GenAssets: Generating in-the-wild 3D Assets in Latent Space
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+ Learning Latent Asset Representations via Occlusion-Aware Neural Rendering + Asset Reconstruction
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o Motivation: |.earning a compact and complete latent space for neural assets o Sparse View Synthesis
o Approach e —

m Each assets is represented as a low dimensional latent code

m A shared asset decoder is trained to map the latent code into neural assets

m The neural assets is composed with learnable background models to form a

compositional neural scene representation

m The scene representation is rendered to match real-world sensor observations o Novel Camera Synthesis
o Benefit —

m Trained across many scenes to learn asset priors

m Compact space learning to reduce computation and memory for large datasets

Mkotate Actors‘!m ‘ m Latent bottleneck encourages the model to learn asset priors

m Infer occluded or unobserved regions from sparse observations.
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World Modeling (Digital Twin Creation)
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+ Existing Approaches:

TGN S| ST S | TP S| Sgh
GT G3R Street Gaussian NeuRAD Ours
o 360° Synthesis

Artistic-created CAD assets Per-scene Reconstruction Generative Models L —— Ny

e Requires manual efforts e Slow optimization e Synthetic / Object-centric Latent Reg. Background Model _ ->

e Lacks diversity e | acks diversity e | acks 3D supervision =

e |acks Realism e | acks Completion e Domain Gap ﬂ q Camera Rendering Rendered Image
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+ GenAssets: Learning Assets Recon/Generation from in-the-wild Data : : )G
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J T %% "s‘ 2% ;; :: ,‘:ﬁ ?:. :: :‘ m Training a diffusion probabilistic model in the latent space
S | Pedestian  Boycle  Motoreycle  Night m Sample from the learned diffusion priors using the DDIM solver
m The asset decoder decodes the generated latent code to the neural asset EG3D

. . o Benefit o Conditional Generatlon
GenAssets for Simulation m Focusing on essential contents of the data )

m Operating in a computationally efficient, compact space
+ Replacing Existing Actors with Generated Counterparts m Support both conditional or unconditional generation

m Conditions 1 m Conditions
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- AR SHED = - o Motivation: Learning asset generation in the latent space with diffusion model
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DDIM sampler

Real 27.08 8.58 26.99
Real + Sim  29.32 9.78 29.18 +e

GenAssets augmentation improves 3D detection

Sampled Latent Denoised Latent Sampled Noise

L2 Diffusion Loss

+ Generating Extreme Scenario Variations o Single Image to 3D Generation

+ Learning Objective

o Reconstruction loss and regularization in latent space PG| PV TIPS
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