A Correctness Result for Reasoning about One-Dimensional Planning Problems

Yuxiao (Toby) Hu Hector J. Levesque

Department of Computer Science University of Toronto

 ${yuxiao, hector}@cs.toronto.edu$

July 20, 2011

Previously presented at KR'10

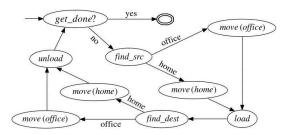
- Classical planning produces action sequences in complete worlds.
 - e.g.: given, obj1 at home, obj2 in office and a truck, make obj1 be in office and obj2 at home.
 - Resulting sequential plan only works for this particular setting.

- Classical planning produces action sequences in complete worlds.
 - e.g.: given, obj1 at home, obj2 in office and a truck, make obj1 be in office and obj2 at home.
 - Resulting sequential plan only works for this particular setting.
- Conditional planning allow incomplete knowledge by allowing branching on run-time world states.
 - e.g.: given a truck, obj1 and obj2, location and destination unknown, make both objects be at their destinations.
 - Resulting tree-like plan can handle 16 different cases.

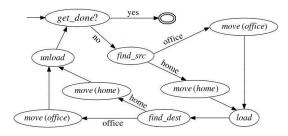
2 / 18

- Classical planning produces action sequences in complete worlds.
 - e.g.: given, obj1 at home, obj2 in office and a truck, make obj1 be in office and obj2 at home.
 - Resulting sequential plan only works for this particular setting.
- Conditional planning allow incomplete knowledge by allowing branching on run-time world states.
 - e.g.: given a truck, obj1 and obj2, location and destination unknown, make both objects be at their destinations.
 - Resulting tree-like plan can handle 16 different cases.
- An even more general form of planning?
 - Given a truck and an unknown number of objects, make them all be at their desired destination!
 - Incomplete knowledge about number results in infinitely many cases.

An intuitive plan:



An intuitive plan:



Questions:

- How do we characterize a planning problem that requires loopy plans?
- What exactly is a plan with loops?
- When is a plan "correct" for a problem?
- **4** ...

Outline of the Talk

- Planning with Loops
- A Formal Notion of Correctness
- Finite Verifiability
- Conclusion

FSAPLANNER (Hu & Levesque 09) generates plans with loops by

- generating a plan with loops that works for small instances;
- esting if the plan also works for other instances. (If not, return to Step 1.)

FSAPLANNER (Hu & Levesque 09) generates plans with loops by

- generating a plan with loops that works for small instances;
- testing if the plan also works for all (?) other instances. (If not, return to Step 1.)

Plan Verification...

• Ideally, a candidate plan may pass the testing phase, only if it works for *all* instances of the planning problem.

FSAPLANNER (Hu & Levesque 09) generates plans with loops by

- generating a plan with loops that works for small instances;
- testing if the plan also works for all (?) other instances. (If not, return to Step 1.)

Plan Verification...

- Ideally, a candidate plan may pass the testing phase, only if it works for *all* instances of the planning problem.
- However, this seems impossible with infinitely many cases.

FSAPLANNER (Hu & Levesque 09) generates plans with loops by

- generating a plan with loops that works for small instances;
- testing if the plan also works for some other instances. (If not, return to Step 1.)

Plan Verification...

- Ideally, a candidate plan may pass the testing phase, only if it works for *all* instances of the planning problem.
- However, this seems impossible with infinitely many cases.
- In practice, we only test against finitely many larger instances.

FSAPLANNER (Hu & Levesque 09) generates plans with loops by

- generating a plan with loops that works for small instances;
- testing if the plan also works for some other instances. (If not, return to Step 1.)

Plan Verification...

- Ideally, a candidate plan may pass the testing phase, only if it works for *all* instances of the planning problem.
- However, this seems impossible with infinitely many cases.
- In practice, we only test against finitely many larger instances.

Needed: finite verification with general correctness guarantee!

Contributions

In this paper, we

- formally define a representation (FSA plan) for plans with loops;
- identify a class of (one-dimensional) planning problems whose plan correctness can be finitely verified:
- show that this verification algorithm enables FSAPLANNER to efficiently generate provably correct plans for this problem class.

6 / 18

The Situation Calculus

The situation calculus is a multi-sorted logic for modeling dynamic environments, with sorts *situation*, *action* and *object*.

- S_0 is the unique initial situation, and do(a, s) is the situation obtained by performing action a in situation s.
- Changing properties modeled by fluents, i.e., functions and predicates whose last argument is a situation term, e.g.,

$$loc(S_0) = home \land Loaded(do(load, S_0)).$$

- Poss(a, s) is a special relation that holds iff action a is executable in situation s.
- SR(a, s) denotes the sensing result of action a when performed in situation s.

