
Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Temporally-Expressive Planning as Constraint

Satisfaction Problems

Yuxiao Hu

Department of Computer Science
University of Toronto

yuxiao (a) cs toronto edu

September 25, 2007

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 1 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Motivation
A Running Example
Approach

Motivation

As shown by Cushing et al. (2007), there are
“temporally-expressive” planning problems that

can be represented by PDDL 2.x

cannot be solved by many state-of-the-art planners

This is due to their strong assumptions on

1 temporal annotation
(Over-all preconditions, at end effects)

2 decision epochs
(An action can happen only when another event is happening)

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 2 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Motivation
A Running Example
Approach

Motivation

As shown by Cushing et al. (2007), there are
“temporally-expressive” planning problems that

can be represented by PDDL 2.x

cannot be solved by many state-of-the-art planners

This is due to their strong assumptions on

1 temporal annotation
(Over-all preconditions, at end effects)

2 decision epochs
(An action can happen only when another event is happening)

Goal: Solve general PDDL planning problems with a unified
approach

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 2 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Motivation
A Running Example
Approach

A Running Example

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 3 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Motivation
A Running Example
Approach

A Running Example

Required concurrency (“makeWish” be contained within “burnCandle”)

Duration inequality and duration-related effects

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 3 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Motivation
A Running Example
Approach

Approach

Our approach consists of two steps:
1 PDDL =⇒ BAT (Basic Action Theory)

Based on a concurrent extension to the situation-calculus semantics

of PDDL (Claßen et al. 2007)

2 BAT =⇒ CSP
Encode the BAT into a CSP problem, and solve the CSP to obtain

the plan.

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 4 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Motivation
A Running Example
Approach

Approach

Our approach consists of two steps:
1 PDDL =⇒ BAT (Basic Action Theory)

Based on a concurrent extension to the situation-calculus semantics

of PDDL (Claßen et al. 2007)

2 BAT =⇒ CSP
Encode the BAT into a CSP problem, and solve the CSP to obtain

the plan.

The intuition behind it is to

model durative actions with simple (instantaneous) actions

treat time as a numerical property, and advance it with constraints.

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 4 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Logical Foundations
The Basic Action Theory

Logical Foundations

Concurrent temporal situation calculus (Reiter 2001) with the
following syntax

A(~x , t) denotes the happening of simple action A(~x) at time t

A durative action A(~x) is represented by

Action start(A(~x), t): the start event of A(~x) at time t

Action end(A(~x), t): the end event of A(~x) at time t

Predicate Performing(A(~x)): whether A(~x) is in progress
Function since(A(~x)): the last starting time of A(~x)

{a1, · · · , an} means the concurrent happening of ai

[c]α means α holds after a list c of concurrent actions

�α means α holds in any situation

now is a special functional fluent representing the current time

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 5 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Logical Foundations
The Basic Action Theory

The Basic Action Theory

The basic action theory Σ consists of

The initial database Σ0 e.g.:
¬Fire, numWish = 0, ¬Performing(burnCandle), now = 0;

The precondition axiom Σpre , obtained from, e.g.:
�Poss(end(burnCandle, t)) ⊃ (t − since(burnCandle)) ≤ 6;

The successor state axioms Σpost , e.g.:
�[c]Fire ≡ ∃t.start(burnCandle, t) ∈ c ∨

Fire ∧¬(∃t.end(burnCandle, t) ∈ c ∧ (t − since(burnCandle) = 6) ∨

∃t.blowCandle(t) ∈ c);

The unique names axioms Σuna;

The foundational axioms FA, e.g.:
�Poss(c) ⊃ now < time(c)

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 6 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

The Variable Structure
The Constraints

The Variable Structure

Planning by encoding the basic action theory into a CSP

Search for increasing plan length n = 1, 2, 3, · · · , where
“length” means the number of concurrent happenings.

When searching for a plan of length n, create

n boolean variables for each ground action term A(~o):

A
(0)
~o

, · · · , A
(n−1)
~o

n + 1 boolean variables for each ground predicate P(~o):

P
(0)
~o

, · · · , P
(n)
~o

n + 1 numerical variables for each ground function f (~o):

f
(0)

~o
, · · · , f

(n)
~o

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 7 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

The Variable Structure
The Constraints

The Variable Structure

An example of searching for a plan of length 2:

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 8 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

The Variable Structure
The Constraints

The Variable Structure

An example of searching for a plan of length 2:

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 8 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

The Variable Structure
The Constraints

Constraints: Initial and Goal States

The 0th fact layer encodes the initial state

Problem-specific fluents set according to the initial description

Auxiliary fluents set to 0 (or False)

The last fact layer encodes the goal condition

Problem-specific goals

All “Performing” variables must be false

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 9 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

The Variable Structure
The Constraints

Constraints: Initial and Goal States

The 0th fact layer encodes the initial state

Problem-specific fluents set according to the initial description

Auxiliary fluents set to 0 (or False)

The last fact layer encodes the goal condition

Problem-specific goals

All “Performing” variables must be false

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 9 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

