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Declarative

Motivation

Motivation

A Running Example

Approach

As shown by Cushing et al. (2007), there are

“temporally-expressive” planning problems that
@ can be represented by PDDL 2.x

@ cannot be solved by many state-of-the-art planners
This is due to their strong assumptions on
@ temporal annotation

(Over-all preconditions, at end effects)
@ decision epochs

(An action can happen only when another event is happening)
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Motivation

Motivation

A Running Example

Approach

As shown by Cushing et al. (2007), there are

“temporally-expressive” planning problems that
@ can be represented by PDDL 2.x

@ cannot be solved by many state-of-the-art planners
This is due to their strong assumptions on
@ temporal annotation

(Over-all preconditions, at end effects)
@ decision epochs

approach

(An action can happen only when another event is happening)
Goal: Solve general PDDL planning problems with a unified
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A Running Example
Approach

Fire

burnCandle [<6]
Fire

(duration=6)=>-Fire
~OccupiednFire Fire

makeWish [ ]
Occupied

~QOccupied
numWish+=duration

~Occupied~ Fire
blow
Candle

~Fire
(numWish>3)=>Happy
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X o Approach
A Running Example

Fire
| burnCandle [<6] |
Fire (duration=6)=>-Fire
~OccupiednFire Fire
Occupied ~Occupied

numWish+=duration

~Occupied~ Fire
blow-
Candle
~Fire
(numWish>3)=>Happy

@ Required concurrency (“makeWish” be contained within “burnCandle")
@ Duration inequality and duration-related effects
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Declarative Sema Motivation

A Running Example
Approach

Approach

Our approach consists of two steps:
Q PDDL = BAT (Basic Action Theory)

Based on a concurrent extension to the situation-calculus semantics
of PDDL (ClaBen et al. 2007)

Q@ BAT = CSP

Encode the BAT into a CSP problem, and solve the CSP to obtain
the plan.
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Motivation
A Running Example
Approach

Declarative Sema

Approach

Our approach consists of two steps:
Q PDDL = BAT (Basic Action Theory)

Based on a concurrent extension to the situation-calculus semantics
of PDDL (ClaBen et al. 2007)

Q@ BAT = CSP

Encode the BAT into a CSP problem, and solve the CSP to obtain
the plan.

The intuition behind it is to
@ model durative actions with simple (instantaneous) actions

@ treat time as a numerical property, and advance it with constraints.
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Introd

Declarative Semantics of Logical Foundations

The Basic Action Theory

Logical Foundations

Concurrent temporal situation calculus (Reiter 2001) with the
following syntax

@ A(X,t) denotes the happening of simple action A(X) at time t
@ A durative action A(X) is represented by

Action start(A(X), t): the start event of A(X) at time t

Action end(A(X), t): the end event of A(X) at time t

L
o Predicate Performing(A(X)): whether A(X) is in progress
o

Function since(A(X)): the last starting time of A(X)

<

o {a1,---,ap} means the concurrent happening of a;
@ [c]a means « holds after a list ¢ of concurrent actions
@ [la means « holds in any situation

@ now is a special functional fluent representing the current time
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Declarative Semantics of Logical Foundations

The Basic Action Theory

The Basic Action Theory

The basic action theory ¥ consists of
@ The initial database ¥ e.g.:
= Fire, numWish = 0, —Performing(burnCandle), now = 0;
@ The precondition axiom ¥ .., obtained from, e.g:
OPoss(end(burnCandle, t)) O (t — since(burnCandle)) < 6;

@ The successor state axioms ¥ post, €.8::
Olc]Fire = 3t.start(burnCandle, t) € c V
Fire A —( 3t.end(burnCandle, t) € c A (t — since(burnCandle) = 6) V
Jt.blowCandle(t) € c);

@ The unique names axioms 2 ,na;

@ The foundational axioms F A, e.g.:
OPoss(c) D now < time(c)
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The Variable Structure
The Constraints

The Variable Structure

Planning by encoding the basic action theory into a CSP

@ Search for increasing plan length n =1,2,3,---, where
“length” means the number of concurrent happenings.
@ When searching for a plan of length n, create

@ n boolean variables for each ground action term A(J)
A(P) L A(nfl)
GI) » 78

s n+ 1 boolean variables for each ground predicate P(3)
PO .. plr)

o

@ n+ 1 numerical variables for each ground function f(J)
[0 )

o ’'6
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Introduction
Semantics of PDDL
The CSP Encoding

