Polishchuk-Spielman Bivariate Testing and An Application

$\operatorname{Ziyang}\,\operatorname{Jin}^1$

¹Theory Student Seminar University of Toronto 27 Feb 2025

€ 990

ヘロト ヘヨト ヘヨト ヘヨト

Table of Contents

Introduction

The Main Theorem

Application of Polishchuk-Spielman

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

Definitions

Let \mathcal{F} be a finite field. We consider bivariate polynomials over a domain $X \times Y$, where $X = \{x_1, \ldots, x_n\} \subseteq \mathcal{F}$ and $Y = \{y_1, \ldots, y_n\} \subseteq \mathcal{F}$.

A polynomial p(x, y) has degree (d, e) if it has degree at most d is x and degree at most e in y. When we say a polynomial of degree d, we mean a polynomial of degree at most d. We use them interchangeably.

Suppose we have a function f(x, y) on $X \times Y$. We can represent f(x, y) in matrix form as follows:

$$M = \begin{pmatrix} f(x_1, y_1) & f(x_1, y_2) & \dots & f(x_1, y_n) \\ f(x_2, y_1) & f(x_2, y_2) & \dots & f(x_2, y_n) \\ \vdots & \vdots & \ddots & \vdots \\ f(x_n, y_1) & f(x_n, y_2) & \dots & f(x_n, y_n) \end{pmatrix}.$$

Rows and Columns of the Matrix

If we look at each column $j \in [n]$, then y_j is fixed. Each column can be viewed as a univariate function with variable x evaluated on X.

$$M = \begin{pmatrix} f(x_1, y_1) & f(x_1, y_2) & \dots & f(x_1, y_n) \\ f(x_2, y_1) & f(x_2, y_2) & \dots & f(x_2, y_n) \\ \vdots & \vdots & \ddots & \vdots \\ f(x_n, y_1) & f(x_n, y_2) & \dots & f(x_n, y_n) \end{pmatrix}$$

If we look at each row $i \in [n]$, then x_i is fixed. Each row can be viewed as a univariate function with variable y evaluated on Y.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Matrix Representation of a Function

Suppose an adversary gives us a matrix over ${\mathcal F}$

$$M = \begin{pmatrix} v_{1,1} & v_{1,2} & \dots & v_{1,n} \\ v_{2,1} & v_{2,2} & \dots & v_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n,1} & v_{n,2} & \dots & v_{n,n} \end{pmatrix}$$

This can be viewed exactly the same as

$$M = \begin{pmatrix} f(x_1, y_1) & f(x_1, y_2) & \dots & f(x_1, y_n) \\ f(x_2, y_1) & f(x_2, y_2) & \dots & f(x_2, y_n) \\ \vdots & \vdots & \ddots & \vdots \\ f(x_n, y_1) & f(x_n, y_2) & \dots & f(x_n, y_n) \end{pmatrix},$$

because M uniquely defines f(x, y).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Well-Known Theorem

Question: How do we know if matrix M represents a bivariate polynomial?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Well-Known Theorem

Question: How do we know if matrix M represents a bivariate polynomial?

Theorem (Well-known)

Let f(x, y) be a function on $X \times Y$ such that for $j \in [n]$, $f(x, y_j)$ agrees with some degree d polynomial in x on X, and for $i \in [n]$, $f(x_i, y)$ agrees on Y with some degree e polynomial in y. Then, there exists a polynomial P(x, y) of degree (d, e) such that f(x, y) agrees with P(x, y) everywhere on $X \times Y$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof: Recall that a degree d univariate polynomial is uniquely determined by its values at d+1 points. For $1 \le j \le e+1$, let $p_j(x)$ be the degree d polynomial that agrees with $f(x, y_j)$. For $1 \le j \le e+1$, let $\delta_j(y)$ be the degree e polynomial in y such that

$$\delta_j(y_k) = \begin{cases} 1, \text{ if } j = k, \text{ and} \\ 0, \text{ if } 1 \le k \le e+1, \text{ but } j \ne k \end{cases}$$

