A Declarative Semantics for a Subset of PDDL
with Time and Concurrency
Master Thesis Project in RWTH Aachen, Germany

Yuxiao (Toby) Hu

PT263
yuxiao@cs.toronto.edu

April 20, 2007

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007



Outline

@ Background and Motivation

© Preliminaries
@ The Situation Calculus
@ The Logic £S
@ The PDDL
@ Existing Work and Project Goal

© Declarative Semantics of PDDL
@ Numerical Expressions
@ Durative Actions
@ Correctness
@ Limitations of Interleaved Concurrency

@ Conclusion and Future Work

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007



@ Planning and action languages have developed independently
& Planning
@ Given an initial state, a set of action operators and a goal
state, find a sequence of actions to achieve the goal.
o Efficient but less expressive

o Action formalisms

o Concentrate more on the underlying logic
& Expressive but less efficient

@ Goal: Bring the two together, e.g. planners in GOLOG

© GOLOG generates a sub-goal

@ PDDL as interface

© Solve the sub-goal with an external planner
@ Return the plan to GoLOG

@ Needed: A declarative semantics of PDDL

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 3/25



The Situation Calculus

The Logic £S

The PDDL

Existing Work and Project Goal

The Situation Calculus

@ A dialect of FOL for reasoning about dynamic world.

@ First introduced by McCarthy and later refined by Reiter.
@ Syntax:

~Holding(Objs, So) A Holding (Obj5, do (pickup(Objs), 50))

@ Basic action theory ¥ = FAU L p5 U X pre U Xpost U Lo
o FA: foundational axioms for situations

® X ,nat Unique names axioms
o ¥, precondition axiom Poss(A(X),s) = ma(X, )
9 ¥ p0ei successor state axioms F (%, do(a,s)) = ®¢(X,a, s) or

(X7 do(a, S)) =y = q) (X7y7 a, S)
@ Yo: initial database

@ Theoretical foundation of action language GOLOG

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 4/25



d The Situation Calculus
Preliminaries The Logic £S
antics of PDDL The PDDL
Existing Work and Project Goal

@ Introduced by Lakemeyer and Levesque 2004

@ An extension of the logic OL with useful fragment of the
situation calculus

@ Simplifies definitions and proofs in situation calculus

o Fixed universe of discourse: Countably infinite standard names
(objects, actions)
@ No explicit situation terms
@ [a]a: « holds after action a
@ Oa: « holds after any sequence of actions
o Basic action theory ¥ = X ;e U X 505t U 2
& X, precondition axiom [Poss(a) = I
O X os: successor state axiom H[a]F(X) = ®£(X, a)
@ Y,: initial database

@ Powerful enough to capture GOLOG

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007



The Situation Calculus

The Logic £S

The PDDL

Existing Work and Project Goal

Regression and Progression

Two solutions to evaluate a formula mentioning non-initial situations (the
projection problem):

@ Regression:
Transform the sentence to an equivalent one (wrt the BAT)
mentioning only the initial situation, and evaluate the transformed

formula, e.g.
R[Z'taF(tla" )]_R[Z (’YF)?)E

@ Progression:
Update the initial database through actions, and evaluate the
formula with the current database.
Y, is the progression of X through r iff

Q X, isin (r)

g Zpre U zpost U Z0 ': zr

© Observers in future situations cannot differentiate between
models of > and of X,

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 6 /25



[ The Situation Calculus
Preliminaries The Logic £S
ics of PDDL The PDDL

on and Existing Work and Project Goal

The Development of PDDL

PpopL: The Planning Domain Definition Language
@ Ancestors:

o STRIPS (Fikes and Nilsson 1971)
@ State: a set of formulas in FOL
& Operator: name, precondition, add- and delete list

o ADL (Pednault 1989)
o Typed objects, built-in equality, conditional effects
@ Negation, disjunction and quantification in conditions

@ Version 1.2 (McDermott et al. 1998)
@ Version 2.1 (Fox and Long 2003)

@ Numerics, plan metrics
@ Time, concurrency and durative actions

@ A formal state-transitional semantics

@ Version 2.2 (Edelkamp and Hoffmann 2004)
9@ Derived predicates and timed initial literals

@ Version 3.0 (Gerevini and Long 2005)
@ Constraints and preferences on plans

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 7/25



nd M The Situation Calculus
Preliminaries The Logic £S
PDDL The PDDL
rk Existing Work and Project Goal