C n

The Variable Structure
The Constraints

The Variable Structure

An example of searching for a plan of length 2:

Fre )

o LI Z,
ir Fire® Fire®
Occupied® ) Occupied™ ) Occupfcdm
o Startburn P Sterthurit @
Happy Br® Happy BV Happy*
7. 0 ENAirm 7 1 CHAOurin re 2
numWisih® - numVish® i numWish®
il '
E[-fonm'ng]‘)un{m starwish™ B_ﬁypmmgbnm{“ starewish™ %'i‘bmung]?umm
1%‘]"017:11’;@ visti™ endwisit® Efo:mmg vistf D enchrisi -@'foﬁ ing vish 2
Si”f?bl ”_H(U) ~{0) Sir J(‘E’b! []"H(h X (1) Sm(:ebm‘n(ZJ
e blowC ) o blowC ) @
sincewish' SincewishV) Sincewish's
now'® now now?®
Action layer 0

- Action layer 1
Fact layer 0 Fact layer 1 : Fact layer 2

[m] [ =

it
S
¥el
2

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 8 /17



Int
Semantic f
The CSP Encoding
C n

The Variable Structure
The Constraints

The Variable Structure

An example of searching for a plan of length 2:

Fre )

o LI Z,
ir Fire® Fire®
Occupied® ) Occupied™ ) Occupfcdm
o Startburn P Sterthurit @
Happy Br® Happy BV Happy
7. 0 ENAirm 7 1 CHAOurin re 2
numWisih® - numVish® i numWish®
il :
E[-fonm'ng]‘um{m starwish™ E{ﬁmumg]mmm starewish™ Brtorminghront™
rtorming islf® endwisi’® Lrforming vishtY enchrisi Liforming vish 2
Si”f?blﬂ?l(n) ~{0) S.f”(‘é’b”]"”(h (1) AS'i?JCHZ7PFI')I(2)

) e blowC ) o blowC ) @
sincewish' Sincewishh) Sincewish's
now'® now now?®

Action layer 0

- Action layer 1
Fact layer 0 Fact layer 1 : Fact layer 2
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The Variable Structure
g
C

The Constraints
Constraints: Initial and Goal States

The Oth fact layer encodes the initial state

@ Problem-specific fluents set according to the initial description
@ Auxiliary fluents set to 0 (or FALSE)

The last fact layer encodes the goal condition

@ Problem-specific goals

@ All “Performing” variables must be false
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Introduction

Declarative Semantic PDDL
The CSP Encodin

Disc on

The Variable Structure
The Constraints

Constraints: Initial and Goal States

The Oth fact layer encodes the initial state
@ Problem-specific fluents set according to the initial description
@ Auxiliary fluents set to 0 (or FALSE)

The last fact layer encodes the goal condition
@ Problem-specific goals

@ All “Performing” variables must be false

i —= . e -
Fire™=0 Fire® Fire®
. ) R (1) . 2)
* o d =) ) 0 cclpie ~upie
Occrtprc(g{ e i Ocufpw(cli startburn® Occupied
Happy™=0 o Happy i [Happy'=]
mumWish™0 endburn numWish® endburn numlWish”
; it
E{'ﬁ)ﬂumgbﬂiﬂm‘—l(} startwish® E_')‘(’Jiminghnmm Startwish" e
Brformingish2() endwish® Latorming vist* enaishY) Forming
sincebrm'®=( ) -{0) sinceburn™ (L) sinceburn®
. o) blowC . o blowC . o
sincewish®() Sincewish Sincewish'
now®=0 now!V now®
=] =y = = E A
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The Variable Structure
The Constraints

For each formula of the form [0Poss(A) D ma, construct an action
precondition constraint, e.g.:

From (part of) precondition axiom in the BAT
OPoss(end(burnCandle, t)) D (t — since(burnCandle)) < 6
we obtain the action precondition constraint

engburn(’) > (”OW“H) — SinCebUrn(i)) <6
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Declarative Semantic PDDL The Variable Structure
The CSP Encodin
Disc

The Constraints
Constraints: Action Preconditions

For each formula of the form [0Poss(A) D ma, construct an action
precondition constraint, e.g.:

