Events, S, si0, δ, G, obs, exec〉 are identi-
cal except for the initial state si0. Here, S and Events are
finite, Acts = Events and exec is the identity function. No-
tice that N can be at most the size of S, which happens when
we know nothing about the initial state.
Conformant planning. We get conformant planning by fur-
ther requiring that the agent has no observability, i.e., Obs =
{nil} and obs(s) = nil for all s ∈ S.
Computational complexity. The computational complexity
of classical planning is a direct consequence of the com-
plexity of reachability in graphs, which is NLOGSPACE-
complete. Observe that we typically adopt a compact (i.e.,
logarithmic) representation of various elements of the plan-
ning problems, for example by using propositions to denote
states and computing the transitions δ directly on such propo-
sitions.2 In this case, assuming that the graph correspond-
ing to the domain can be constructed on-the-fly, while doing
the reachability test for the goal, and by Savitch’s theorem
NSPACE (f(n)) ⊆ DSPACE (f(n)

2
), we get that classical

planning is PSPACE-complete [Bylander, 1994].
Conditional planning with partial observability, and con-

formant planning, with deterministic actions, require an ex-
ponential blow up of the states of the graph to be visited
and as a result are PSPACE-complete in the size of Pi, and
EXPSPACE-complete assuming a compact representation of
Pi [Haslum and Jonsson, 1999; Rintanen, 2004]. Interest-
ingly, this bound holds also for temporally extended and long
running goals [De Giacomo and Vardi, 1999].

3 Finite Case
We now focus on generalized planning, assuming, like in the
standard cases discussed above, a finite set of basic plan-
ning problems. We devise a sound and complete technique
for generalized planning in this case, which gives us an
EXPSPACE-complete characterization of the complexity of
the problem (assuming a compact representation). Interest-
ingly, the technique can be seen as a compilation of general-
ized planning into classical planning, in the spirit of Palacios
and Geffner [2009] and Albore et al. [2009], although our
focus is on understanding the computational complexity, in-
stead of achieving maximal efficiency as they do.

Formally, the generalized planning problem we study in
this section is of the form P = {P1, . . . , PN}, where each
Pi = 〈Acts,Obs,Eventsi, Si, si0, δi, Gi, obsi, execi〉. Note
that only Acts and Obs are shared across the various prob-
lems, and all other elements may differ.

To solve this problem, we use action vectors introduced by
De Giacomo and Vardi [1999] in the context of conditional
planning with partial observability for temporally-extended
goals. We start by enumerating the (finite) basic problems
from 1 to N . In this way, we can consider action vectors
of the form ~a = 〈a1, . . . , aN 〉, with one separate action

2We want to stress that assuming there are formalisms able to
represent every planning problem compactly is not realistic. Indeed,
the number of possible transition functions δ is |S||S|, while the
number of transition functions distinguishable withO(log(|S|)) bits
is 2O(log(|S|)) = |S|O(1). In many cases, however, compact repre-
sentations do exist, using planning languages like STRIPS or PDDL.



ai for each problem Pi in the set P . Now, we consider
sequences of action vectors. Notice that, if we project
such an action vector sequence on component i we get a
classical plan pi for problem Pi (i = 1, . . . , N ). However,
in order for the sequences of action vectors to be considered
a solution for the generalized planning problem P , we must
require that, for each observation history o0 · · · ok such that
both pi and pj are defined, pi(o0 · · · ok) = pj(o0 · · · ok),
for i, j = 1, . . . , N , i.e., if pi and pj have received the
same observation so far, they must return the same ac-
tion. To do so, we maintain an equivalence relation,
which records whether pi and pj currently must return the
same action. With this intuition in mind, we now show
how to reduce the generalized planning problem P to a
classical planning PP . Specifically, we construct PP =
〈ActsP ,ObsP ,EventsP , SP , sP0, δP , GP , obsP , execP〉,
with ActsP = EventsP , execP being the identity function,
ObsP = {nil}, and obsP(s) = nil for all s ∈ S, as always
for classical planning, and

• ActsP = (Acts ∪ {stop})N , i.e., the set of N -vectors
of actions from Acts plus a special stop action;

• SP = S1×· · ·×SN ×Eq ×Goals , where Eq is the set
of equivalence relations on {1, . . . , N}, discussed above
(the size of Eq is 2N

2

), and Goals is all possible subsets
of {1, . . . , N}, which records for which problems the
goal has been fulfilled (the size of Goals is 2N );

• sP0 = 〈s10, . . . , sN0, e0, g0〉, where the initial equiva-
lence relation e0 = {〈i, j〉 | obsi(si0) = obsj(sj0)}
records which basic planning problems get the same ob-
servations in their initial states, and g0 = {i | si0 ∈ Gi}
lists the problems whose goals are satisfied initially.

