Temporally-Expressive Planning as Constraint

Satisfaction Problems

Yuxiao Hu

Department of Computer Science

University of Toronto

yuxiao (a) cs toronto edu

September 25, 2007

Temporally-Expressive Planning as CSPs

o F
Yuxiao Hu

September 25, 2007

Dae
1/17

Declarative

Motivation

Motivation

A Running Example

Approach

As shown by Cushing et al. (2007), there are

“temporally-expressive” planning problems that
@ can be represented by PDDL 2.x

@ cannot be solved by many state-of-the-art planners
This is due to their strong assumptions on
@ temporal annotation

(Over-all preconditions, at end effects)
@ decision epochs

(An action can happen only when another event is happening)

Temporally-Expressive Planning as CSPs

o F
Yuxiao Hu

September 25, 2007

Dae
2/17

Motivation

Motivation

A Running Example

Approach

As shown by Cushing et al. (2007), there are

“temporally-expressive” planning problems that
@ can be represented by PDDL 2.x

@ cannot be solved by many state-of-the-art planners
This is due to their strong assumptions on
@ temporal annotation

(Over-all preconditions, at end effects)
@ decision epochs

approach

(An action can happen only when another event is happening)
Goal: Solve general PDDL planning problems with a unified

Temporally-Expressive Planning as CSPs

o F
Yuxiao Hu

September 25, 2007

Dae
2/17

Declarative

Introduction
antics of PDDL

Motivation
ding
D 0
A Running Example

A Running Example
Approach

Fire

burnCandle [<6]
Fire

(duration=6)=>-Fire
~OccupiednFire Fire

makeWish []
Occupied

~QOccupied
numWish+=duration

~Occupied~ Fire
blow
Candle

~Fire
(numWish>3)=>Happy

Temporally-Expressive Planning as CSPs

o F
Yuxiao Hu

September 25, 2007

Dae
3/17

Introduction

f PDDL Motivation

ding

A Running Example
X o Approach
A Running Example

Fire
| burnCandle [<6] |
Fire (duration=6)=>-Fire
~OccupiednFire Fire
Occupied ~Occupied

numWish+=duration

~Occupied~ Fire
blow-
Candle
~Fire
(numWish>3)=>Happy

@ Required concurrency (“makeWish” be contained within “burnCandle")
@ Duration inequality and duration-related effects

Temporally-Expressive Planning as CSPs

o

&
Yuxiao Hu

September 25, 2007

Dae
3/17

Declarative Sema Motivation

A Running Example
Approach

Approach

Our approach consists of two steps:
Q PDDL = BAT (Basic Action Theory)

Based on a concurrent extension to the situation-calculus semantics
of PDDL (ClaBen et al. 2007)

Q@ BAT = CSP

Encode the BAT into a CSP problem, and solve the CSP to obtain
the plan.

[m] [=
Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007

it
S
¥el
2

4 /17

Motivation
A Running Example
Approach

Declarative Sema

Approach

Our approach consists of two steps:
Q PDDL = BAT (Basic Action Theory)

Based on a concurrent extension to the situation-calculus semantics
of PDDL (ClaBen et al. 2007)

Q@ BAT = CSP

Encode the BAT into a CSP problem, and solve the CSP to obtain
the plan.

The intuition behind it is to
@ model durative actions with simple (instantaneous) actions

@ treat time as a numerical property, and advance it with constraints.

[m] [=
Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 4 /17

u
it
S
¥el
i)

Introd

Declarative Semantics of Logical Foundations

The Basic Action Theory

Logical Foundations

Concurrent temporal situation calculus (Reiter 2001) with the
following syntax

@ A(X,t) denotes the happening of simple action A(X) at time t
@ A durative action A(X) is represented by

Action start(A(X), t): the start event of A(X) at time t

Action end(A(X), t): the end event of A(X) at time t

L
o Predicate Performing(A(X)): whether A(X) is in progress
o

Function since(A(X)): the last starting time of A(X)

<

o {a1,---,ap} means the concurrent happening of a;
@ [c]a means « holds after a list ¢ of concurrent actions
@ [la means « holds in any situation

@ now is a special functional fluent representing the current time

(=] = = =
September 25, 2007 5 /17

it
S
¥el
2

Temporally-Expressive Planning as CSPs Yuxiao Hu

Introd

Declarative Semantics of Logical Foundations

The Basic Action Theory

The Basic Action Theory

The basic action theory ¥ consists of
@ The initial database ¥ e.g.:
= Fire, numWish = 0, —Performing(burnCandle), now = 0;
@ The precondition axiom ¥ .., obtained from, e.g:
OPoss(end(burnCandle, t)) O (t — since(burnCandle)) < 6;