From (part of) precondition axiom in the BAT

OPoss(end(burnCandle, t)) D (t — since(burnCandle)) < 6
we obtain the action precondition constraint

engburnt) o (now(’“) — s,-,,ceburn(’)) <6
Fire® Fire® Fire®
. 4(0) . Al . 4@
Occrtprc(g{ G Ocufpw(cli Sl Occupn(ci
Happy T ® Happy P Happy"
> T e 7 5 2
numiish® S numVish® enadurm numWish®
ik
Brformingbrrt® Startwish™ E_‘)‘Emuinghm?f“ Startvvish') Biformingbrmt®
Ejﬁmming vish® endwis!® jt?[ﬁﬂillii 19 visttL enawishV
1 L0 5 ),
.SHICPb! i {0y Smcebm H
) . 0) blowC" . .
Sincewisi sincewishV)
()
noWw

s
@fomli;@ yish?
L
blowC"
now

sinceburn®
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The Constraints
Constraints: Successor States

For each formula of the form O[c]F = ®f, construct a successor
state constraint, e.g.:
From the successor state axiom in the BAT

O[c]Fire = 3t.start(burnCandle, t) € c V
Fire A —(3t.end(burnCandle, t) € c A (t — since(burnCandle) = 6) V
Jt.blowCandle(t) € c)

we obtain the successor state constraint
Firel*Y) =

sta,tburn(i) V
Fire®) A =(engburn®™ A (now!™™ — s;,ceburn' = 6) v blowC")
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Semantic
The CSP Encoding
C n
Constraints: Successor States
Fire® Firel Fire® o
()} - (1) :
. ) e i
Occupre.g: gl Ocu{pleg L Ocoupre(ai
Hﬂp%)f\ ©) endburm® Hap%)_} 1) endburn'™ Hc?p}")_} 2)
numVish - numiVish - numlVish
- L
Bformingburt” Starpbish® Bformingbuuni” starnvish™! Bitormingbunt®
endwish® Bormimg it enawishV Lorming visi! 2
sinceburnL) L sinceburn'®
blow( i o
Sincewish'=
now®

Sincewishl)
now'

~{0)

Biforming pisht®
)
blowd

sinceburi®
Ssincewish®
now®

Firel™ = sta,tburn(i) V

Fire') A —\(e,,dburn(i> A (now("H) — sinceburn) = 6) V bloow)
Ha
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The Variable Structure
on

A The Constraints
Constraints: Action Happening Times

To ensure chronological order of happenings, the foundational
axiom in BAT

OPoss(c) D now < time(c)
is encoded as the action happening time constraint

now() < now(i+1)
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The Variable Structure
The Constraints

Constraints: Action Happening Times

To ensure chronological order of
axiom in BAT

happenings, the foundational

OPoss(c) D now < time(c)
is encoded as the action happening time constraint
now() < pow(i+1)

Fire® Fire® Fire®
()} - Al ]
Oeccupied : 0 Oceupied ) Qccupied
P o) A'mrr‘l’m‘n“ B (1) Sfm‘rbm')ru’ P @
Happy ©) encburn® Happy 1 enctburn™ Happy 2)
numVish - numVish® e numlVish”
; R (i .o (1) =
BermingPunt” Starnish® Bformingbuuni” StartiVish™ Bitormingbunt®
Bformmgisht® endwisi® Lyforming vishtY encwishV Brformingvis®
sincebur® o) sinceburn® (1) sincebirn®
. o) blowC ) . blowC i )
sincewish sinceishl) Sincewish'™
now® nowd) now®

Temporally-Expressive Planning as CSPs
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Introduction
Declarative Semantic PDDL The Variable Structure
The CSP Encodin The Constraints
Disc on

Other Constraints

In addition, we need the following constraints (details in paper)
@ Invariant constraints;

@ Non-null step constraints;
@ Mutex constraints;

@ Timed-initial literal enforcement constraints.
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PDD
P Encoding

Discussion

Conclusion and Future Work

Implementation and Test Result
Implementation and Test Result

We hand-encoded several problem with constraint programming
language Choco (choco.sourceforge.net), which supports

O Higher-order constraints, e.g. implies(A, and(B,C));
© Numerical constraints.