• δP(〈s1, . . . , sN , e, g〉, 〈a1, . . . , aN 〉) = 〈s′1, . . . , s′N , e′, g′〉,
where

– 〈i, j〉 ∈ e then ai = aj , that is, if two plans have
received the same observations so far, they must re-
turn the same action;

– if ai = stop, then si ∈ Gi, that is, the execution
can legally terminate only in goal states;

– s′i = δi(si, execi(ai)), if i 6∈ g′, and s′i = si other-
wise, that is, compute the next state for all Pi;

– e′ = {〈i, j〉 | 〈i, j〉 ∈ e and obsi(s
′
i) = obsj(s

′
j)},

that is, update the equivalence relation eliminating
from it those plan for which if the observation in
the resulting state is different;

– g′ = {i | i ∈ g or ai = stop}, that is, update the
list of problems whose goals have been achieved.

• GP =
{
〈s1, . . . , sN , e, gf 〉 | gf = {1, . . . , N}

}
, that

is, we want to reach a state where all the goals Gi of the
problems Pi have been fulfilled.

Theorem 1 (Soundness and Completeness). The generalized
planning problem P has a solution iff the classical planning
problem PP has one.

Note that the technique is constructive, and allows for ex-
tracting the generalized plan by unpacking the action vectors
in the sequential plan. Such a generalized plan can easily be
put into a more convenient tree-like finite-state form.

Next we turn to computational complexity. By building PP
on-the-fly, we can check reachability of states inGP in a state
space of size: O((Πi=1,...,N |Si|) × |Eq | × |Goals|)), where
|Eq| = 2N

2

and |Goals| = 2N . This can be done by a nonde-
terministic algorithm needingO((Σi=1,...,N , log |Si|)+N2+
N)) bits, which, assuming N and the maximum of the |Si|
to be comparable, gives us a PSPACE upper bound (recall
NPSPACE=PSPACE). A matching lower bound can be ob-
tained considering that checking the non-emptiness of the
intersection of N deterministic finite state automata over
the same alphabet is PSPACE-complete [Garey and John-
son, 1979]. Such non-emptiness can be readily casted as a
simplified generalized planning problem, where each com-
ponent basic planning problem represents an automaton (us-
ing the goal as final states), and where there is no observa-
tion or distinction between actions and events. Finally, if we
adopt a compact representation of the planning problems Pi,
then generalized planning problem P becomes EXPSPACE-
complete, as conformant/conditional planning. So we have:

Theorem 2 (Complexity). Generalized planning in the finite
case is PSPACE-complete (EXPSPACE-complete with respect
to a compact representation).

4 Infinite Case
Next we move on to the general case, where the set of ba-
sic planning problems in the generalized planning problem is
infinite, and briefly study its relationship to the recently pro-
posed approaches to generalized planning [Bonet et al., 2009;
Pralet et al., 2010; Hu and Levesque, 2010; Srivastava et
al., 2011]. All these approaches aim at finding or charac-
terizing generalized plans with a finite-state representation to
solve classes of deterministic problems containing possibly
infinitely many instances. Although they adopt different for-
malisms, they all fit into our definition of generalized plan-
ning which in facts inherits elements from all of them.

Bonet et al. [2009] synthesize a finite-state plan (con-
troller) for a propositional problem, which often also solves
“similar” problems, like the linear grid example in the intro-
duction. They implicitly assume that the “similar” problems
all share the same actions and observations, but formally not
much else (although intuitively they share some structure).
We built our framework directly on this intuition. To capture
their intuition on generalization in our framework, we simply
need to create a basic planning problem in the set for each of
their problems. The same treatment also captures the goal-
oriented control problems of Pralet et al. [2010], although
their safety-oriented and mixed problems require temporally
extended goals in our framework as mentioned in Section 2.

Hu and Levesque [2010] formalize generalized planning in
the situation calculus as a basic action theory with incomplete
information about the initial situation. We share with them an
approach that is well cut to get formal guarantees, though our
representation is not based on specific logical formalisms. A
natural translation from theirs involves defining a basic plan-
ning problem for each interpretation of their action theory.

