Motivation: Generalizable Reconstruction

+ Task: Scalable reconstruction is important for simulation!

+ EXisting approaches:
+ Per-scene optimization (NeRF, 3DGS) - costly, overfits to source

+ Generalizable NVS/LRMs - small scenes/objects, limited input views
+ G3R: (1) large dynamic scenes reconstructed in ~30s (2) arbitrary number
of input images (3) more robust prediction for large view changes
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G3R: Gradient Guided Generalizable Reconstructions for Unseen Large Scenes

Scene Representation

+ 3D Neural Gaussians

+ Augment each 3D Gaussian with a latent feature vector
+ Provide additional representation capacity and easier prediction
+ MLP decodes 3D Neural Gaussians to 3D Gaussians
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3D Gaussians:
size, rotation, color, opacity

3D Neural Gaussians:
3D Gaussians + latent feature vector

+ Dynamic unbounded scene decomposition

+ Static background, a set of dynamic actors, and a distant region for
far-away buildings and sky.
+ Initialize 3D Neural Gaussians with LIDAR / multi-view stereo points

G3R: Gradient Guided Generalizable Reconstruction
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G3R

+ G3R: combines the benefits of fast feed-forward prediction methods with the iterative
gradient feedback from per-scene optimization approaches

+ Encode 2D Images in 3D as Gradients: “rendering and backpropagating”

+ Motivation: Differentiable renderer bridges 2D and 3D

+ Approach: (1) render 3D representation to source views, (2) compute loss w.r.1.
ground-truth images, (3) backpropagate to get 3D gradients, which encodes 2D info

+ Why? (1) a unified representation for multi-image aggregation, (3) occlusion-awareness in
lifting 2D to 3D, (3) fast computation with 3DGS tile-rasterization
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+ Iterative Reconstruction with a Neural Network

+ Key idea: Neural network as a learned optimizer for reconstruction
+ Approach: iteratively refine the 3D neural Gaussians for T steps
+ Why? overcome limited network capacity and diverse data distribution
+ Train with mix of source and target images
+ Increases robustness of predicted 3D representation at novel views
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Training across many large outdoor scenes with a combination of photometric loss, perceptual
loss, and a regularization term to ensure the flatness of 3D Gaussians.
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Results

+ Qualitative comparison with SOTA approaches
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+ Ablation study

PSNR?T Recon Time FPS
Models PSNR
Goneralizable | ENERF 24.43  0.057s’ 6.93
PixelSplat | 23.21  0.74s’ 147 Ours 25.22
Instant.NGP | 24.34 o 168 3 94 — ?D ne.ural Gaussian .representa,tlon 24.72
Per-scene Opt. , — 1terative reconstruction 20.03
3DGS 25.14 50min 14s 121 .. . :
— training with novel views 24.59
Ours G3R (turbo) | 24.76@ 31s 121 — update schedule ~y(t) 25.03
G3R 25.22 123s 121

+ More robust results compared to 3DGS
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+ Cross-dataset generalization (Pandaset—Waymo)
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+ Limitations: (a) artifacts in large extrapolations; (b) dense point initialization; (c)
limited simulation controllability such as non-rigid motion and lighting




