A Situation-Calculus Semantics for an Expressive Fragment of PDDL

Jens Claßen¹ Yuxiao Hu² Gerhard Lakemeyer¹

¹RWTH Aachen University, 52056 Aachen, Germany

²University of Toronto, Toronto, Ontario M5S3G4, Canada

July 26, 2007

< 🗆 🕨

伺 ト イ ヨ ト イ ヨ ト

Sac

∍

Outline

1 Introduction

- Background and Motivation
- The PDDL Language
- Logical Foundations

2 Situation-Calculus Semantics for PDDL

- Simple Actions
- Durative Actions
- Other Features

3 Discussion

- Correctness
- Conclusion and Future Work

< 🗆

P

∍

Background and Motivation The PDDL Language Logical Foundations

Background and Motivation

A state-transitional semantics for PDDL exists (Fox & Long 03)

- Meta-theoretic, e.g.
 - Invariant conditions protected by dummy actions
 - Conditional effects handled by splitting an action into two
- Complexity (19-page definition)

Goal: A declarative semantics for PDDL

- Based on a well-understood logic
- Analyze planning problems with logical entailments
- Bridge planning and reasoning-about-actions communities
 - e.g. Embedding planners in temporal Golog

< 🗆

< 同 > < 三 > < 三

∍

Introduction Background and Mot Situation-Calculus Semantics for PDDL Discussion Logical Foundations

The Planning Domain Definition Language

We cover PDDL 2.1 & 2.2, excluding derived predicates.

< 🗆 🕨

 €

DAG

We cover $\mathrm{PDDL}\ 2.1$ & 2.2, excluding derived predicates. A running example: The Electro-Car domain

- Predicates: At(v, l), Engine(v), Power(v);
- Functions: *miles*(*v*), *velocity*(*v*), *distance*(*l*₁, *l*₂).
- Actions
 - unplug(v): simple action that removes power of v
 - drive(v, l₁, l₂): durative action with duration distance(l₁, l₂) and Power(v) as invariant condition. If engine was off before the start of driving, turn it on at start and off again at end.

< 🗆

We cover PDDL 2.1 & 2.2, excluding derived predicates.

A running example: The Electro-Car domain

- Predicates: At(v, I), Engine(v), Power(v);
- Functions: *miles*(*v*), *velocity*(*v*), *distance*(*l*₁, *l*₂).
- Actions
 - unplug(v): simple action that removes power of v
 - drive(v, l₁, l₂): durative action with duration distance(l₁, l₂) / velocity(v) and Power(v) as invariant condition. If engine was off before the start of driving, turn it on at start and off again at end.

(:action unplug (:parameters ?v - vehicle)
 (:effect (not (power ?v))))

<

We cover PDDL 2.1 & 2.2, excluding derived predicates.

A running example: The Electro-Car domain

- Predicates: At(v, I), Engine(v), Power(v);
- Functions: miles(v), velocity(v), $distance(l_1, l_2)$.
- Actions
 - unplug(v): simple action that removes power of v
 - drive(v, l₁, l₂): durative action with duration distance(l₁, l₂) / velocity(v) and Power(v) as invariant condition. If engine was off before the start of driving, turn it on at start and off again at end.

(:durative-action drive

(:parameters ?v - vehicle ?l1 ?l2 - location)

< 🗆

We cover PDDL 2.1 & 2.2, excluding derived predicates.

A running example: The Electro-Car domain

- Predicates: At(v, l), Engine(v), Power(v);
- Functions: miles(v), velocity(v), $distance(l_1, l_2)$.
- Actions
 - unplug(v): simple action that removes power of v
 - drive(v, l₁, l₂): durative action with duration distance(l₁, l₂)/velocity(v) and Power(v) as invariant condition. If engine was off before the start of driving, turn it on at start and off again at end.

(:durative-action drive (:duration (= ?duration (/ (distance ?l1 ?l2) (velocity ?v))))

< <p>> > > < <p>< <p><

We cover PDDL 2.1 & 2.2, excluding derived predicates.

A running example: The Electro-Car domain

- Predicates: At(v, I), Engine(v), Power(v);
- Functions: *miles*(*v*), *velocity*(*v*), *distance*(*l*₁, *l*₂).
- Actions
 - unplug(v): simple action that removes power of v
 - drive(v, l₁, l₂): durative action with duration distance(l₁, l₂) / velocity(v) and Power(v) as invariant condition. If engine was off before the start of driving, turn it on at start and off again at end.

(:durative-action drive (:condition ... (over all (power ?v)) ...)

< 🗆

< 同 > < 三 > < 三 >

We cover PDDL 2.1 & 2.2, excluding derived predicates.