We let $P(x, y) = \sum_{j=1}^{e+1} \delta_j(y) p_j(x)$. It is clear that P has degree (d, e). Moreover, $P(x, y_j) = f(x, y_j)$ for all $x \in X$ and $1 \leq j \leq d+1$. To see that in fact P(x, y) = f(x, y) for all $(x, y) \in X \times Y$, observe that P and f agree at e + 1 points in column y. Since f agrees with some degree e polynomial in column y, that polynomial must be the restriction of P to column y. \Box

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- IVINONTO

Proof Explained

Every column p_j has degree d. We pick the first e + 1 columns.

$$M = \begin{pmatrix} p_1(x_1) & p_2(x_1) & \dots & p_{e+1}(x_1) & \dots & f(x_1, y_n) \\ p_1(x_2) & p_2(x_2) & \dots & p_{e+1}(x_2) & \dots & f(x_2, y_n) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ p_1(x_n) & p_2(x_n) & \dots & p_{e+1}(x_n) & \dots & f(x_n, y_n) \end{pmatrix}$$

By Lagrange Interpolation, each δ_j has degree e.

$$\delta_1(y) = \begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix} = \frac{(y - y_2)}{(y_1 - y_2)} \frac{(y - y_3)}{(y_1 - y_3)} \dots \frac{(y - y_{e+1})}{(y_1 - y_{e+1})}$$
$$\delta_j(y_k) = \prod_{j=1, j \neq k}^{e+1} \frac{y - y_j}{y_k - y_j}.$$

$$P(x,y) = \sum_{j=1}^{e+1} \delta_j(y) p_j(x).$$

.

Applying the Well-Known Theorem

Suppose an adversary gives you a matrix

$$M = \begin{pmatrix} v_{1,1} & v_{1,2} & \dots & v_{1,n} \\ v_{2,1} & v_{2,2} & \dots & v_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n,1} & v_{n,2} & \dots & v_{n,n} \end{pmatrix},$$

and you want to know if M represents some bivariate polynomial of degree (d, d). What can you do?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Applying the Well-Known Theorem

Suppose an adversary gives you a matrix

$$M = \begin{pmatrix} v_{1,1} & v_{1,2} & \dots & v_{1,n} \\ v_{2,1} & v_{2,2} & \dots & v_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n,1} & v_{n,2} & \dots & v_{n,n} \end{pmatrix},$$

and you want to know if M represents some bivariate polynomial of degree (d, d). What can you do?

- We can test if a row/column agrees with some polynomial of degree d by interpolating any d + 1 points and check if all other points lie on the polynomial.
- If we know that every row agrees with some polynomial of degree d, and every column agrees with some polynomial of degree d. We can apply the well-known theorem we just saw.

What if some rows/columns do not fully agree with some polynomial of degree *d*?

Question: How do we know if matrix M is "very close" to a bivariate polynomial?

ヘロト ヘヨト ヘヨト ヘヨト

An Imperfect World

Maybe we can fix some places such that every row agrees with some polynomial of degree at most d.

$$M = \begin{pmatrix} v_{1,1} & v_{1,2} & \dots & v_{1,n} \\ v_{2,1} & v_{2,2} & \dots & v_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n,1} & v_{n,2} & \dots & v_{n,n} \end{pmatrix}$$

Maybe we can fix some places such that every column agrees with some polynomial of degree at most d.

$$M = \begin{pmatrix} v_{1,1} & v_{1,2} & \dots & v_{1,n} \\ v_{2,1} & v_{2,2} & \dots & v_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n,1} & v_{n,2} & \dots & v_{n,n} \end{pmatrix}$$

Hard to fix both the rows and the columns simultaneously!