An Example

The Electro-Vehicle Domain
@ Actions:
o drive(v, Iy, ) is a durative action with duration (IZTW(U)

and overall precondition power(v) > 0. If engine initially off,
turn it on at start and off again at end.
@ unplug(v) is a simple action that makes power(v) = 0
@ Predicates:
o At(v,l): vehicle v is at location /
o Engine(v): the engine of vehicle v is on

@ Functions:

(4

miles(v): the covered distance of vehicle v

power(v): the remaining power of vehicle v
velocity(v): the velocity of vehicle v

distance(h, h): the distance between locations /; and b

¢ ¢ @

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 8/25



nd M The Situation Calculus
Preliminaries The Logic £S
PDDL The PDDL
rk Existing Work and Project Goal

PDDL Domain Definition

(:define (domain electro-car)
(:requirements :adl :durative-actions)
(:types vehicle location)
(:predicates (at ?v - vehicle ?I - location) (engine ?v - vehicle))
(:functions (power ?v - vehicle) (miles ?v - vehicle) ---)
(:action unplug
:parameters (?v - vehicle)
:effect (assign (power ?v) 0))
(:durative-action drive
:parameters (?v - vehicle ?I1 ?I2 - location)
:duration (= ?duration (/ (distance ?I1 ?12) (velocity ?v)))
:precondition (and (at start (at ?v ?I1))
(over all (> (power ?v) 0)))
:effect (and (at start (not (at ?v ?I1)))
(when (at start (not (engine ?v)))
(and (at start (engine ?v))
(at end (not (engine ?v)))))
(at end (at ?v ?12))
(at end (increase (miles ?v) (distance ?I1 ?12)))))

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 9/25



nd M The Situation Calculus
Preliminaries The Logic £S
PDDL The PDDL
rk Existing Work and Project Goal

PDDL Domain Definition

(:define (domain electro-car)
(:requirements :adl :durative-actions)
(:types vehicle location)
(:predicates (at ?v - vehicle ?I - location) (engine ?v - vehicle))
(:functions (power ?v - vehicle) (miles ?v - vehicle) ---)
(:action unplug
:parameters (?v - vehicle)
:effect (assign (power ?v) 0))
(:durative-action drive
:parameters (?v - vehicle ?I1 ?I2 - location)
:duration (= ?duration (/ (distance ?I1 ?12) (velocity ?v)))
:precondition (and (at start (at ?v ?I1))
(over all (> (power ?v) 0)))
:effect (and (at start (not (at ?v ?I1)))
(when (at start (not (engine ?v)))
(and (at start (engine ?v))
(at end (not (engine ?v)))))
(at end (at ?v ?12))
(at end (increase (miles ?v) (distance ?I1 ?12)))))

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 9/25



nd M The Situation Calculus
Preliminaries The Logic £S
PDDL The PDDL
rk Existing Work and Project Goal

PDDL Domain Definition

(:define (domain electro-car)
(:requirements :adl :durative-actions)
(:types vehicle location)
(:predicates (at ?v - vehicle ?I - location) (engine ?v - vehicle))
(:functions (power ?v - vehicle) (miles ?v - vehicle) ---)
(:action unplug
:parameters (?v - vehicle)
:effect (assign (power ?v) 0))
(:durative-action drive
:parameters (?v - vehicle ?I1 ?I2 - location)
:duration (= ?duration (/ (distance ?I1 ?12) (velocity ?v)))
:precondition (and (at start (at ?v ?I1))
(over all (> (power ?v) 0)))
:effect (and (at start (not (at ?v ?I1)))
(when (at start (not (engine ?v)))
(and (at start (engine ?v))
(at end (not (engine ?v)))))
(at end (at ?v ?12))
(at end (increase (miles ?v) (distance ?I1 ?12)))))

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 9/25



nd M The Situation Calculus
Preliminaries The Logic £S
PDDL The PDDL
rk Existing Work and Project Goal

PDDL Domain Definition

(:define (domain electro-car)
(:requirements :adl :durative-actions)
(:types vehicle location)
(:predicates (at ?v - vehicle ?I - location) (engine ?v - vehicle))
(:functions (power ?v - vehicle) (miles ?v - vehicle) ---)
(:action unplug
:parameters (?v - vehicle)
:effect (assign (power ?v) 0))
(:durative-action drive
:parameters (?v - vehicle ?I1 ?I2 - location)
:duration (= ?duration (/ (distance ?I1 ?12) (velocity ?v)))
:precondition (and (at start (at ?v ?I1))
(over all (> (power ?v) 0)))
:effect (and (at start (not (at ?v ?I1)))
(when (at start (not (engine ?v)))
(and (at start (engine ?v))
(at end (not (engine ?v)))))
(at end (at ?v ?12))
(at end (increase (miles ?v) (distance ?I1 ?12)))))