Problem Representation

The dynamics of a planning problem is axiomatized by a Basic Action Theory (Reiter 01) with sensing (Scherl & Levesque 03)

$$\Sigma = \mathcal{FA} \cup \Sigma_{\textit{una}} \cup \Sigma_{\textit{pre}} \cup \Sigma_{\textit{ssa}} \cup \Sigma_{\textit{sr}} \cup \Sigma_{0}.$$

Problem Representation

The dynamics of a planning problem is axiomatized by a Basic Action Theory (Reiter 01) with sensing (Scherl & Levesque 03)

$$\Sigma = \mathcal{FA} \cup \Sigma_{\textit{una}} \cup \Sigma_{\textit{pre}} \cup \Sigma_{\textit{ssa}} \cup \Sigma_{\textit{sr}} \cup \Sigma_{0}.$$

Definition

A planning problem is a pair $\langle \Sigma, G \rangle$, where Σ is a basic action theory and G is a situation-suppressed goal formula.

Problem Representation

The dynamics of a planning problem is axiomatized by a Basic Action Theory (Reiter 01) with sensing (Scherl & Levesque 03)

$$\Sigma = \mathcal{FA} \cup \Sigma_{\textit{una}} \cup \Sigma_{\textit{pre}} \cup \Sigma_{\textit{ssa}} \cup \Sigma_{\textit{sr}} \cup \Sigma_{0}.$$

Definition

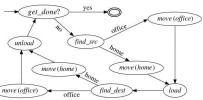
A planning problem is a pair $\langle \Sigma, G \rangle$, where Σ is a basic action theory and G is a situation-suppressed goal formula.

Both infinite domain and incomplete initial state allowed.

Plan Representation

We use a finite-state automaton-like plan representation (called FSA plan), which can be viewed as a directed graph, where

- Each node represents a program state
 - One unique "start state"
 - One unique "final state"
 - Non-final states associated with action



• Each edge labeled with a sensing result (omitted for non-sensing).

Plan Representation

To formalize FSA plans, we introduce a new sort "program states" with Q_0 and Q_F being two constants, and a set of axioms FSA, consisting of

domain closure axioms for program states

$$(\forall q).q = Q_0 \lor q = Q_1 \lor \cdots \lor q = Q_n \lor q = Q_F;$$

unique names axioms for program states

$$Q_i \neq Q_j \text{ for } i \neq j$$
;

action association axioms

$$\gamma(Q)=A;$$

transition axioms

$$\delta(Q,R)=Q'$$
.

We use T(q, s, q', s') to denote legal one-step transitions, *i.e.*,

$$T(q, s, q', s') \stackrel{def}{=} \exists a, r. \ \gamma(q) = a \land Poss(a, s) \land SR(a, s) = r \land \delta(q, r) = q' \land s' = do(a, s)$$

We use T(q, s, q', s') to denote legal one-step transitions, i.e.,

$$T(q, s, q', s') \stackrel{def}{=} \exists a, r. \ \gamma(q) = a \land Poss(a, s) \land SR(a, s) = r \land \delta(q, r) = q' \land s' = do(a, s)$$

 $T^{\star}(q,s,q',s')$ denotes the reflexive transitive closure of T, *i.e.*, $T^{\star}(q,s,q',s')$ is true iff starting from program state q and situation s, the FSA plan may reach state q' and situation s'

We use T(q, s, q', s') to denote legal one-step transitions, i.e.,

$$T(q, s, q', s') \stackrel{def}{=} \exists a, r. \ \gamma(q) = a \land Poss(a, s) \land SR(a, s) = r \land \delta(q, r) = q' \land s' = do(a, s)$$

 $T^{\star}(q,s,q',s')$ denotes the reflexive transitive closure of T, i.e., $T^{\star}(q,s,q',s')$ is true iff starting from program state q and situation s, the FSA plan may reach state q' and situation s', then plan correctness is defined by:

Definition

Given a planning problem $\langle \Sigma, G \rangle$, where Σ is an action theory and G is a goal formula, a plan axiomatized by FSA is correct iff

$$\Sigma \cup FSA \models \exists s. T^*(Q_0, S_0, Q_F, s) \land G[s].$$

4□ > 4□ > 4□ > 4□ > 4□ > 900

We use T(q, s, q', s') to denote legal one-step transitions, *i.e.*,

$$T(q, s, q', s') \stackrel{def}{=} \exists a, r. \ \gamma(q) = a \land Poss(a, s) \land SR(a, s) = r \land \delta(q, r) = q' \land s' = do(a, s)$$

 $T^{\star}(q,s,q',s')$ denotes the reflexive transitive closure of T, i.e., $T^{\star}(q,s,q',s')$ is true iff starting from program state q and situation s, the FSA plan may reach state q' and situation s', then plan correctness is defined by:

Definition

Given a planning problem $\langle \Sigma, G \rangle$, where Σ is an action theory and G is a goal formula, a plan axiomatized by FSA is correct iff

$$\Sigma \cup FSA \models \exists s. T^*(Q_0, S_0, Q_F, s) \land G[s].$$

Need Second-Order Reasoning!

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ 壹 めなで

One-Dimensional Planning Problems

A planning problem $\langle \Sigma, G \rangle$ is *one-dimensional* if (intuitively)

- Only one fluent p (called the planning parameter) may take unbounded values from natural numbers;
- All functions other than p take values from a finite set, and apart from a possible situation argument
 - either have no argument (finite functions),
 - or have p as its argument (sequence functions);
- Initially, p may be an arbitrary natural number;
- The only effect on p is to decrease it by one, i.e.,

$$p(do(a, s)) = x \equiv x = p(s) - 1 \land Dec(a) \lor x = p(s) \land \neg Dec(a);$$

• The only primitive test involving p in Σ and G is p = 0.