Srivastava et al. [2008; 2011] learns a generalized plan for
a relational domain (e.g., PDDL problems) from example so-
lutions to selected problems. Due to varying objects, the
problem instances in the domain may have different ground



actions, but the plan may only have finitely many fixed ac-
tions. For this reason, “abstract actions” are used in their
plan, i.e., actions whose arguments are not concrete objects in
the domain, but instead what roles those objects must be in,
where the role of an object is the set of all unary predicates
it satisfies in the state. We share with them the distinction
between actions performed by the agent and their execution
in the environment. In particular, to capture their relational
problems in our framework, we use their abstract actions as
our agent actions, and create multiple basic planning prob-
lems with different exec functions to capture all possible con-
cretizations of the abstract actions. The generalized planning
problem is then the union of all basic planning problems ob-
tained from each problem instance in their relational domain.

All three approaches above assume a finite-state represen-
tation for the plans. Recall that our plan is defined as a func-
tion Obs∗ → Acts ∪ {stop}. In order to bridge this def-
inition to what is commonly used in the literature, we call
plan p : Obs∗ → Acts ∪ {stop} to have a state form,
if there is a set Q of plan states {q0, q1, · · · } and functions
σ : Q×Obs → Q and α : Q×Obs → Acts , such that

p(obs(s0), · · · , obs(sn)) =
α
(
q(obs(s0), · · · , obs(sn)), obs(sn)

)
q(obs(s0), · · · , obs(sn)) ={

q0 if n = 0
σ
(
q(obs(s0), · · · , obs(sn−1)), obs(sn)

)
if n > 0

By noting that we can use a plan state for each possible ob-
servation history, it is immediate to see that every generalized
plan has a state form. However, we get a notable case when
the set Q of plan states is finite, that is, p is a finite-state plan,
which is indeed the form of generalized plan most used in the
literature. Intuitively, the nodes in their graphical plan repre-
sentation can be seen as the plan states, and the labeled edges
represent the σ and α functions.

We close this discussion by arguing that our framework can
facilitate research in generalized planning, not only by offer-
ing a common ground for existing approaches, but also by
bringing more insight into the structure of the planning prob-
lems. As an example, we revisit Hu and Levesque’s “one-
dimensional problems” [2010], and strengthen their results.

One-dimensional planning problems. Intuitively, one-
dimensional problems model cases where an unknown and
unbounded number of entities exist, which require indepen-
dent treatment to achieve the goal. Examples include tree-
chopping [Levesque, 2005], delivery [Srivastava et al., 2008],
trash-collection [Bonet et al., 2009], etc.

Here, for a cleaner presentation we adopt a slightly sim-
plified version of one-dimensional problems wrt [Hu and
Levesque, 2010], namely, we assume that all their finite flu-
ents are binary, and there is no sequence function in the do-
main. Our results can be extended to deal with the original
version as well, although it requires further elaboration.

Formally, a generalized problemP = {P0, P1, · · · } is one-
dimensional (simplified), or 1ds, if all

Pi = 〈Acts,Obs,Events, Si, si0, δi, G, obsi, exec〉

share the same Acts , Obs , Events , G and exec, and

1. Si = {〈n,~b〉 | n ∈ {0, · · · , i},~b ∈ {true, false}m};

Figure 2: Plan construction for a 1ds generalized planning
problem from a plan for its finite subset.

2. si0 = 〈i,~b0〉;

3. if δi(〈n,~b〉, e) = 〈n− d,~b′〉 for n > 0, then d ∈ {0, 1};
furthermore, for all n′ > 0, δi(〈n′,~b〉, e) = 〈n′ − d,~b′〉;

4. G ⊆ {0} × {true, false}m;

5. obsi(〈n1,~b〉) = obsi(〈n2,~b〉) for all n1, n2 > 0.

Intuitively, n in the state tuple 〈n,~b〉 denotes the number
of unprocessed entities, and ~b = 〈b1, · · · , bm〉 represent all
the m boolean properties of those entities in the environment.
Condition 5 above requires that states only differing in their
non-zero integer part are observationally indistinguishable; 3
enforces that the objects can only be processed one-by-one
and independently; 2 says that the initial states are similar
except for the number of objects; finally, 4 indicates that the
goal is achieved only when all objects are processed with cer-
tain properties satisfied.

The key result for one-dimensional problems is Hu and
Levesque’s Theorem 1 on the finite-verifiability [2010]. In
our framework, we have the following analogous but nota-
tionally much simpler theorem.
Theorem 3. Given a 1ds problem P = {P0, P1, · · · } and
a finite-state plan p with l plan states, if p is a plan for
{P0, P1, · · · , PN}, where N = l · 2m + 1, with m being
the number of booleans in each state, then p is a plan for P .