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 9/25



nd M The Situation Calculus
Preliminaries The Logic £S
PDDL The PDDL
rk Existing Work and Project Goal

PDDL Domain Definition

(:define (domain electro-car)
(:requirements :adl :durative-actions)
(:types vehicle location)
(:predicates (at ?v - vehicle ?I - location) (engine ?v - vehicle))
(:functions (power ?v - vehicle) (miles ?v - vehicle) ---)
(:action unplug
:parameters (?v - vehicle)
:effect (assign (power ?v) 0))
(:durative-action drive
:parameters (?v - vehicle ?I1 ?I2 - location)
:duration (= ?duration (/ (distance ?I1 ?12) (velocity ?v)))
:precondition (and (at start (at ?v ?I1))
(over all (> (power ?v) 0)))
:effect (and (at start (not (at ?v ?I1)))
(when (at start (not (engine ?v)))
(and (at start (engine ?v))
(at end (not (engine ?v)))))
(at end (at ?v ?12))
(at end (increase (miles ?v) (distance ?I1 ?12)))))

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 9/25



nd M The Situation Calculus
Preliminaries The Logic £S
PDDL The PDDL
rk Existing Work and Project Goal

PDDL Domain Definition

(:define (domain electro-car)
(:requirements :adl :durative-actions)
(:types vehicle location)
(:predicates (at ?v - vehicle ?I - location) (engine ?v - vehicle))
(:functions (power ?v - vehicle) (miles ?v - vehicle) ---)
(:action unplug
:parameters (?v - vehicle)
:effect (assign (power ?v) 0))
(:durative-action drive
:parameters (?v - vehicle ?I1 ?12 - location) —
:duration (= ?duration (/ (distance ?I1 ?12) (velocity ?v)))
:precondition (and (at start (at ?v ?I1))
(over all (> (power ?v) 0)))
:effect (and (at start (not (at ?v ?I1)))
(when (at start (not (engine ?v)))
(and (at start (engine ?v))

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 9/25



The Situation Calculus

The Logic £S

The PDDL

Existing Work and Project Goal

PDDL Problem Definition

(:define (problem my-car)
(:domain electro-car)
(:objects car truck - vehicle
home office factory - location)

(:init (and (at car home) (at truck factory)
(= (miles car) 0) (= (miles truck) 0)
(= (power car) 1) (= (power truck) 0)
(= (velocity car) 10) (= (velocity truck) 5)
(= (distance home office) 5000)
(= (distance factory office) 20000)
(at 2 (engine truck))))

(:goal (at car office))

(:metric minimize (4 (miles car) (miles truck)))

)

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007



The Situation Calculus

The Logic £S

The PDDL

Existing Work and Project Goal

Existing Work and Project Goal

Existing declarative semantics for subsets of PDDL

Q@ Relational STRIPS: a mechanism to (first-order) progress basic
action theories with complete initial database and strongly
context free successor state axioms (Lin and Reiter 1997)

© ADL subset of PDDL: first-order progression in £S
(ClaBen et al. 2007)

Extend the results above with the advanced features in the larger
subset of PDDL

@ Numerics and Metrics
@ Durative Actions

@ Timed Initial Literals

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 11 /25



Numerical Expressions
Durative Actions
Declarative Semal Correctness
Co on and Futu Limitations of Interleaved Concurrency

The ADL Subset

Mapping ADL problems to BAT in £S (ClaBen et al. 2007)
@ Successor state axioms X post
For a fluent predicate, e.g. At(v,/h,h)
o 74, the condition to make At(v, /) true
® 74, the condition to make At(v, /) false
Ofa]At(v, 1) = v4, V At(v,[) A=,
@ Precondition axiom X,
Case disjunction over all operators
OPoss(a) =a= A1 Ama, V---Va=A,A7a,
@ Initial Database X
o Initial world:
At(v,l) = (v = car Al = home) V (v = trck A | = factory)
o Typing:
At(v, ) D Vehicle(v) A Location(/)
Vehicle(v) = v = car V v = truck