A running example: The Electro-Car domain

- Predicates: At(v, l), Engine(v), Power(v);
- Functions: *miles*(*v*), *velocity*(*v*), *distance*(*l*₁, *l*₂).
- Actions
 - unplug(v): simple action that removes power of v
 - drive(v, l₁, l₂): durative action with duration distance(l₁, l₂) and Power(v) as invariant condition. If engine was off before the start of driving, turn it on at start and off again at end.

(:durative-action drive

(:effect (when (at start (not (engine ?v)))
 (at start (engine ?v))))

< <p>> > > < <p>< <p><

We cover PDDL 2.1 & 2.2, excluding derived predicates.

A running example: The Electro-Car domain

- Predicates: At(v, l), Engine(v), Power(v);
- Functions: *miles*(*v*), *velocity*(*v*), *distance*(*l*₁, *l*₂).
- Actions
 - unplug(v): simple action that removes power of v
 - drive(v, l₁, l₂): durative action with duration distance(l₁, l₂) / velocity(v) and Power(v) as invariant condition. If engine was off before the start of driving, turn it on at start and off again at end.

(:durative-action drive

(:effect (when (at start (not (engine ?v)))
 (at end (not (engine ?v)))))

< <p>> > > < <p>< <p><

Background and Motivation The PDDL Language Logical Foundations

The Logic \mathcal{ES}

 \mathcal{ES} (Lakemeyer & Levesque 04) is a modal logic capturing SitCalc

- $[a]\alpha$: formula α holds after action a
- $\Box \alpha$: formula α holds after any sequence of actions

< 🗆 🕨

< 同 > < 三 > < 三 >

5990

Background and Motivation The PDDL Language Logical Foundations

The Logic \mathcal{ES}

 \mathcal{ES} (Lakemeyer & Levesque 04) is a modal logic capturing SitCalc

- $[a]\alpha$: formula α holds after action a
- $\Box \alpha$: formula α holds after any sequence of actions

The Basic Action Theory $\Sigma = \Sigma_{\textit{pre}} \cup \Sigma_{\textit{post}} \cup \Sigma_0$

- Σ_{pre} : precondition axiom $\Box Poss(a) \equiv \Pi$, e.g. $\Box Poss(a) \equiv a = move(x, y) \land Clear(x) \land Clear(y) \lor$ $a = moveToTable(x) \land Clear(x)$
- Σ_{post}: successor state axioms □[a]F(x) ≡ Φ_F(x, a)
 e.g. □[a]On(x, y) ≡ a = move(x, y) ∨
 On(x, y) ∧ ¬(a = moveToTable(x) ∨ ∃z.a = move(x, z))

• Σ_0 : initial database, e.g. $On(x, y) \equiv (x = a \land y = b) \lor (x = b \land y = c)$

< <p>> > > < <p>< <p><

∍

Background and Motivation The PDDL Language Logical Foundations

The Logic \mathcal{ES}

 \mathcal{ES} (Lakemeyer & Levesque 04) is a modal logic capturing SitCalc

- $[a]\alpha$: formula α holds after action a
- $\Box \alpha$: formula α holds after any sequence of actions

The Basic Action Theory $\Sigma = \Sigma_{\textit{pre}} \cup \Sigma_{\textit{post}} \cup \Sigma_0$

- Σ_{pre} : precondition axiom $\Box Poss(a) \equiv \Pi$, e.g. $\Box Poss(a) \equiv a = move(x, y) \land Clear(x) \land Clear(y) \lor$ $a = moveToTable(x) \land Clear(x)$
- Σ_{post}: successor state axioms □[a]F(x) ≡ Φ_F(x, a)
 e.g. □[a]On(x, y) ≡ a = move(x, y) ∨
 On(x, y) ∧ ¬(a = moveToTable(x) ∨ ∃z.a = move(x, z))

Σ₀: initial database,

e.g.
$$On(x, y) \equiv (x = a \land y = b) \lor (x = b \land y = c)$$

The regression operator \mathcal{R} transforms a formula to an equivalent one without [a] operator, e.g. $\Sigma \models [a]\alpha$ iff $\Sigma_0 \models \mathcal{R}[a, \alpha]$

<

→ ▲圖▶ ▲글▶ ▲글▶

∍

Background and Motivation The PDDL Language Logical Foundations

Extensions to $\mathcal{E}\mathcal{S}$

Temporal extension similar to (Pinto & Reiter) in SitCalc

- Time:
 - $A(\vec{x})$ is extended to $A(\vec{x}, t)$, with $time(A(\vec{x}, t)) = t$
 - The start time of current situation: □[a](now = time(a))
 - Ensure correct temporal ordering: □Poss(a) ⊃ now ≤ time(a)
- Durative actions modeled by instantaneous actions + fluents start(walk(x, y), t), end(walk(x, y), t), Performing(walk(x, y)), since(walk(x, y))