・ロット (雪) (日) (日) (日)

Rows and Columns

Consider a bivariate polynomial R(x, y) of degree (d, n). Every row f_i is a univariate polynomial in x with degree at most d.

$$R(x,y) = \begin{pmatrix} f_1(x_1) & f_1(x_2) & \dots & f_1(x_n) \\ f_2(x_1) & f_2(x_2) & \dots & f_2(x_n) \\ \vdots & \vdots & \ddots & \vdots \\ f_n(x_1) & f_n(x_2) & \dots & f_n(x_n) \end{pmatrix}$$

Consider a bivariate polynomial C(x, y) of degree (n, d). Every column g_j is a univariate polynomial in y with degree at most d.

$$C(x,y) = \begin{pmatrix} g_1(y_1) & g_2(y_1) & \dots & g_n(y_1) \\ g_1(y_2) & g_2(y_2) & \dots & g_n(y_2) \\ \vdots & \vdots & \ddots & \vdots \\ g_1(y_n) & g_2(y_n) & \dots & g_n(y_n) \end{pmatrix}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Polishchuk-Spielman Bivariate Testing Theorem

Theorem 9 (Bivariate Testing). Let \mathcal{F} be a field, let $X = \{x_1, \ldots, x_n\} \subseteq \mathcal{F}$, and let $Y = \{y_1, \ldots, y_n\} \subseteq \mathcal{F}$. Let R(x, y) be a polynomial over \mathcal{F} of degree (d, n)and let C(x, y) be a polynomial over \mathcal{F} of degree (n, d). If

$$\operatorname{Prob}_{(x,y)\in X\times Y}[R(x,y)\neq C(x,y)]<\delta^2,$$

and $n > 2\delta n + 2d$, then there exists a polynomial Q(x, y) of degree (d, d) such that

 $\operatorname{Prob}_{(x,y)\in X\times Y}[R(x,y)\neq Q(x,y) \text{ or } C(x,y)\neq Q(x,y)]<2\delta^2.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What does it mean?

We can fix some places in M to obtain R(x, y), and separately fix some other places in M to obtain C(x, y). If the total number of places we fixed among both R(x, y) and C(x, y) is at most $\delta^2 n^2$, then M is actually very close to a bivariate polynomial Q(x, y) of degree (d, d).

$$M = \begin{pmatrix} v_{1,1} & v_{1,2} & \dots & v_{1,n} \\ v_{2,1} & v_{2,2} & \dots & v_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n,1} & v_{n,2} & \dots & v_{n,n} \end{pmatrix}$$

(PS: In practice, if M is really close to Q(x, y). Observe that we can view M as a bivariate Reed-Muller code, then we can recover Q(x, y).)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Lemma (3)

Let $S \subset X \times Y$ be a set of size at most $(\delta n)^2$, where δn is an integer. Then there exists a non-zero polynomial E(x, y) of degree $(\delta n, \delta n)$ such that E(x, y) = 0 for all $(x, y) \in S$.

The proof is obvious: E(x, y) has $(\delta n + 1)^2$ unknowns and there are $(\delta n)^2$ restrictions.

Let S be the subset of $X \times Y$ on which R and C disagree. Then we have

$$R(x,y)E(x,y) = C(x,y)E(x,y)$$
 for all $(x,y) \in X \times Y$.

Observe C(x, y)E(x, y) is a polynomial of degree $(n + \delta n, d + \delta n)$ and R(x, y)E(x, y) is a polynomial of degree $(d + \delta n, n + \delta n)$.

・ロット (雪) ・ (日) ・ (日) ・ (日)

By the well-known theorem, there exists a polynomial P(x, y) of degree $(d + \delta n, d + \delta n)$ such that

$$R(x,y)E(x,y) = C(x,y)E(x,y) = P(x,y)$$

for all $(x, y) \in X \times Y$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

By the well-known theorem, there exists a polynomial P(x, y) of degree $(d + \delta n, d + \delta n)$ such that

$$R(x,y)E(x,y) = C(x,y)E(x,y) = P(x,y)$$

for all $(x, y) \in X \times Y$.