Intuitions on Finite Verifiability

 Suppose we are given a one-dimensional planning problem and a candidate FSA plan.

Intuitions on Finite Verifiability

- Suppose we are given a one-dimensional planning problem and a candidate FSA plan.
- We have verified that the FSA plan correctly achieves the goal for

$$p(S_0) = 0, 1, 2, \cdots, N.$$

Intuitions on Finite Verifiability

- Suppose we are given a one-dimensional planning problem and a candidate FSA plan.
- We have verified that the FSA plan correctly achieves the goal for

$$p(S_0) = 0, 1, 2, \cdots, N.$$

• Can we now conclude that the FSA plan is correct in general??

The Main Theorem

Theorem

Suppose $\langle \Sigma, G \rangle$ is a one-dimensional planning problem with planning parameter p, and FSA axiomatizes an FSA plan. Then there is an N₀ such that

$$\begin{array}{ll} \textit{If} & \Sigma \cup \textit{FSA} \cup \{p(S_0) \leq \textit{N}_0\} \; \models \exists \textit{s.} \; \textit{T}^{\star}(\textit{Q}_0, S_0, \textit{Q}_\textit{F}, \textit{s}) \land \textit{G}[\textit{s}], \\ & \textit{then} & \Sigma \cup \textit{FSA} \models \exists \textit{s.} \; \textit{T}^{\star}(\textit{Q}_0, S_0, \textit{Q}_\textit{F}, \textit{s}) \land \textit{G}[\textit{s}]. \end{array}$$

The Main Theorem

Theorem

Suppose $\langle \Sigma, G \rangle$ is a one-dimensional planning problem with planning parameter p, and FSA axiomatizes an FSA plan. Then there is an N₀ such that

If
$$\Sigma \cup FSA \cup \{p(S_0) \leq N_0\} \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s],$$

then $\Sigma \cup FSA \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s].$

The Main Theorem

Theorem

Suppose $\langle \Sigma, G \rangle$ is a one-dimensional planning problem with planning parameter p, and FSA axiomatizes an FSA plan. Then there is an N₀ such that

In particular, $N_0 = 2 + k \cdot l^m$, where

- m is the number of finite and sequence functions in Σ ;
- each such fluent may take at most / different values;
- k is the number of the program states in the FSA plan.

Towards a Tighter Bound

- N_0 is exponential and thus impractical for many cases.
- We proposed an algorithmically obtained bound N_t (Theorem 2), which is usually much smaller than N_0 , such that

If
$$\Sigma \cup FSA \cup \{p(S_0) \leq N_t\} \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s],$$

then $\Sigma \cup FSA \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s].$

Towards a Tighter Bound

- N_0 is exponential and thus impractical for many cases.
- We proposed an algorithmically obtained bound N_t (Theorem 2), which is usually much smaller than N_0 , such that

If
$$\Sigma \cup FSA \cup \{p(S_0) \leq N_t\} \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s],$$

then $\Sigma \cup FSA \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s].$

With Theorem 2, we can verify that an FSA plan is correct in general by verifying that it is correct for $p(S_0) = 0, 1, 2, \dots N_t$.

Experimental Results

We used the different bounds in the test phase of FSAPLANNER on four one-dimensional planning problems (treechop, variegg, safe and logistic).

Problem	treechop	variegg	safe	logistic
N_{man}^*	100	6	4	5
Time (secs)	0.1	0.12	0.09	3.93
N_0	18	345	4098	514
Time (secs)	0.03	$> 1 \; day$	$>1\;day$	> 1 day
N_t	2	3	2	2
Time (secs)	0.01	0.08	0.08	3.56

^{*:} N_{man} is the manually estimated test bound without correctness guarantee.

Conclusion and Future Work

Planning with loops is an interesting and challenging problem. In this paper, we

- define a generalized plan representation that allows loops;
- give a formal notion of plan correctness under this representation;
- identify the class of one-dimensional problems whose correctness can be finitely verified;
- show that a planner based on this theoretical result efficiently generates provably correct plans for one-dimensional problems.

Conclusion and Future Work

Planning with loops is an interesting and challenging problem. In this paper, we

- define a generalized plan representation that allows loops;
- give a formal notion of plan correctness under this representation;
- identify the class of one-dimensional problems whose correctness can be finitely verified;
- show that a planner based on this theoretical result efficiently generates provably correct plans for one-dimensional problems.

Future work:

• Investigate correctness guarantee for more general classes.

Related Work

- Simple problems for KPLANNER (Levesque 2005);
- Goal achievability for rank 1 theories (Lin 2008);
- Extended-LL problems (Srivastava et al. 2008);
- Abacus programs (Srivastava et al. 2010);
- Deductive approaches (Manna&Waldinger 1987, Magnusson&Doherty 2008):
- Weak guarantee (Winner&Veloso 2007, Bonet et al. 2009);
- Model checking (Clarke et al. 1999).