Can solve problems with required concurrency, duration inequalities
and duration-related effects.
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Implementation and Test Result
Conclusion and Future Work

Discussion

Example Result

Fire®=0
Occupied”=q
Happy®= (J

numish™=(
Ei‘f[)imf)@hm?‘ =(_ )
Lformingvist®=0
sincebumn™=0
Sincewish®=()
now®=q

X 2
Starthurn ‘50

(2)
encburn =0

,
Staravish ™=

blowC*=0

Temporally-Expressive Planning as CSPs

0 LfEmui;po])n:ﬁ ):1

Fire=1
Occupied=p
Happy' )

numish™=0
3 L
starish @) Beforminghur V=1
Brformingvish=0)
sinceburn™=1
sincewish™=0

endhinn®=0

enawish®(

hlowC™0

nowH=1
Fire®=1
o Il
Occup wi] 7(-) stertbu™
Happy® ()

=0
numiv z.si( =

I Foning ml 0

sincebur®=1
sincewisl=2

noy 1"3’:3

3) -
Startwislt ’:(_)

enawisi®

Yuxiao Hu

Fire®=1
Occwpieda;l
Happy™=0
numWish®=0
Laonmingbt =1
Eforfuiug\ visi = 1
Sincebun 1(2 =
Sincel L‘isllm:j
now®=>

.
Starthurn =0

-
endburn =0

encisl) L0

blowC™0

Firé¥=0

Lo Ocenpied™=0

numWish =3
¢ 4)_
Brformingbuin =)
- 5 e C
0] Brformingvish =0
sincebi 11‘11(4): 1
, @)~
Sincewish =2
now¥=6




Implementation and Test Result
F‘ Encoding Conclusion and Future Work
Discussion

Example Result

Fire®=0 Fire=1 Fire® =l
(£) s )
Occupied”=q Occupied=p i Oceitpied =1
Happy (0 (J Happy M_(y Startburn =0 Happy! 2
0
numbish®= encburn®=0 numWish"=0 numWish® L(
Jgiﬁ)imn@]?m?‘ =O startish () 5:)‘2):711»!0771117:( L B‘ﬁmumg/’?um :1
D i iO=0 i 5 (_ ) : d\l‘i/m:
L?{)’omm@l‘!fﬂf ] encish®eg) B)?)i'um}g\l?(s{; () endwisi LO Eﬁoﬂuiu@ (92: 1
sincebur™'=0 L sinceburnt =1 ke Sinceburn”'=
Sincewish®=() blowC=0 sincewishM=0 blowC"=0 sincewish®=2
now®=q nowt=1 now®=>
Fire®=1 Firé¥=0

N numVisit numWish =3
e 7
StaritWish =() ](;ljﬁ)l‘lulilg]”’i?l :l E;f(’?l?uing]‘mmm:()
3) 4 -
Liormingvis =0 Biorming isht =0

- & L
Startburin =0 O[;wpie(it; =0 starbuilo O;r/ m,(i{’ Lo
z appy (’) #ﬂ o
endburn =0 PP) ] 2 -
[7

o sinceburt *l sinceburt?=1
blow(C"=(0 &) @
Sincewish'= Sincewish =2
nou""":\ now=6

PDDL plan: {(1 : burnCandle[5]), (2 : makeWish[3]), (6 : blowCandle)}
(=] = = = =

A
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Implementation and Test Result

Conclusion and Future Work
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burnMatch [3]
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|
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P
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Implementation and Test Result
Conclusion and Future Work

ling

Discussion

Other Experiments

T
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=

GG, | [0
- burnMateh [3]

B(2] Jec AME S0ccAME

-G G, ME eF
4=0.264 5=0.272 t=0.268 4"; LuirnCandici =101 |

(duration=10)=—1CF|

0cc
NIF 4= duration
S0 ACF
blow-
n=0.272 5=0.28¢ $=0.288 Candle
©4=0.320 £=0.332 1;=0.376

SOF
(NI 2 3y===Happ

@ No comparison with state-of-the-art planners available yet.

@ Presumably slower on existing (temporally-simple) benchmarks, since we
have only focused on generality, not yet efficiencyc.]
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Implementation and Test Result
Conclusion and Future Work

Conclusion and Future Work

We have

@ extended a declarative semantics of PDDL with true
concurrency

@ proposed a general solution to PDDL planning problems based
on a CSP encoding of the declarative semantics
o Handles arbitrary PDDL temporal annotations
o Determines happening times by satisfying constraints
@ Solves temporally-expressive PDDL problems (possibly with

duration-related constraints and effects) in a unified
search.
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Declarative Sema Implementation and Test Result

Conclusion and Future Work

Conclusion and Future Work

We have

@ extended a declarative semantics of PDDL with true
concurrency

@ proposed a general solution to PDDL planning problems based
on a CSP encoding of the declarative semantics

o Handles arbitrary PDDL temporal annotations
o Determines happening times by satisfying constraints
@ Solves temporally-expressive PDDL problems (possibly with

duration-related constraints and effects) in a unified
search.

Future work:

© Implementation and optimization of automatic translation
@ Constraints and preferences in PDDL 3.0
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