
Introduction
Situation-Calculus Semantics for PDDL

Discussion

A Situation-Calculus Semantics

for an Expressive Fragment of Pddl

Jens Claßen1 Yuxiao Hu2 Gerhard Lakemeyer1

1RWTH Aachen University, 52056 Aachen, Germany

2University of Toronto, Toronto, Ontario M5S3G4, Canada

July 26, 2007

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 1 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Outline

1 Introduction
Background and Motivation
The PDDL Language
Logical Foundations

2 Situation-Calculus Semantics for PDDL
Simple Actions
Durative Actions
Other Features

3 Discussion
Correctness
Conclusion and Future Work

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 2 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Background and Motivation
The PDDL Language
Logical Foundations

Background and Motivation

A state-transitional semantics for Pddl exists (Fox & Long 03)

Meta-theoretic, e.g.

Invariant conditions protected by dummy actions
Conditional effects handled by splitting an action into two

Complexity (19-page definition)

Goal: A declarative semantics for Pddl

Based on a well-understood logic

Analyze planning problems with logical entailments

Bridge planning and reasoning-about-actions communities

e.g. Embedding planners in temporal Golog

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 3 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Background and Motivation
The PDDL Language
Logical Foundations

The Planning Domain Definition Language

We cover Pddl 2.1 & 2.2, excluding derived predicates.

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 4 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Background and Motivation
The PDDL Language
Logical Foundations

The Planning Domain Definition Language

We cover Pddl 2.1 & 2.2, excluding derived predicates.
A running example: The Electro-Car domain

Predicates: At(v , l), Engine(v), Power(v);

Functions: miles(v), velocity(v), distance(l1, l2).

Actions

unplug(v): simple action that removes power of v

drive(v , l1, l2): durative action with duration distance(l1,l2)
velocity(v) and

Power(v) as invariant condition. If engine was off before the
start of driving, turn it on at start and off again at end.

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 4 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Background and Motivation
The PDDL Language
Logical Foundations

The Planning Domain Definition Language

We cover Pddl 2.1 & 2.2, excluding derived predicates.
A running example: The Electro-Car domain

Predicates: At(v , l), Engine(v), Power(v);

Functions: miles(v), velocity(v), distance(l1, l2).

Actions

unplug(v): simple action that removes power of v

drive(v , l1, l2): durative action with duration distance(l1,l2)
velocity(v) and

Power(v) as invariant condition. If engine was off before the
start of driving, turn it on at start and off again at end.

(:action unplug (:parameters ?v - vehicle)
(:effect (not (power ?v))))

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 4 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Background and Motivation
The PDDL Language
Logical Foundations

The Planning Domain Definition Language

We cover Pddl 2.1 & 2.2, excluding derived predicates.
A running example: The Electro-Car domain

Predicates: At(v , l), Engine(v), Power(v);

Functions: miles(v), velocity(v), distance(l1, l2).

Actions

unplug(v): simple action that removes power of v

drive(v , l1, l2): durative action with duration distance(l1,l2)
velocity(v) and

Power(v) as invariant condition. If engine was off before the
start of driving, turn it on at start and off again at end.

(:durative-action drive
(:parameters ?v - vehicle ?l1 ?l2 - location)

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 4 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Background and Motivation
The PDDL Language
Logical Foundations

The Planning Domain Definition Language

We cover Pddl 2.1 & 2.2, excluding derived predicates.
A running example: The Electro-Car domain

Predicates: At(v , l), Engine(v), Power(v);

Functions: miles(v), velocity(v), distance(l1, l2).

Actions

unplug(v): simple action that removes power of v

drive(v , l1, l2): durative action with duration distance(l1,l2)
velocity(v) and

Power(v) as invariant condition. If engine was off before the
start of driving, turn it on at start and off again at end.

(:durative-action drive
(:duration (= ?duration (/ (distance ?l1 ?l2) (velocity ?v))))

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 4 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Background and Motivation
The PDDL Language
Logical Foundations

The Planning Domain Definition Language

We cover Pddl 2.1 & 2.2, excluding derived predicates.
A running example: The Electro-Car domain

Predicates: At(v , l), Engine(v), Power(v);

Functions: miles(v), velocity(v), distance(l1, l2).

Actions

unplug(v): simple action that removes power of v

drive(v , l1, l2): durative action with duration distance(l1,l2)
velocity(v) and

Power(v) as invariant condition. If engine was off before the
start of driving, turn it on at start and off again at end.

(:durative-action drive
(:condition ... (over all (power ?v)) ...)