@ The successor state axioms ¥ post, €.8::
Olc]Fire = 3t.start(burnCandle, t) € c V
Fire A —(3t.end(burnCandle, t) € c A (t — since(burnCandle) = 6) V
Jt.blowCandle(t) € c);

@ The unique names axioms 2 ,na;

@ The foundational axioms F A, e.g.:
OPoss(c) D now < time(c)

(=] = = =

it
S
¥el
2

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 6 /17

The Variable Structure
The Constraints

The Variable Structure

Planning by encoding the basic action theory into a CSP

@ Search for increasing plan length n =1,2,3,---, where
“length” means the number of concurrent happenings.
@ When searching for a plan of length n, create

@ n boolean variables for each ground action term A(J)
A(P) L A(nfl)
GI) » 78

s n+ 1 boolean variables for each ground predicate P(3)
PO .. plr)

o

@ n+ 1 numerical variables for each ground function f(J)
[0)

o ’'6

(=] = = =
Temporally-Expressive Planning as CSPs Yuxiao Hu

it
S
¥el
2

September 25, 2007 7/ 17

Introduction
Semantics of PDDL
The CSP Encoding

C n

The Variable Structure
The Constraints

The Variable Structure

An example of searching for a plan of length 2:

Fre)

o LI Z,
ir Fire® Fire®
Occupied®) Occupied™) Occupfcdm
o Startburn P Sterthurit @
Happy Br® Happy BV Happy*
7. 0 ENAirm 7 1 CHAOurin re 2
numWisih® - numVish® i numWish®
il '
E[-fonm'ng]‘)un{m starwish™ B_ﬁypmmgbnm{“ starewish™ %'i‘bmung]?umm
1%‘]"017:11’;@ visti™ endwisit® Efo:mmg vistf D enchrisi -@'foﬁ ing vish 2
Si”f?bl ”_H(U) ~{0) Sir J(‘E’b! []"H(h X (1) Sm(:ebm‘n(ZJ
e blowC) o blowC) @
sincewish' SincewishV) Sincewish's
now'® now now?®
Action layer 0

- Action layer 1
Fact layer 0 Fact layer 1 : Fact layer 2

[m] [=

it
S
¥el
2

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 8 /17

Int
Semantic f
The CSP Encoding
C n

The Variable Structure
The Constraints

The Variable Structure

An example of searching for a plan of length 2:

Fre)

o LI Z,
ir Fire® Fire®
Occupied®) Occupied™) Occupfcdm
o Startburn P Sterthurit @
Happy Br® Happy BV Happy
7. 0 ENAirm 7 1 CHAOurin re 2
numWisih® - numVish® i numWish®
il :
E[-fonm'ng]‘um{m starwish™ E{ﬁmumg]mmm starewish™ Brtorminghront™
rtorming islf® endwisi’® Lrforming vishtY enchrisi Liforming vish 2
Si”f?blﬂ?l(n) ~{0) S.f”(‘é’b”]"”(h (1) AS'i?JCHZ7PFI')I(2)

) e blowC) o blowC) @
sincewish' Sincewishh) Sincewish's
now'® now now?®

Action layer 0

- Action layer 1
Fact layer 0 Fact layer 1 : Fact layer 2

[m] [=

it
S
¥el
2

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 8 /17

Declarative Semanti

The CS Encod

The Variable Structure
g
C

The Constraints
Constraints: Initial and Goal States

The Oth fact layer encodes the initial state

@ Problem-specific fluents set according to the initial description
@ Auxiliary fluents set to 0 (or FALSE)

The last fact layer encodes the goal condition

@ Problem-specific goals

@ All “Performing” variables must be false

Temporally-Expressive Planning as CSPs

o F
Yuxiao Hu

September 25, 2007

Dae
9/17

Introduction

Declarative Semantic PDDL
The CSP Encodin

Disc on

The Variable Structure
The Constraints

Constraints: Initial and Goal States

The Oth fact layer encodes the initial state
@ Problem-specific fluents set according to the initial description
@ Auxiliary fluents set to 0 (or FALSE)