It is natural to continue the proof by dividing P by E. However, the most we can say is that

$$\frac{P(x,y)}{E(x,y)} = R(x,y) = C(x,y),$$

for all $(x, y) \in X \times Y$ such that $E(x, y) \neq 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

By the well-known theorem, there exists a polynomial P(x, y) of degree $(d + \delta n, d + \delta n)$ such that

$$R(x,y)E(x,y) = C(x,y)E(x,y) = P(x,y)$$

for all $(x, y) \in X \times Y$.

It is natural to continue the proof by dividing P by E. However, the most we can say is that

$$\frac{P(x,y)}{E(x,y)} = R(x,y) = C(x,y),$$

for all $(x, y) \in X \times Y$ such that $E(x, y) \neq 0$. We can show that if *n* is sufficiently large, then *E* in fact divides *P*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Lemma (4)

Let P(x, y), E(x, y), R(x, y), C(x, y) be polynomials of degree $(\delta n + d, \delta n + d), (\delta n, \delta n), (d, n), (n, d)$ respectively such that R(x, y)E(x, y) = C(x, y)E(x, y) = P(x, y) for all $(x, y) \in X \times Y$. If $|X| > \delta n + d$ and $|Y| > \delta n + d$, then for all $y_0 \in Y$ and for all $x_0 \in X, P(x, y_0) \equiv R(x, y_0)E(x, y_0)$ and $P(x_0, y) \equiv C(x_0, y)E(x_0, y)$.

The proof is obvious: For fixed y_0 , $P(x, y_0)$ and $R(x, y_0)E(x, y_0)$ both have degree $\delta n + d$, and they agree on at least $d + \delta n + 1$ points.

イロト 不得 トイヨト イヨト 二日

Lemma (8)

Let E(x, y) be a polynomial of degree (b, a) and let P(x, y) be a polynomial of degree (b + d, a + d). If there exists distinct x_1, \ldots, x_n such that $E(x_i, y)$ divides $P(x_i, y)$ for $i \in [n]$, distinct y_1, \ldots, y_n such that $E(x, y_i)$ divides $P(x, y_i)$ for $i \in [n]$ and if

$$n>\min\{2b+2d,2a+2d\},$$

人口 医水黄 医水黄 医水黄素 化甘油

then E(x, y) divides P(x, y).

The proof is not obvious. We will skip it for time sake.

Recall the main Theorem

Theorem 9 (Bivariate Testing). Let \mathcal{F} be a field, let $X = \{x_1, \ldots, x_n\} \subseteq \mathcal{F}$, and let $Y = \{y_1, \ldots, y_n\} \subseteq \mathcal{F}$. Let R(x, y) be a polynomial over \mathcal{F} of degree (d, n)and let C(x, y) be a polynomial over \mathcal{F} of degree (n, d). If

$$\operatorname{Prob}_{(x,y)\in X\times Y}[R(x,y)\neq C(x,y)]<\delta^2,$$

and $n > 2\delta n + 2d$, then there exists a polynomial Q(x, y)of degree (d, d) such that

 $\operatorname{Prob}_{(x,y)\in X\times Y}[R(x,y)\neq Q(x,y) \text{ or } C(x,y)\neq Q(x,y)]<2\delta^2.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary of our proof so far: Let S be the set of points where $R(x, y) \neq C(x, y)$. By Lemma 3, there exists an error correcting polynomial E(x, y) of degree $(\delta n, \delta n)$ such that E vanishes on S. By Lemma 4 and Lemma 8, there exists a polynomial Q(x, y) of degree (d, d) such that

$$R(x,y)E(x,y) = C(x,y)E(x,y) = Q(x,y)E(x,y),$$

for all $(x, y) \in X \times Y$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Summary of our proof so far: Let S be the set of points where $R(x, y) \neq C(x, y)$. By Lemma 3, there exists an error correcting polynomial E(x, y) of degree $(\delta n, \delta n)$ such that E vanishes on S. By Lemma 4 and Lemma 8, there exists a polynomial Q(x, y) of degree (d, d) such that

$$R(x,y)E(x,y) = C(x,y)E(x,y) = Q(x,y)E(x,y),$$

for all $(x, y) \in X \times Y$.