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 4 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Background and Motivation
The PDDL Language
Logical Foundations

The Planning Domain Definition Language

We cover Pddl 2.1 & 2.2, excluding derived predicates.
A running example: The Electro-Car domain

Predicates: At(v , l), Engine(v), Power(v);

Functions: miles(v), velocity(v), distance(l1, l2).

Actions

unplug(v): simple action that removes power of v

drive(v , l1, l2): durative action with duration distance(l1,l2)
velocity(v) and

Power(v) as invariant condition. If engine was off before the
start of driving, turn it on at start and off again at end.

(:durative-action drive
(:effect (when (at start (not (engine ?v)))

(at start (engine ?v))))

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 4 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Background and Motivation
The PDDL Language
Logical Foundations

The Planning Domain Definition Language

We cover Pddl 2.1 & 2.2, excluding derived predicates.
A running example: The Electro-Car domain

Predicates: At(v , l), Engine(v), Power(v);

Functions: miles(v), velocity(v), distance(l1, l2).

Actions

unplug(v): simple action that removes power of v

drive(v , l1, l2): durative action with duration distance(l1,l2)
velocity(v) and

Power(v) as invariant condition. If engine was off before the
start of driving, turn it on at start and off again at end.

(:durative-action drive
(:effect (when (at start (not (engine ?v)))

(at end (not (engine ?v)))))

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 4 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Background and Motivation
The PDDL Language
Logical Foundations

The Logic ES

ES (Lakemeyer & Levesque 04) is a modal logic capturing SitCalc

[a]α: formula α holds after action a

�α: formula α holds after any sequence of actions

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 5 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Background and Motivation
The PDDL Language
Logical Foundations

The Logic ES

ES (Lakemeyer & Levesque 04) is a modal logic capturing SitCalc

[a]α: formula α holds after action a

�α: formula α holds after any sequence of actions

The Basic Action Theory Σ = Σpre ∪ Σpost ∪ Σ0

Σpre : precondition axiom �Poss(a) ≡ Π,
e.g. �Poss(a) ≡ a = move(x , y) ∧ Clear(x) ∧ Clear(y) ∨

a = moveToTable(x) ∧ Clear(x)

Σpost : successor state axioms �[a]F (~x) ≡ ΦF (~x , a)
e.g. �[a]On(x , y) ≡ a = move(x , y) ∨

On(x , y) ∧ ¬
`
a = moveToTable(x) ∨ ∃z .a = move(x , z)

´

Σ0: initial database,
e.g. On(x , y) ≡ (x = a ∧ y = b) ∨ (x = b ∧ y = c)

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 5 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Background and Motivation
The PDDL Language
Logical Foundations

The Logic ES

ES (Lakemeyer & Levesque 04) is a modal logic capturing SitCalc

[a]α: formula α holds after action a

�α: formula α holds after any sequence of actions

The Basic Action Theory Σ = Σpre ∪ Σpost ∪ Σ0

Σpre : precondition axiom �Poss(a) ≡ Π,
e.g. �Poss(a) ≡ a = move(x , y) ∧ Clear(x) ∧ Clear(y) ∨

a = moveToTable(x) ∧ Clear(x)

Σpost : successor state axioms �[a]F (~x) ≡ ΦF (~x , a)
e.g. �[a]On(x , y) ≡ a = move(x , y) ∨

On(x , y) ∧ ¬
`
a = moveToTable(x) ∨ ∃z .a = move(x , z)

´

Σ0: initial database,
e.g. On(x , y) ≡ (x = a ∧ y = b) ∨ (x = b ∧ y = c)

The regression operator R transforms a formula to an equivalent
one without [a] operator, e.g. Σ |= [a]α iff Σ0 |= R[a, α]

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 5 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Background and Motivation
The PDDL Language
Logical Foundations

Extensions to ES

Temporal extension similar to (Pinto & Reiter) in SitCalc

Time:

A(~x) is extended to A(~x , t), with time(A(~x , t)) = t
The start time of current situation: �[a](now = time(a))
Ensure correct temporal ordering: �Poss(a) ⊃ now ≤ time(a)

Durative actions modeled by instantaneous actions + fluents
start(walk(x , y), t), end(walk(x , y), t),
Performing(walk(x , y)), since(walk(x , y))

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 6 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Simple Actions

Mapping Adl problems to BAT in ES follows (Claßen et al. 07)

Initial Database Σ0: Initial world + Typing

Precondition axiom Σpre : Case disjunction over all operators

Successor state axioms Σpost

For each fluent predicate Fj (~xj), extract the positive condition γ+
Fj

and the

negative condition γ−

Fj
from the effect definitions of all actions, and obtain

the SSA
�[a]Fj(~xj) ≡ γ+

Fi
∧ ~τj (~xj) ∨ Fj (~xj) ∧ ¬γ−

Fj
;

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 7 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Simple Actions

Mapping Adl problems to BAT in ES follows (Claßen et al. 07),
(numerical) functional fluents are handled similarly.