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 12 / 25



Numerical Expressions

Durative Actions

Correctness

Limitations of Interleaved Concurrency

Numerical Expressions

Numerical functions are modeled by normal fluent functions in £S,
and the existing axiomatization of numbers is used.
@ Successor state axioms ¥ post:

'Y;ower = (3}/1-3 e Unp/ug(yl) Axi=yAy= 0)
Yoower = (Ty1.a = unplug(y1) A x1 = y1)

So the axiom for power is

Olalpower(x1) = y = Ypower ACar(x1)ANumber(y)Vpower(x1) = yA—"Ypower

@ Precondition axiom X p: same as before, except that comparison
between numerical expressions allowed

@ Initial database X: has additionally the following for power

power(x1) =y =(xx=can Ay =0.6)V (x1 = cann Ay = 0.8)

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 13 / 25



Numerical Expressions
Durative Actions
Declarative Semantics of PDDL Correctness
¢ and Future Limitations of Interleaved Concurrency

Temporal Extensions to £S

Similar to Pinto and Reiter's work in the situation calculus.
@ Time:

o A(X) is extended to A(X, t), with time(A(X,t)) =t
o The start time of current situation: O[a]now = time(a)
@ Ensure correct temporal ordering: OPoss(a) D now < time(a)

@ Concurrency: Interleaved concurrency. For example:
[unplug(car,5)]|[unplug(truck,5)]

@ Durative Actions:

o Situation calculus: startWalk(x, y,t), endWalk(t),
Walking(x, y, s)

o In ES: start(walk(x,y),t), end(walk(x,y), t),
Performing (walk(x,y)), since(walk(x,y))

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007



Numerical Expressions
Durative Actions
Declarative Semantics of PDDL Correctness
¢ and Future Limitations of Interleaved Concurrency

A Simple Mapping

For each PDDL durative action A(X), map “at start” conditions and effects
to start(A(X), t), and “at end” ones to end(A(X), t).

(:durative-action drive
:parameters (?v - vehicle ?I1 ?I2 - location)
:duration (= ?duration (/ (distance ?I1 ?12) (velocity ?v)))
:precondition (and (at start (at ?v ?I1))
(over all (> (power ?v) 0))) start(drive(v, I, b), t)
:effect (and (at start (not (at ?v ?I11))) end(drive(v, h, k), t)
(when (at start (not (engine ?v)))
(and (at start (engine ?v))
(at end (not (engine ?v)))))
(at end (at ?v 712))
(at end (increase (miles ?v) (distance ?I11 ?12)))))

Problems: Duration constraint, invariant condition and inter-temporal

conditional effect are ignored.

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007



Numerical Expressions
Durative Actions
Declarative Semantics of PDDL Correctness
¢ and Future Limitations of Interleaved Concurrency

A Simple Mapping

For each PDDL durative action A(X), map “at start” conditions and effects
to start(A(X), t), and “at end” ones to end(A(X), t).

(:durative-action drive
:parameters (?v - vehicle ?I1 ?I2 - location)
:duration (= ?duration (/ (distance ?I1 ?12) (velocity ?v)))
:precondition (and (at start (at ?v ?I1))
(over all (> (power ?v) 0))) start(drive(v, I, b), t)
:effect (and (at start (not (at ?v ?I11))) end(drive(v, h, k), t)
(when (at start (not (engine ?v)))
(and (at start (engine ?v))
(at end (not (engine ?v)))))
(at end (at ?v 712))
(at end (increase (miles ?v) (distance ?I11 ?12)))))

Problems: Duration constraint, invariant condition and inter-temporal

conditional effect are ignored.

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007



Numerical Expressions
Durative Actions
Declarative Semantics of PDDL Correctness
¢ and Future Limitations of Interleaved Concurrency

A Simple Mapping

For each PDDL durative action A(X), map “at start” conditions and effects
to start(A(X), t), and

(:durative-action drive

:parameters (?v - vehicle ?I1 ?I2 - location)
:duration (= ?duration (/ (distance ?I1 ?12) (velocity ?v)))
:precondition (and (at start (at ?v ?I1))

(over all (> (power ?v) 0))) start(drive(v, I, b), t)
:effect (and (at start (not (at ?v ?I11)))

(when (at start (not (engine ?v)))
(and (at start (engine ?v))
(at end (not (engine ?v)))))

)

Problems: Duration constraint, invariant condition and inter-temporal

conditional effect are ignored.