< 🗆

∍

Simple Actions

Mapping ADL problems to BAT in \mathcal{ES} follows (Claßen *et al.* 07)

- Initial Database Σ_0 : Initial world + Typing
- Precondition axiom Σ_{pre} : Case disjunction over all operators
- Successor state axioms Σ_{post}
 - For each fluent predicate $F_j(\vec{x_j})$, extract the positive condition $\gamma_{F_j}^+$ and the negative condition $\gamma_{F_j}^-$ from the effect definitions of all actions, and obtain the SSA

 $\Box[a]F_j(\vec{x}_j) \equiv \gamma^+_{F_i} \wedge \vec{\tau}_j(\vec{x}_j) \vee F_j(\vec{x}_j) \wedge \neg \gamma^-_{F_j};$

< 🗆

∍

Simple Actions Durative Actions Other Features

Simple Actions

Mapping ADL problems to BAT in \mathcal{ES} follows (Claßen *et al.* 07), (numerical) functional fluents are handled similarly.

- Initial Database Σ_0 : Initial world + Typing
- Precondition axiom Σ_{pre} : Case disjunction over all operators
- Successor state axioms Σ_{post}
 - For each fluent predicate $F_j(\vec{x_j})$, extract the positive condition $\gamma^+_{F_j}$ and the negative condition $\gamma^-_{F_j}$ from the effect definitions of all actions, and obtain the SSA

 $\Box[a]F_j(\vec{x_j}) \equiv \gamma_{F_i}^+ \land \vec{\tau_j}(\vec{x_j}) \lor F_j(\vec{x_j}) \land \neg \gamma_{F_j}^-;$

• For each fluent function $f_j(\vec{x_j})$, extract the update condition $\gamma_{f_j}^v$ from effect definitions of all actions, and obtain the SSA $\Box[a]f_j(\vec{x_j}) = y_j \equiv \gamma_{f_i}^v \land \vec{\tau_j}(\vec{x_j}) \lor f_j(\vec{x_j}) = y_j \land \neg \exists y'. (\gamma_{f_i}^v)_{y'}^{y_j}$

∍

Simple Actions Durative Actions Other Features

Durative Actions

For each PDDL durative action $\widetilde{A}(\vec{x})$, map "at start" conditions and effects to $start(\widetilde{A}(\vec{x}), t)$, and "at end" ones to $end(\widetilde{A}(\vec{x}), t)$.

```
start(drive(v, l_1, l_2), t)
end(drive(v, l_1, l_2), t)
```

Sac

3

< 🗆

Simple Actions Durative Actions Other Features

Durative Actions

For each PDDL durative action $\widetilde{A}(\vec{x})$, map "at start" conditions and effects to $start(\widetilde{A}(\vec{x}), t)$, and "at end" ones to $end(\widetilde{A}(\vec{x}), t)$.

 $start(drive(v, l_1, l_2), t)$ $end(drive(v, l_1, l_2), t)$

Sac

3

< 🗆

Simple Actions Durative Actions Other Features

Durative Actions

For each PDDL durative action $\widetilde{A}(\vec{x})$, map "at start" conditions and effects to $start(\widetilde{A}(\vec{x}), t)$, and "at end" ones to $end(\widetilde{A}(\vec{x}), t)$.

 $start(drive(v, l_1, l_2), t)$ $end(drive(v, l_1, l_2), t)$

∍

Sac

< 🗆

Simple Actions Durative Actions Other Features

Durative Actions

For each PDDL durative action $\widetilde{A}(\vec{x})$, map "at start" conditions and effects to $start(\widetilde{A}(\vec{x}), t)$, and "at end" ones to $end(\widetilde{A}(\vec{x}), t)$.

Problems: Duration constraint, invariant condition and inter-temporal conditional effect are ignored.

< D > < A > < B > < B > < B</p>

Simple Actions Durative Actions Other Features

Durative Actions

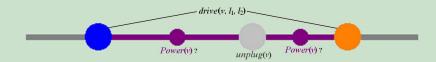
For each PDDL durative action $\widetilde{A}(\vec{x})$, map "at start" conditions and effects to $start(\widetilde{A}(\vec{x}), t)$, and "at end" ones to $end(\widetilde{A}(\vec{x}), t)$.

Problems: Duration constraint, invariant condition and inter-temporal conditional effect are ignored.