Now we need to show the $< 2\delta^2$ part. Note that in any row where $E(x, y) \neq 0$, Q agrees with R on that entire row. However, E has degree $(\delta n, \delta n)$ so it can be (in the worst case) identically zero on at most δn rows. So E must be non-zero on at least $(1 - \delta)n$ rows. Thus, Q must agree with R on at least $(1 - \delta)n$ rows. Similarly, Q must agree with C on at least $(1 - \delta)n$ rows.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Therefore, we have R and C agree on the intersection of $(1 - \delta)n$ columns and rows. This is already a lot of points, but we will show that they agree on many more points.

Recall S is the set of points where $R(x, y) \neq C(x, y)$. Let T be the set of points where R(x, y) = C(x, y), but $Q(x, y) \neq R(x, y)$ (and also $Q(x, y) \neq C(x, y)$). If we show $|T| \leq |S|$, we are done with the $< 2\delta^2$ part.

We say a row/column is *bad* if Q disagrees on R/C on that row/column. Let b_r be the number of bad rows and let b_c be the number of bad columns. Call *good* any row/column that is not bad. We say that a row and column disagree if R and C take different values at their intersection.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

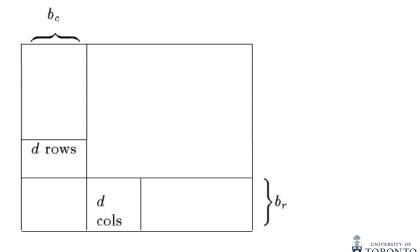
Observe there can be at most $d + b_r$ points of T in any bad column: if a column has more than $d + b_r$ points (e.g. $d + b_r + 1$ points) of T, note that R(x, y) = C(x, y) in T, then it must have at least d + 1 points in good rows where Q agrees with R and therefore Q, implying that column is in fact good.

Recall $n > 2\delta n + 2d$. Thus, every bad column must have at least n/2 points of S in the intersection of that column with the good rows. Similarly, every bad row must have at least n/2 points of S in the intersection of that row with the good columns.

Hence, the points of T in every column is less than the points of S; the points if T in every row is less than the points of S. Therefore, $|T| \leq |S|$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Here is a picture illustration. The basic idea is that the points of T must lie in the lower left-hand corner.



<ロト <回ト < 注ト < 注ト

æ

Let *n* be a natural number and let Σ be an alphabet. Let $x \in \Sigma^n$ be a string, and we use x_i to denote the *i*th symbol of *x*. We say *x* is δ -close to a string $y \in \Sigma^n$ if $|\{i \mid x_i \neq y_i\}| \leq \delta n$. I.e. *x* and *y* agree on all but at most a δ -fraction of the symbols.

Suppose you are given an array of values. How do you test that it is a Reed-Solomon codeword?

Let *n* be a natural number and let Σ be an alphabet. Let $x \in \Sigma^n$ be a string, and we use x_i to denote the *i*th symbol of *x*. We say *x* is δ -close to a string $y \in \Sigma^n$ if $|\{i \mid x_i \neq y_i\}| \leq \delta n$. I.e. *x* and *y* agree on all but at most a δ -fraction of the symbols.

Suppose you are given an array of values. How do you test that it is a Reed-Solomon codeword?

What if you are only allowed to query very few values from the array?