The last fact layer encodes the goal condition
@ Problem-specific goals

@ All “Performing” variables must be false

i —= . e -
Fire™=0 Fire® Fire®
.) R (1) . 2)
* o d =)) 0 cclpie ~upie
Occrtprc(g{ e i Ocufpw(cli startburn® Occupied
Happy™=0 o Happy i [Happy'=]
mumWish™0 endburn numWish® endburn numlWish”
; it
E{'ﬁ)ﬂumgbﬂiﬂm‘—l(} startwish® E_')‘(’Jiminghnmm Startwish" e
Brformingish2() endwish® Latorming vist* enaishY) Forming
sincebrm'®=() -{0) sinceburn™ (L) sinceburn®
. o) blowC . o blowC . o
sincewish®() Sincewish Sincewish'
now®=0 now!V now®
=] =y = = E A

Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 9 /17

The Variable Structure
The Constraints

For each formula of the form [0Poss(A) D ma, construct an action
precondition constraint, e.g.:

From (part of) precondition axiom in the BAT
OPoss(end(burnCandle, t)) D (t — since(burnCandle)) < 6
we obtain the action precondition constraint

engburn(’) > (”OW“H) — SinCebUrn(i)) <6

Temporally-Expressive Planning as CSPs

o F
Yuxiao Hu

September 25, 2007

10 / 17

Introduction
Declarative Semantic PDDL The Variable Structure
The CSP Encodin
Disc

The Constraints
Constraints: Action Preconditions

For each formula of the form [0Poss(A) D ma, construct an action
precondition constraint, e.g.:

From (part of) precondition axiom in the BAT

OPoss(end(burnCandle, t)) D (t — since(burnCandle)) < 6
we obtain the action precondition constraint

engburnt) o (now(’“) — s,-,,ceburn(’)) <6
Fire® Fire® Fire®
. 4(0) . Al . 4@
Occrtprc(g{ G Ocufpw(cli Sl Occupn(ci
Happy T ® Happy P Happy"
> T e 7 5 2
numiish® S numVish® enadurm numWish®
ik
Brformingbrrt® Startwish™ E_‘)‘Emuinghm?f“ Startvvish') Biformingbrmt®
Ejﬁmming vish® endwis!® jt?[ﬁﬂillii 19 visttL enawishV
1 L0 5),
.SHICPb! i {0y Smcebm H
) . 0) blowC" . .
Sincewisi sincewishV)
()
noWw

s
@fomli;@ yish?
L
blowC"
now

sinceburn®
Temporally-Expressive Planning as CSPs

sincewish®
now®
(=] F
Yuxiao Hu

September 25, 2007

10 / 17

Declarative Semantic

D
The CSP Encodi

The Variable Structure
Discu

The Constraints
Constraints: Successor States

For each formula of the form O[c]F = ®f, construct a successor
state constraint, e.g.:
From the successor state axiom in the BAT

O[c]Fire = 3t.start(burnCandle, t) € c V
Fire A —(3t.end(burnCandle, t) € c A (t — since(burnCandle) = 6) V
Jt.blowCandle(t) € c)

we obtain the successor state constraint
Firel*Y) =

sta,tburn(i) V
Fire®) A =(engburn®™ A (now!™™ — s;,ceburn' = 6) v blowC")

Temporally-Expressive Planning as CSPs

o F
Yuxiao Hu

September 25, 2007

11 /17

Introd
f The Variable Structure
The Constraints

Semantic
The CSP Encoding
C n
Constraints: Successor States
Fire® Firel Fire® o
()} - (1) :
.) e i
Occupre.g: gl Ocu{pleg L Ocoupre(ai
Hﬂp%)f\ ©) endburm® Hap%)_} 1) endburn'™ Hc?p}")_} 2)
numVish - numiVish - numlVish
- L
Bformingburt” Starpbish® Bformingbuuni” starnvish™! Bitormingbunt®
endwish® Bormimg it enawishV Lorming visi! 2
sinceburnL) L sinceburn'®
blow(i o
Sincewish'=
now®

Sincewishl)
now'

~{0)

Biforming pisht®
)
blowd

sinceburi®
Ssincewish®
now®

Firel™ = sta,tburn(i) V

Fire') A —\(e,,dburn(i> A (now("H) — sinceburn) = 6) V bloow)
Ha

- =
11 /17

o
September 25, 2007

Yuxiao Hu

Temporally-Expressive Planning as CSPs

Declarative

The Variable Structure
on

A The Constraints
Constraints: Action Happening Times

To ensure chronological order of happenings, the foundational
axiom in BAT

OPoss(c) D now < time(c)
is encoded as the action happening time constraint

now() < now(i+1)