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007



Numerical Expressions
Durative Actions
Declarative Semantics of PDDL Correctness
¢ and Futu Limitations of Interleaved Concurrency

A Simple Mapping

For each PDDL durative action A(X), map “at start” conditions and effects
to start(A(X), t), and “at end” ones to end(A(X), t).

(:durative-action drive
:parameters (?v - vehicle ?I1 ?I2 - location)
:duration (= ?duration (/ (distance ?I1 ?12) (velocity ?v)))
:precondition (and (at start (at ?v ?I1))
(over all (> (power ?v) 0))) start(drive(v, h, k), t)
:effect (and (at start (not (at ?v ?I11))) end(drive(v, h, k), t)
(when (at start (not (engine ?v)))
(and (at start (engine ?v))
(at end (not (engine ?v)))))
(at end (at ?v 712))
(at end (increase (miles ?v) (distance ?I11 ?12)))))

Problems: Duration constraint, invariant condition and inter-temporal

conditional effect are ignored.

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007



Background and Mo Numerical Expressions
Durative Actions
Correctness
and Futur Limitations of Interleaved Concurrency

Duration Constraint

:duration (= 7duration (/ (distance 711 ?712) (velocity ?v)))

. e—

start(drive(...).t) end(drive(...),t)

@ The duration of drive(v, I, /) can be obtained at its end
event end(drive(v, h, k), t) by (t — since(drive(v, h,h)))
@ Assert in the precondition
OPoss(end(drive(v, h, k), t)) D
t — since(drive(v, h, h)) = distance(h, )/ velocity(v)

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 16 / 25



und and | Numerical Expressions
) Durative Actions
Declarative Semantics of PDDL Correctness
Conc and Future 3 Limitations of Interleaved Concurrency

Invariant Condition

drive(v,l1,12)

_._‘_

power(v)>0 ? \ power(v)>0 ?
unplug(v)

Declarative PDDL Se tics with Time and Concurrency Yuxiao Hu April 20, 2007 17 / 25



Numerical Expressions
B a Durative Actions
Declarative Semantics of PDDL Correctness
c and Future rk Limitations of Interleaved Concurrency

Invariant Condition

drive(v,l1,12)

_._‘_

power(v)>0 ? \ power(v)>0 ?

unplug(v)
Protect the invariant condition of drive(v, i, k) by not allowing actions that
violate it (e.g. unplug(v)) to happen.
drive(v,l1,12)

Possible to unplug(v) ?
[unplug(v)] power(v)>0 ?

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 17 / 25



Numerical Expressions

Durative Actions

Correctness

Limitations of Interleaved Concurrency

Invariant Condition

drive(v,l1,12)

_._‘_

power(v)>0 ? \ power(v)>0 ?

unplug(v)
Protect the invariant condition of drive(v, i, k) by not allowing actions that
violate it (e.g. unplug(v)) to happen.
drive(v,l1,12)

Possible to unplug(v) ?
[unplug(v)] power(v)>0 ?
Formally, assert

OPoss(a) D R|a, Performing(drive(v, I, k)) D power(v) > 0]

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 17 / 25



Background anc Numerical Expressions
Durative Actions
Correctness
and Futur Limitations of Interleaved Concurrency

Inter-Temporal Conditional Effect

(when (at start (not (engine ?v)))
(at end (not (engine ?v))))

has “at start” premise but “at end” effect.
To “remember” the old state of Engine(v), introduce a new and unique
fluent predicate WasOff (v)

. drive(v,11,12) .

=Engine(v) : WasOff(v) » —Engine(v)

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 18 / 25



Numerical Expressions
Durative Actions
Correctness
Con | Futu k Limitations of Interleaved Concurrency

Inter-Temporal Conditional Effect

(when (at start (not (engine ?v)))
(at end (not (engine ?v))))

has “at start” premise but “at end” effect.
To “remember” the old state of Engine(v), introduce a new and unique
fluent predicate WasOff (v)

. drive(v,11,12) .