With our machinery in place, we can further strengthen this
result by showing that finite-state plans are all we need for 1ds
problems.
Theorem 4. If a 1ds generalized planning problem has a
plan, then it has a finite-state plan.3

This makes planning for 1ds problems at least recursively
enumerable. To see this, we only need to enumerate and ver-
ify all finite-state plans with 1, 2, 3, · · · plan states, and the
algorithm is guaranteed to terminate with a valid plan, as long
as one exists. Actually, we can prove a much stronger result.
Theorem 5. A 1ds generalized problem P = {P0, P1, · · · }
has a plan, if and only if the finite setP ′ = {P0, P1, · · · , PN}
has a plan where N = 2m, with m being the number of
boolean components in each state.

Proof sketch. The “only if” direction is trivial, so we focus on
the “if” direction. Suppose we are given a plan p that solves
P ′. Without loss of generality, by Theorem 1, we can assume
that p is a tree-like finite-state plan, as shown in Figure 2(a).

3The proof follows the line of the one for Theorem 5 below,
which can be seen as a refinement of this theorem.



Now consider the execution of p on the basic problem PN : if
p decreases n from N to 0, then there must be at least N + 1
states with different integers in the run, but there are at most
N = 2m boolean combinations, so at least two states in the
run have identical boolean states. Let them be 〈N − u,~b∗〉
and 〈N −u−v,~b∗〉, respectively, and the corresponding plan
states be qu and qv , as shown in the figure by the bold dots.
Then, we redirect the incoming edge to qv into qu, and discard
the sub-tree starting from qv , as shown in Figure 2(b). This
gives us a finite-state plan p′ as shown in Figure 2(c), which
is a generalized plan forP . To see this, for any basic planning
problem Pk where k > N , the execution of p′ will enter qu in
state 〈k−u,~b∗〉. If k−u > v, the execution of p′ will follow
the loop and enter qu again in state 〈k−u−v,~b∗〉. This repeats
until 〈v′,~b∗〉 is reached at qu for some v′ ≤ v. From there,
the execution of p′ is guaranteed to terminate and achieve the
goal, in the same way p runs onPv′+u ∈ P ′. This is due to the
fact that v′ + u ≤ N , and that qu is reached in the very state
〈v′,~b∗〉 when running p on Pv′+u, from which p terminates
and achieves the goal without ever reaching qv .

Theorem 5 gives us a sound and complete algorithm to
solve 1ds problems: given problem P = {P0, P1, · · · }, we
use any existing approach, possibly the reduction to classical
planning introduced above, to find a generalized plan for the
finite problem set {P0, P1, · · · , PN}. If a plan is found, we
can construct a finite-state plan that works for P using the
construction sketched above; otherwise, no plan exists for P .

In fact, from Theorem 5 considering that we can extract
in polynomial time a looping plan from a tree-like plan ac-
cording to the above construction, we get the following com-
plexity upper bound (notice that 1ds problems use a compact
problem representation by definition).
Theorem 6. Generalized planning for 1ds problems is
EXPSPACE.4

We close this section by observing that these results im-
ply that the iterative procedure for planning in 1ds problems
presented by Hu and Levesque [2009] is in fact sound, com-
plete and terminating in 2EXPTIME (notice that the num-
ber of plan states is bounded by 2m). With these guarantees,
such an iterative procedure, though not optimal with respect
to computational complexity, can be quite effective in prac-
tice, since it explores simple solutions first.

5 Conclusion
We presented a framework that may serve the scientific com-
munity as a tool to increase the understanding of general-
ized planning and identify, among possibly other things, more
general problem classes with interesting correctness and com-
putational properties. We close the paper by noting that the
framework can readily be extended to consider different kinds
of goals, such as temporally-extended and long running ones.
In fact, the results for the finite case can be extend to goals in
linear temporal logic, by using techniques for automata on in-
finite strings, along the line of De Giacomo and Vardi [1999].

4If sequence functions are introduced as in [Hu and Levesque,
2010], the same line of reasoning as above will give us a 2EXPTIME
upper bound.

Acknowledgements. We thank Hector Geffner for interest-
ing discussions that motivated our work, and we thank Hector
Levesque, Sheila McIlraith, and the KR group at the Univer-
sity of Toronto, for feedback on how to improve the formal-
ization. We acknowledge the support of EU Project FP7-ICT
ACSI (257593).

References
[Albore et al., 2009] Alexandre Albore, Héctor Palacios, and
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