< D > < A > < B > < B > < B</p>

Simple Actions Durative Actions Other Features

Invariant Condition

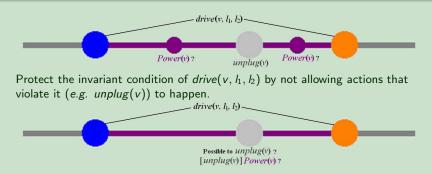


<ロ> < 回> < 回> < 回> < 回> < 回><</p>

Ð.

Simple Actions Durative Actions Other Features

Invariant Condition



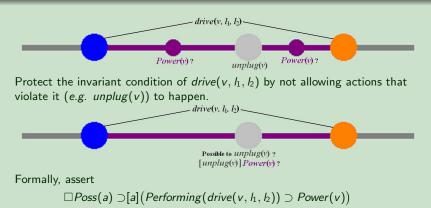
< 🗆 🕨

< 同 > < 三 > < 三 >

5990

Simple Actions Durative Actions Other Features

Invariant Condition



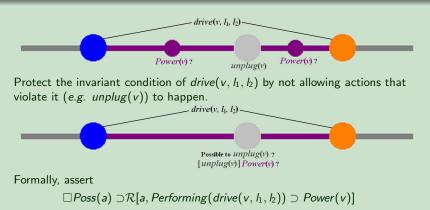
< 🗆 🕨

< 同 > < 三 > < 三 >

5990

Simple Actions Durative Actions Other Features

Invariant Condition



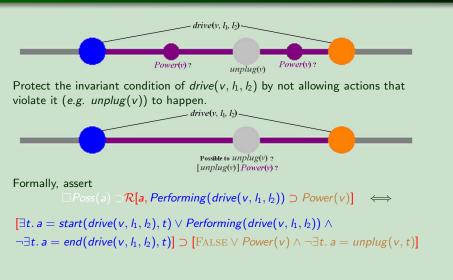
< 🗆 🕨

< 同 > < 三 > < 三 >

5990

Simple Actions Durative Actions Other Features

Invariant Condition

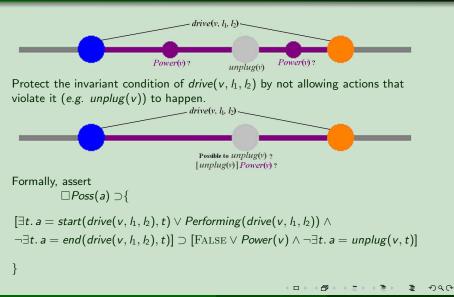


< <p>> > > < <p>< <p><

∍

Simple Actions Durative Actions Other Features

Invariant Condition



Simple Actions Durative Actions Other Features

Other Features

Concurrency

Interleaved concurrency

e.g. $[unplug(car, 5)][unplug(truck, 5)] \neg Power(car)$

Continuous effects

Introduce linear functions to BAT (Grosskreutz & Lakemeyer 00)

Timed initial literals

e.g. (at 2 (engine truck))

introduce a new and unique action *turn_on_engine* with

 $Poss(turn_on_engine(2)) \land Obli(turn_on_engine(2))$ and with the single effect to make Engine(truck) true.

Start duration constraint

"Remember" the involved function values at the start event, and assert the constraint at the end.

• Invariant condition with continuous effect

Force execution of *end* action.

Situation-Calculus Semantics for Temporal PDDL

Claßen, Hu, Lakemeyer

July 26, 2007

< <p>> > > < <p>< <p><

10 / 12

Sac

∍

Correctness Conclusion and Future Work

Correctness

Theorem

Let Σ be the result of applying the above mapping to a PDDL problem with goal formula ψ . Let P be a plan with no concurrent mutex actions. Then P is valid according to (Fox & Long 03) iff there is a linearization $\langle r_1, \dots, r_k \rangle$ of P such that

 $\Sigma \models [r_1] \cdots [r_k] (Executable \land \psi \land \neg \exists a. Performing(a))$

< E

Correctness Conclusion and Future Work

Conclusion and Future Work

Contribution

- We present a situation-calculus semantics for the temporal fragment of PDDL;
- Theoretical ground for relating PDDL to other situation calculus based formalisms, *e.g.* Golog;
- Offer an alternative view on temporal planning, (*e.g.* Cushing *et al.* (2007) observe that most *state-of-the-art* planners are temporally simple.)

Ongoing and future work

- Temporally-expressive planner based on the semantics;
- Extend the result to include preferences and constraints on plan trajectory in PDDL 3.0.

< 🗆

→ ▲圖▶ ▲글▶ ▲글▶