Temporally-Expressive Planning as CSPs

o F
Yuxiao Hu

September 25, 2007

12 /17

uction
an PDDL
The CSP Encoding

Disc on

The Variable Structure
The Constraints

Constraints: Action Happening Times

To ensure chronological order of
axiom in BAT

happenings, the foundational

OPoss(c) D now < time(c)
is encoded as the action happening time constraint
now() < pow(i+1)

Fire® Fire® Fire®
()} - Al]
Oeccupied : 0 Oceupied) Qccupied
P o) A'mrr‘l’m‘n“ B (1) Sfm‘rbm')ru’ P @
Happy ©) encburn® Happy 1 enctburn™ Happy 2)
numVish - numVish® e numlVish”
; R (i .o (1) =
BermingPunt” Starnish® Bformingbuuni” StartiVish™ Bitormingbunt®
Bformmgisht® endwisi® Lyforming vishtY encwishV Brformingvis®
sincebur® o) sinceburn® (1) sincebirn®
. o) blowC) . blowC i)
sincewish sinceishl) Sincewish'™
now® nowd) now®

Temporally-Expressive Planning as CSPs

[m] [=

it
S
¥el
2

Yuxiao Hu September 25, 2007 12 /17

Introduction
Declarative Semantic PDDL The Variable Structure
The CSP Encodin The Constraints
Disc on

Other Constraints

In addition, we need the following constraints (details in paper)
@ Invariant constraints;

@ Non-null step constraints;
@ Mutex constraints;

@ Timed-initial literal enforcement constraints.

[m] [=
Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 13 /17

u
it
S
¥el
i)

Declarative

PDD
P Encoding

Discussion

Conclusion and Future Work

Implementation and Test Result
Implementation and Test Result

We hand-encoded several problem with constraint programming
language Choco (choco.sourceforge.net), which supports

O Higher-order constraints, e.g. implies(A, and(B,C));
© Numerical constraints.

Can solve problems with required concurrency, duration inequalities
and duration-related effects.

Temporally-Expressive Planning as CSPs

o F
Yuxiao Hu

September 25, 2007

14 /17

Implementation and Test Result
Conclusion and Future Work

Discussion

Example Result

Fire®=0
Occupied”=q
Happy®= (J

numish™=(
Ei‘f[)imf)@hm?‘ =(_)
Lformingvist®=0
sincebumn™=0
Sincewish®=()
now®=q

X 2
Starthurn ‘50

(2)
encburn =0

,
Staravish ™=

blowC*=0

Temporally-Expressive Planning as CSPs

0 LfEmui;po])n:ﬁ):1

Fire=1
Occupied=p
Happy')

numish™=0
3 L
starish @) Beforminghur V=1
Brformingvish=0)
sinceburn™=1
sincewish™=0

endhinn®=0

enawish®(

hlowC™0

nowH=1
Fire®=1
o Il
Occup wi] 7(-) stertbu™
Happy® ()

=0
numiv z.si(=

I Foning ml 0

sincebur®=1
sincewisl=2

noy 1"3’:3

3) -
Startwislt ’:(_)

enawisi®

Yuxiao Hu

Fire®=1
Occwpieda;l
Happy™=0
numWish®=0
Laonmingbt =1
Eforfuiug\ visi = 1
Sincebun 1(2 =
Sincel L‘isllm:j
now®=>

.
Starthurn =0

-
endburn =0

encisl) L0

blowC™0

Firé¥=0

Lo Ocenpied™=0

numWish =3
¢ 4)_
Brformingbuin =)
- 5 e C
0] Brformingvish =0
sincebi 11‘11(4): 1
, @)~
Sincewish =2
now¥=6

Implementation and Test Result
F‘ Encoding Conclusion and Future Work
Discussion

Example Result

Fire®=0 Fire=1 Fire® =l
(£) s)
Occupied”=q Occupied=p i Oceitpied =1
Happy (0 (J Happy M_(y Startburn =0 Happy! 2
0
numbish®= encburn®=0 numWish"=0 numWish® L(
Jgiﬁ)imn@]?m?‘ =O startish () 5:)‘2):711»!0771117:(L B‘ﬁmumg/’?um :1
D i iO=0 i 5 (_) : d\l‘i/m:
L?{)’omm@l‘!fﬂf] encish®eg) B)?)i'um}g\l?(s{; () endwisi LO Eﬁoﬂuiu@ (92: 1
sincebur™'=0 L sinceburnt =1 ke Sinceburn”'=
Sincewish®=() blowC=0 sincewishM=0 blowC"=0 sincewish®=2
now®=q nowt=1 now®=>
Fire®=1 Firé¥=0