Initial Database Σ0: Initial world + Typing

Precondition axiom Σpre : Case disjunction over all operators

Successor state axioms Σpost

For each fluent predicate Fj (~xj), extract the positive condition γ+
Fj

and the

negative condition γ−

Fj
from the effect definitions of all actions, and obtain

the SSA
�[a]Fj(~xj) ≡ γ+

Fi
∧ ~τj (~xj) ∨ Fj (~xj) ∧ ¬γ−

Fj
;

For each fluent function fj (~xj), extract the update condition γv
fj

from

effect definitions of all actions, and obtain the SSA
�[a]fj(~xj) = yj ≡ γv

fj
∧ ~τj (~xj) ∨ fj (~xj) = yj ∧ ¬∃y ′. (γv

fj
)
yj

y′

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 7 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Durative Actions

For each Pddl durative action eA(~x), map “at start” conditions and effects

to start(eA(~x), t), and “at end” ones to end(eA(~x), t).

(:durative-action drive
:parameters (?v - vehicle ?l1 ?l2 - location)
:duration (= ?duration (/ (distance ?l1 ?l2) (velocity ?v)))
:precondition (and (at start (at ?v ?l1))

(over all (power ?v)))
:effect (and (at start (not (at ?v ?l1)))

(when (at start (not (engine ?v)))
(and (at start (engine ?v))

(at end (not (engine ?v)))))
(at end (at ?v ?l2))
(at end (increase (miles ?v) (distance ?l1 ?l2)))))

start(drive(v , l1, l2), t)
end(drive(v , l1, l2), t)

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 8 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Durative Actions

For each Pddl durative action eA(~x), map “at start” conditions and effects

to start(eA(~x), t), and “at end” ones to end(eA(~x), t).

(:durative-action drive
:parameters (?v - vehicle ?l1 ?l2 - location)
:duration (= ?duration (/ (distance ?l1 ?l2) (velocity ?v)))
:precondition (and (at start (at ?v ?l1))

(over all (power ?v)))
:effect (and (at start (not (at ?v ?l1)))

(when (at start (not (engine ?v)))
(and (at start (engine ?v))

(at end (not (engine ?v)))))
(at end (at ?v ?l2))
(at end (increase (miles ?v) (distance ?l1 ?l2)))))

start(drive(v , l1, l2), t)
end(drive(v , l1, l2), t)

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 8 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Durative Actions

For each Pddl durative action eA(~x), map “at start” conditions and effects

to start(eA(~x), t), and “at end” ones to end(eA(~x), t).

(:durative-action drive
:parameters (?v - vehicle ?l1 ?l2 - location)
:duration (= ?duration (/ (distance ?l1 ?l2) (velocity ?v)))
:precondition (and (at start (at ?v ?l1))

(over all (power ?v)))
:effect (and (at start (not (at ?v ?l1)))

(when (at start (not (engine ?v)))
(and (at start (engine ?v))

(at end (not (engine ?v)))))
(at end (at ?v ?l2))
(at end (increase (miles ?v) (distance ?l1 ?l2)))))

start(drive(v , l1, l2), t)
end(drive(v , l1, l2), t)

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 8 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Durative Actions

For each Pddl durative action eA(~x), map “at start” conditions and effects

to start(eA(~x), t), and “at end” ones to end(eA(~x), t).

(:durative-action drive
:parameters (?v - vehicle ?l1 ?l2 - location)
:duration (= ?duration (/ (distance ?l1 ?l2) (velocity ?v)))
:precondition (and (at start (at ?v ?l1))

(over all (power ?v)))
:effect (and (at start (not (at ?v ?l1)))

(when (at start (not (engine ?v)))
(and (at start (engine ?v))

(at end (not (engine ?v)))))
(at end (at ?v ?l2))
(at end (increase (miles ?v) (distance ?l1 ?l2)))))

start(drive(v , l1, l2), t)
end(drive(v , l1, l2), t)

Problems: Duration constraint, invariant condition and inter-temporal

conditional effect are ignored.

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 8 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Durative Actions

For each Pddl durative action eA(~x), map “at start” conditions and effects

to start(eA(~x), t), and “at end” ones to end(eA(~x), t).