=Engine(v) : WasOff(v) » —Engine(v)

Then, the successor state axiom for Engine is

O[a]Engine(v) =
3h, b, t.a = start(drive(v, h, h), t) A =Engine(v)V
Engine(v) A =(3h, k, t.a = end(drive(v, h, k), t) A WasOff (v))

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 18 / 25



Numerical Expressions
Durative Actions
Declarative Semantics of PD Correctness
0 on and Future Limitations of Interleaved Concurrency

Continuous Effects The Nece55|ty

miles!L
10 c D
5 A B~ C
0 5 10 15 Time

@ Discretized numerical effects: (ABC'CD)
(at end (increase (miles ?v) (distance 711 712)))

@ Continuous numerical effects: (ABCD)
(increase (miles ?v) (x #t (velocity 7v)))

Need to map continuous effects to BAT in £S.

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 19 / 25



Numerical Expressions
Durative Actions
Declarative Semantics of PDDL Correctness
Limitations of Interleaved Concurrency

Continuous Exten5|ons to £S and the Solution

Like (Grosskreutz and Lakemeyer 2000), define

linear(xo, vo, vo) £ x50+ vo- (t — to)
eval(x, t) = y =3xog, vo, to-x = linear(xo, vo, to) Ay = xo + v - (t — to)V

Vxo, Vo, to-x # linear(xo, vo, to) Ay = x
and axiomatize operations with /inear's.

. drive(v,11,12) .

miles(v)€¢
miles(v) +
linear(0,velocity(v),t)

Then, we may have X |= [start(drive(cari, h, k),5)]eval(miles(v),8) = 8.

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 20 / 25



Numerical Expressions
Durative Actions
Declarative Sema Correctness
0 on and Futu Limitations of Interleaved Concurrency

Invariant Condltlons with Continuous Effects

The problem

@ Discrete case: protect invariants by not allowing violating
actions to happen

@ Continuous case: invariants may be violated without any
action happening! e.g.
(decrease (power ?v) (x #t (consume-rate ?7v)))

Solution
@ Introduce obligatory actions to £S BAT (Similar to “natural
actions” in situation calculus)
o 0Obli(a) = Q
o OPoss(a) D Obli(a)Vv
—(3a’.0bli(a") A now < time(a') < time(a))
@ Stop a durative action as soon as its invariant is violated
o Performing(a) A —Eval[rg, t] O Obli(end(a, t))

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 21 /25



Numerical Expressions
Durative Actions
Correctness
Conclu and Futu < Limitations of Interleaved Concurrency

Other Features

@ Timed initial literals
(at 2 (engine truck))
introduce a new and unique action turn_on_engine with

Poss(turn_on_engine(2)) A Obli(turn_on_engine(2)) and with
the single effect to make Engine(truck) true.

@ Plan metric
An expression on normal fluent numerical functions

@ Start duration constraint
“Remember” the involved function values at the start event,
and assert the constraint at the end.

More information at

http://www-users.rwth-aachen.de/Yuxiao.Hu/
projects/thesis/final /thesis1122.pdf

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 22 /25



Numerical Expressions

Durative Actions

Correctness

Limitations of Interleaved Concurrency

Correctness

@ Due to the process-related properties, mere progression is not
enough.
@ Extract these properties from the state and the plan, which

corresponds to the auxiliary properties in the BAT, such as
now, Performing(drive(v, I, k)), WasOff(v).

@ Single-step update is modeled by first-order progression in £S,
including for auxiliary properties.

@ Correctness due to the fact that the semantics by Fox and
Long and ours share the same set of valid plans.

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 23 /25



Numerical Expressions

Durative Actions

Correctness

Limitations of Interleaved Concurrency

Problems with Interleaved Concurrency

Interleaved concurrency is simple (no modification to £S semantics
is necessary) and powerful enough to capture almost all the
features in PDDL, except the following special cases
© The invariant condition of a durative action is not satisfied
before its start event, and is turned to true by a
simultaneously happening action.
Integrating true concurrency in £S may solve these problems.

April 20, 2007 24 / 25

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu



Conclusion and Future Work

Conclusion and Future Work

@ Contribution
© Explored the possibility to extend the BAT in £S to model
realistic domains.
@ Defined a declarative semantics for the subset of PDDL with
time and concurrency.
@ Ongoing and Future Work
© Study true concurrency
@ Encode “temporally expressive” planning problems as CSP
based on the semantics
@ Integrate PDDL planners into temporal concurrent GOLOG.
@ Consider larger subset of PDDL (derived predicates,
constraints and preferences, etc.).

Declarative PDDL Semantics with Time and Concurrency Yuxiao Hu April 20, 2007 25 /25



	Background and Motivation
	Preliminaries
	Declarative Semantics of PDDL
	Conclusion and Future Work