The Variable Structure
The Constraints

Constraints: Action Preconditions

For each formula of the form �Poss(A) ⊃ πA, construct an action
precondition constraint, e.g.:

From (part of) precondition axiom in the BAT
�Poss(end(burnCandle, t)) ⊃ (t − since(burnCandle)) ≤ 6

we obtain the action precondition constraint
endburn(i) ⊃ (now (i+1) − sinceburn(i)) ≤ 6

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 10 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

The Variable Structure
The Constraints

Constraints: Action Preconditions

For each formula of the form �Poss(A) ⊃ πA, construct an action
precondition constraint, e.g.:

From (part of) precondition axiom in the BAT
�Poss(end(burnCandle, t)) ⊃ (t − since(burnCandle)) ≤ 6

we obtain the action precondition constraint
endburn(i) ⊃ (now (i+1) − sinceburn(i)) ≤ 6

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 10 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

The Variable Structure
The Constraints

Constraints: Successor States

For each formula of the form �[c]F ≡ ΦF , construct a successor
state constraint, e.g.:

From the successor state axiom in the BAT

�[c]Fire ≡ ∃t.start(burnCandle, t) ∈ c ∨

Fire ∧ ¬(∃t.end(burnCandle, t) ∈ c ∧ (t − since(burnCandle) = 6) ∨

∃t.blowCandle(t) ∈ c)

we obtain the successor state constraint

Fire
(i+1)

≡ startburn
(i)

∨

Fire
(i)

∧ ¬(endburn
(i)

∧ (now
(i+1)

− sinceburn
(i) = 6) ∨ blowC

(i))

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 11 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

The Variable Structure
The Constraints

Constraints: Successor States

Fire
(i+1)

≡ startburn
(i)

∨

Fire
(i)

∧ ¬(endburn
(i)

∧ (now
(i+1)

− sinceburn
(i) = 6) ∨ blowC

(i))

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 11 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

The Variable Structure
The Constraints

Constraints: Action Happening Times

To ensure chronological order of happenings, the foundational
axiom in BAT

�Poss(c) ⊃ now < time(c)
is encoded as the action happening time constraint

now (i) < now (i+1)

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 12 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

The Variable Structure
The Constraints

Constraints: Action Happening Times

To ensure chronological order of happenings, the foundational
axiom in BAT

�Poss(c) ⊃ now < time(c)
is encoded as the action happening time constraint

now (i) < now (i+1)

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 12 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

The Variable Structure
The Constraints

Other Constraints

In addition, we need the following constraints (details in paper)

Invariant constraints;

Non-null step constraints;

Mutex constraints;

Timed-initial literal enforcement constraints.

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 13 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Implementation and Test Result
Conclusion and Future Work

Implementation and Test Result

We hand-encoded several problem with constraint programming
language Choco (choco.sourceforge.net), which supports

1 Higher-order constraints, e.g. implies(A, and(B,C));

2 Numerical constraints.

Can solve problems with required concurrency, duration inequalities
and duration-related effects.

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 14 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Implementation and Test Result
Conclusion and Future Work

Example Result

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 15 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Implementation and Test Result
Conclusion and Future Work

Example Result

PDDL plan: {(1 : burnCandle[5]), (2 : makeWish[3]), (6 : blowCandle)}

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 15 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Implementation and Test Result
Conclusion and Future Work

Other Experiments

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 16 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Implementation and Test Result
Conclusion and Future Work

Other Experiments

No comparison with state-of-the-art planners available yet.

Presumably slower on existing (temporally-simple) benchmarks, since we
have only focused on generality, not yet efficiency.

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 16 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Implementation and Test Result
Conclusion and Future Work

Conclusion and Future Work

We have

1 extended a declarative semantics of PDDL with true
concurrency

2 proposed a general solution to PDDL planning problems based
on a CSP encoding of the declarative semantics

Handles arbitrary PDDL temporal annotations
Determines happening times by satisfying constraints
Solves temporally-expressive PDDL problems (possibly with
duration-related constraints and effects) in a unified

search.

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 17 / 17

Introduction
Declarative Semantics of PDDL

The CSP Encoding
Discussion

Implementation and Test Result
Conclusion and Future Work

Conclusion and Future Work

We have

1 extended a declarative semantics of PDDL with true
concurrency

2 proposed a general solution to PDDL planning problems based
on a CSP encoding of the declarative semantics

Handles arbitrary PDDL temporal annotations
Determines happening times by satisfying constraints
Solves temporally-expressive PDDL problems (possibly with
duration-related constraints and effects) in a unified

search.

Future work:

1 Implementation and optimization of automatic translation

2 Constraints and preferences in PDDL 3.0

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 17 / 17

	Introduction
	Motivation
	A Running Example
	Approach

	Declarative Semantics of PDDL
	Logical Foundations
	The Basic Action Theory

	The CSP Encoding
	The Variable Structure
	The Constraints

	Discussion
	Implementation and Test Result
	Conclusion and Future Work