(:durative-action drive
:parameters (?v - vehicle ?l1 ?l2 - location)
:duration (= ?duration (/ (distance ?l1 ?l2) (velocity ?v)))
:precondition (and (at start (at ?v ?l1))

(over all (power ?v)))
:effect (and (at start (not (at ?v ?l1)))

(when (at start (not (engine ?v)))
(and (at start (engine ?v))

(at end (not (engine ?v)))))
(at end (at ?v ?l2))
(at end (increase (miles ?v) (distance ?l1 ?l2)))))

start(drive(v , l1, l2), t)
end(drive(v , l1, l2), t)

Problems: Duration constraint, invariant condition and inter-temporal

conditional effect are ignored.

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 8 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Invariant Condition

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 9 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Invariant Condition

Protect the invariant condition of drive(v , l1, l2) by not allowing actions that
violate it (e.g. unplug(v)) to happen.

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 9 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Invariant Condition

Protect the invariant condition of drive(v , l1, l2) by not allowing actions that
violate it (e.g. unplug(v)) to happen.

Formally, assert

�Poss(a) ⊃[a]
`
Performing(drive(v , l1, l2)) ⊃ Power(v)

´

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 9 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Invariant Condition

Protect the invariant condition of drive(v , l1, l2) by not allowing actions that
violate it (e.g. unplug(v)) to happen.

Formally, assert

�Poss(a) ⊃R[a, Performing(drive(v , l1, l2)) ⊃ Power(v)]

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 9 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Invariant Condition

Protect the invariant condition of drive(v , l1, l2) by not allowing actions that
violate it (e.g. unplug(v)) to happen.

Formally, assert
�Poss(a) ⊃R[a, Performing(drive(v , l1, l2)) ⊃ Power(v)] ⇐⇒

[∃t. a = start(drive(v , l1, l2), t) ∨ Performing(drive(v , l1, l2)) ∧

¬∃t. a = end(drive(v , l1, l2), t)] ⊃ [False ∨ Power(v) ∧ ¬∃t. a = unplug(v , t)]

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 9 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Invariant Condition

Protect the invariant condition of drive(v , l1, l2) by not allowing actions that
violate it (e.g. unplug(v)) to happen.

Formally, assert
�Poss(a) ⊃{

[∃t. a = start(drive(v , l1, l2), t) ∨ Performing(drive(v , l1, l2)) ∧

¬∃t. a = end(drive(v , l1, l2), t)] ⊃ [False ∨ Power(v) ∧ ¬∃t. a = unplug(v , t)]

}

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 9 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Simple Actions
Durative Actions
Other Features

Other Features

Concurrency
Interleaved concurrency

e.g. [unplug(car , 5)][unplug(truck , 5)]¬Power(car)

Continuous effects
Introduce linear functions to BAT (Grosskreutz & Lakemeyer 00)

Timed initial literals
e.g. (at 2 (engine truck))

introduce a new and unique action turn on engine with

Poss(turn on engine(2)) ∧ Obli(turn on engine(2)) and with the single

effect to make Engine(truck) true.

Start duration constraint
“Remember” the involved function values at the start event, and assert

the constraint at the end.

Invariant condition with continuous effect
Force execution of end action.

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 10 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Correctness
Conclusion and Future Work

Correctness

Theorem

Let Σ be the result of applying the above mapping to a PDDL
problem with goal formula ψ. Let P be a plan with no concurrent
mutex actions. Then P is valid according to (Fox & Long 03) iff
there is a linearization 〈r1, · · · , rk〉 of P such that

Σ |= [r1] · · · [rk]
(

Executable ∧ ψ ∧ ¬∃a.Performing(a)
)

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 11 / 12

Introduction
Situation-Calculus Semantics for PDDL

Discussion

Correctness
Conclusion and Future Work

Conclusion and Future Work

Contribution

We present a situation-calculus semantics for the temporal
fragment of Pddl;

Theoretical ground for relating Pddl to other situation
calculus based formalisms, e.g. Golog;

Offer an alternative view on temporal planning,
(e.g. Cushing et al. (2007) observe that most state-of-the-art planners

are temporally simple.)

Ongoing and future work

Temporally-expressive planner based on the semantics;

Extend the result to include preferences and constraints on
plan trajectory in Pddl 3.0.

Situation-Calculus Semantics for Temporal Pddl Claßen, Hu, Lakemeyer July 26, 2007 12 / 12

	Introduction
	Situation-Calculus Semantics for PDDL
	Discussion