N numVisit numWish =3
e 7
StaritWish =()](;ljﬁ)l‘lulilg]”’i?l :l E;f(’?l?uing]‘mmm:()
3) 4 -
Liormingvis =0 Biorming isht =0

- & L
Startburin =0 O[;wpie(it; =0 starbuilo O;r/ m,(i{’ Lo
z appy (’) #ﬂ o
endburn =0 PP)] 2 -
[7

o sinceburt *l sinceburt?=1
blow(C"=(0 &) @
Sincewish'= Sincewish =2
nou""":\ now=6

PDDL plan: {(1 : burnCandle[5]), (2 : makeWish[3]), (6 : blowCandle)}
(=] = = = =

A
Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007

luction
PDDL

Implementation and Test Result

Conclusion and Future Work

— -
g
GaaQ &, AR NG AG,
g R, :
g
Ganp

B[4]
&
1 =0.256 ©=0.288 £=0.300

&
—0.276 4=0.280
Al4]

EAG,

GG, | [0
burnMatch [3]
B12) e AMF
-G, G,

AO0ccAME
/ ME
\=0.264 £=0.272 t=0.288

|
CF
o)

CF
burnCandie [<10] |
(duration=10)=—CF
=1 0c¢ CE
makeWish []
P
& ARAG (B2 NI 4= digpation
e ACF
] 6=0.272 =0.284 £=0.288 Canile
\=0.248 ©=0.268 ¢ t::0.320 f0332 e s
#=0.268 £=0.312 2

Temporally-Expressive Planning as CSPs

&
Yuxiao Hu

Dae
16 / 17

ti

c
e CSP Enc

Implementation and Test Result
Conclusion and Future Work

ling

Discussion

Other Experiments

T
e g]

G0

)

G p

%

ty=0.256 £=0.288 t=0.300

—_——

7, AR NG AG,
Ay

R, R, NG

S 2

8-0276 4=0.280
£=0.296 £=0.304

—_—

R ARANG
s
[

§=0.248 ©=0.258
5=0.268 t,=0.312

£=0.328 t,=0.440 Gih G,
Al4]
=

GG, | [0
- burnMateh [3]

B(2] Jec AME S0ccAME

-G G, ME eF
4=0.264 5=0.272 t=0.268 4"; LuirnCandici =101 |

(duration=10)=—1CF|

0cc
NIF 4= duration
S0 ACF
blow-
n=0.272 5=0.28¢ $=0.288 Candle
©4=0.320 £=0.332 1;=0.376

SOF
(NI 2 3y===Happ

@ No comparison with state-of-the-art planners available yet.

@ Presumably slower on existing (temporally-simple) benchmarks, since we
have only focused on generality, not yet efficiencyc.]

Temporally-Expressive Planning as CSPs

Yuxiao Hu

September 25, 2007

Dae
16 / 17

Implementation and Test Result
Conclusion and Future Work

Conclusion and Future Work

We have

@ extended a declarative semantics of PDDL with true
concurrency

@ proposed a general solution to PDDL planning problems based
on a CSP encoding of the declarative semantics
o Handles arbitrary PDDL temporal annotations
o Determines happening times by satisfying constraints
@ Solves temporally-expressive PDDL problems (possibly with

duration-related constraints and effects) in a unified
search.

[m] [=
Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 17 /17

u
it
S
¥el
i)

Declarative Sema Implementation and Test Result

Conclusion and Future Work

Conclusion and Future Work

We have

@ extended a declarative semantics of PDDL with true
concurrency

@ proposed a general solution to PDDL planning problems based
on a CSP encoding of the declarative semantics

o Handles arbitrary PDDL temporal annotations
o Determines happening times by satisfying constraints
@ Solves temporally-expressive PDDL problems (possibly with

duration-related constraints and effects) in a unified
search.

Future work:

© Implementation and optimization of automatic translation
@ Constraints and preferences in PDDL 3.0

[m] [=
Temporally-Expressive Planning as CSPs Yuxiao Hu September 25, 2007 17 /17

u
it
S
¥el
i)

	Introduction
	Motivation
	A Running Example
	Approach

	Declarative Semantics of PDDL
	Logical Foundations
	The Basic Action Theory

	The CSP Encoding
	The Variable Structure
	The Constraints

	Discussion
	Implementation and Test Result
	Conclusion and Future Work