Let *n* be a natural number and let Σ be an alphabet. Let $x \in \Sigma^n$ be a string, and we use x_i to denote the *i*th symbol of *x*. We say *x* is δ -close to a string $y \in \Sigma^n$ if $|\{i \mid x_i \neq y_i\}| \leq \delta n$. I.e. *x* and *y* agree on all but at most a δ -fraction of the symbols.

Suppose you are given an array of values. How do you test that it is a Reed-Solomon codeword?

What if you are only allowed to query very few values from the array? Not possible!

Let *n* be a natural number and let Σ be an alphabet. Let $x \in \Sigma^n$ be a string, and we use x_i to denote the *i*th symbol of *x*. We say *x* is δ -close to a string $y \in \Sigma^n$ if $|\{i \mid x_i \neq y_i\}| \leq \delta n$. I.e. *x* and *y* agree on all but at most a δ -fraction of the symbols.

Suppose you are given an array of values. How do you test that it is a Reed-Solomon codeword?

What if you are only allowed to query very few values from the array? Not possible! What if you can relax the requirement? You can build a proof system that shows the array of values is δ -close to some Reed-Solomon codeword.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

PCPP

Definition (PCP of Proximity)

A probabilistically checkable proof of proximity (PCPP) system with soundness error $s \in (0,1)$ and proximity parameter $\delta \in (0,1)$ is a probabilistic proof system (P, V) in which the prover P on input (x, w) generates a proof π , and the verifier V can make at most q queries to the combined oracle (x, π) , and the following holds.

- Completeness: For every (x, w) ∈ R (which means x ∈ L_R), V accepts with probability 1.
- Soundness: For every x that is δ-far from L_R, V accepts with probability at most s, regardless of the proof oracle π.

In this case, we write $L_{\mathcal{R}} \in \mathsf{PCPP}[r, q, \delta, s, \ell]$ where r is the verifier's randomness complexity, q is the query complexity, and ℓ is the length of the proof. We say a PCPP is an exact PCPP if the proximity parameter $\delta = 0$.

Application of Polishchuk-Spielman

Theorem (Theorem 3.2 in Ben-Sasson Sudan 05)

Let \mathbb{F}_q be a finite field of order $q = 2^w$. Let S be a subset of \mathbb{F}_q and S is \mathbb{F}_2 -linear (i.e. for all $a, b \in S$, we have $a + b \in S$). Then, for any soundness error $s \in (0, 1)$ and any proximity parameter $\delta \in (0, 1)$, there exists an explicit construction of a PCPP to test if an array of values $r_1, \ldots, r_{|S|} \in \mathbb{F}_q$ is δ -close to some univariate polynomial of degree d evaluated at S, and the PCPP has randomness complexity $\log(q \cdot \operatorname{polylog}(q))$, query complexity $\operatorname{polylog}(q)$, and proof length $q \cdot \operatorname{polylog}(q)$.

Application of Polishchuk-Spielman

Theorem (Theorem 3.2 in Ben-Sasson Sudan 05)

Let \mathbb{F}_q be a finite field of order $q = 2^w$. Let S be a subset of \mathbb{F}_q and S is \mathbb{F}_2 -linear (i.e. for all $a, b \in S$, we have $a + b \in S$). Then, for any soundness error $s \in (0, 1)$ and any proximity parameter $\delta \in (0, 1)$, there exists an explicit construction of a PCPP to test if an array of values $r_1, \ldots, r_{|S|} \in \mathbb{F}_q$ is δ -close to some univariate polynomial of degree d evaluated at S, and the PCPP has randomness complexity $\log(q \cdot \operatorname{polylog}(q))$, query complexity $\operatorname{polylog}(q)$, and proof length $q \cdot \operatorname{polylog}(q)$.

The core idea in the construction is to lay out the array of values as a bivariate polynomial and apply Polishchuk-Spielman! Maybe a good topic for my next TSS.

Q & A

Questions?

・ロト・(四)・(日)・(日)・(日)・(日)

Thank you

Thank you!

・ロト・(四)・(日)・(日)・(日)・(日)