

LightSim: Neural Lighting Simulation for Urban Scenes

Ava Pun*, Gary Sun*, Jingkang Wang*, Yun Chen, Že Yang, Sivabalan Manivasagam, Wei-Chiu Ma, Raquel Urtasun Waabi, University of Toronto, University of Waterloo, MIT

Motivation: Lighting Camera Simulation

- Varying lighting conditions may harm robot perception performance
- Camera simulation can scalably generate *diverse*, *controllable*, and *realistic* images under different lighting conditions
- Perception performance is improved by training on generated data

Building Lighting-Aware Digital Twins

- Building digital twins from the real world:
- o diverse: twins are reconstructed from large real-world dataset
- controllable: PBR allows dynamic actor placement, modification of SDV location, and simulation of novel lighting conditions
- $\circ~$ realistic: neural deferred rendering enhances PBR

Existing methods:

- o bake lighting into scene; cannot simulate new lighting conditions
- have difficulty performing well on large outdoor scenes
- o are restricted to static scenes

LightSim

 LightSim: (a) allows simulation of novel lighting conditions (b) reconstructs large, dynamic outdoor scenes (c) enables lighting-aware scene editing & actor insertion

Lighting Estimation

- Leverage multi-camera data to build panorama
- Fill gaps in panorama with image inpainting to create LDR panorama
- Lift LDR pano to HDR sky dome with estimator network

Neural Deferred Rendering

- · PBR images capture lighting effects well but lack realism
- $\circ~$ Use neural rendering network with lighting-relevant PBR buffers for enhanced realism
- $\circ\;$ Train on combo of synthetic & real-world data to ensure controllable lighting & realism

Enhance realism through edge-based content-preserving loss

Results

Qualitative comparison with SOTA approaches:

Quantitative comparison with SOTA approaches:

Method	$FID\downarrow$	$\text{KID}~(\times 10^3)\downarrow$	Model	mAP (%)
NeRF-OSR [Rudnev et al., 2022]	143.9	94.0 ± 7.5	Real	32.1
EPE [Richter et al., 2021]	93.0	56.0 ± 5.0	Real + Sim (EPE)	32.5(+0.4)
LightSim (Ours)	87.1	30.4 ± 4.0	Real + Sim (Ours)	36.6(+4.5)

Generalization to nuScenes dataset:

 Limitations: (a) no support for local light sources (b) difficulty removing strong shadows in sunny scenes (c) fixed materials may cause real-sim domain gap