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Abstract

Motivation: Networks have been used to model many
real-world phenomena to better understand the phenom-
ena and to guide experiments in order to predict their be-
havior. Since incorrect models lead to incorrect predic-
tions, it is vital to have as accurate a model as possible.
As a result, new techniques and models for analyzing and
modeling real-world networks have recently been intro-
duced.
Results: One example of large and complex networks in-
volves protein-protein interaction (PPI) networks. We an-
alyze PPI networks of yeast S. cerevisiae and fruitfly D.
melanogaster using a newly introduced measure of local
network structure as well as the standardly used measures
of global network structure. We examine the fit of four
different network models, including Erdös-Rényi, scale-
free, and geometric random network models, to these PPI
networks with respect to the measures of local and global
network structure. We demonstrate that the currently ac-
cepted scale-free model of PPI networks fails to fit the
data in several respects and show that a random geomet-
ric model provides a much more accurate model of the
PPI data. We hypothesize that only the noise in these net-
works is scale-free.
Conclusions: We systematically evaluate how well dif-
ferent network models fit the PPI networks. We show that
the structure of PPI networks is better modeled by a geo-
metric random graph than by a scale-free model.
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1 Introduction

Many real-world phenomena have been modeled by large
networks including the World Wide Web, electronic cir-
cuits, collaborations between scientists, metabolic path-
ways, and protein-protein interactions (PPIs). A common
property of these phenomena is that they all consist of
components (modeled by network nodes) and pairwise
interactions between the components (modeled by links
between the nodes, i.e., by network edges). Studying sta-
tistical and theoretical properties of large networks (also
called graphs) has gained considerable attention in the
past few years. Various network models have been pro-
posed to describe properties of large real-world networks,
starting with the earliest models of Erdös-Rényi random
graphs (Erdös & Rényi, 1959; Erdös & Rényi, 1960;
Erdös & Rényi, 1961) and including more recent small-
world (Watts & Strogatz, 1998), scale-free (Barabási &
Albert, 1999), and hierarchical (Ravasz et al., 2002) mod-
els. Excellent review papers have recently appeared de-
scribing this emerging, large research area (Newman,
2003; Barabási & Oltvai, 2004; Albert & Barabási, 2002;
Strogatz, 2001).
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This paper uses a method for detecting local structural
properties of large networks and proposes a new model
of PPI networks. Our new measure of local network
structure consists of 29 network measurements. Using
this new measure of network structure, we find that the
PPI networks of S. cerevisiae and D. melanogaster are
more accurately modeled by geometric random graphs
(defined below) than by the scale-free model. The extent
of this improvement is such that even perturbing the net-
work by random additions, deletions and rewiring of

�����
of the edges introduces much smaller error when com-
pared to the error from modeling the network by scale-
free, or other currently available network models (details
are provided below). In addition, we show that three out
of four standard network parameters measuring a global
network structure also show an improved fit between the
experimentally-determined PPI networks and the geomet-
ric random graph model than between the PPI networks
and the scale-free model.

2 System and Methods

2.1 Definitions

To our knowledge, this study is the first one to use geo-
metric random graphs to model PPI networks. Thus, we
give a brief description of geometric random graphs. The
descriptions of more popular Erdös-Rényi and scale-free
network models are presented in the Supplementary In-
formation.

2.1.1 Geometric Random Graphs

A geometric graph ���	��

��� with radius � is a graph with
node set � of points in a metric space and edge set��������� 

������� � 

����� �"!#� �%$�& ��' � &)( ���*� , where

&�+,&
is an arbitrary distance norm in this space. That is, points
in a metric space correspond to nodes, and two nodes are
adjacent if the distance between them is at most � . Often,
two dimensional space is considered, containing points in
the unit square - � 
/."021 or unit disc, and

�3$ � $ . (Diaz
et al., 2000; Diaz et al., 1997), with the distance norms
being 4	5 (Manhattan distance), 4 1 (Euclidean distance),
or 426 (Chessboard distance). The distance between two
points �8795�

:�5;� and �27 1 

: 1 � is � 7<5 ' 7 1 �>=?� :@5 ' : 1 � in the

4 5 norm, A �27 5 ' 7 1 � 1 =B�2: 5 ' : 1 � 1 in the 4 1 norm, andCED 7F�G� 7 5 ' 7 1 �H
I� : 5 ' : 1 � � in the 4 6 norm. A random ge-
ometric graph ���2JK

��� is a geometric graph with J nodes
which correspond to J independently and uniformly ran-
domly distributed points in a metric space. Many prop-
erties of these graphs have been explored when JMLON
(Penrose, 2003). Similar to Erdös-Rényi random graphs,
certain properties of these graphs also appear suddenly
when a specific threshold is reached.

2.1.2 Global Network Properties

The most commonly studied statistical properties to mea-
sure the global structure of large networks are the de-
gree distribution, network diameter, and clustering coef-
ficients, defined as follows. The degree of a node is the
number of edges (connections) incident to the node. The
degree distribution, P��,QR� , describes the probability that a
node has degree Q . This network property has been used
to distinguish amongst different network models; in par-
ticular, Erdös-Rényi random networks have a Poisson de-
gree distribution, while scale-free networks have a power-
law degree distribution P��	QR�TSUQ9VXW , where Y is a positive
number. The smallest number of links that have to be tra-
versed to get from node 7 to node : in a network is called
the distance between nodes 7 and : and a path through
the network that achieves this distance is called a short-
est path between 7 and : . The average of shortest path
lengths over all pairs of nodes in a network is called the
network diameter. (Note that in classical graph theory, the
diameter is the maximum of shortest path lengths over all
pairs of nodes in the network (West, 2001).) This network
property also distinguishes different network models: for
example, the diameter of Erdös-Rényi random networks
on J nodes is proportional to Z�[�\TJ , the network property
often referred to as the small-world property; the diame-
ters of scale-free random networks with degree exponent]�$ Y $^�

, which have been observed for most real-
world networks, are ultra-small (Chung & Lu, 2002; Co-
hen & Havlin, 2003), i.e., proportional to Z_[�\TZ_[�\TJ . The
clustering coefficient of node � in a network is defined
as `ba � 1*c
de dGf e d V 5hg , where � is linked to J 5 neighbor-
ing nodes and i�5 is the number of edges amongst the Jj5
neighbors of � . The average of ` a over all nodes � of a
network is the clustering coefficient ` of the whole net-
work and it measures the tendency of the network to form
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highly interconnected regions called clusters. The aver-
age clustering coefficient of all nodes of degree Q in a
network, `��	Q � , has been shown to follow `��,QR�%S Q<V 5
for many real-world networks indicating a network’s hi-
erarchical structure (Ravasz & Barabási, 2003; Ravasz
et al., 2002). Many real-world networks have been shown
to have high clustering coefficients and to exhibit small-
world and scale-free properties.

2.1.3 Local Network Properties

In addition to the above global properties of network
structure, a new bottom-up approach focusing on find-
ing small, over-represented patterns in a network has re-
cently been introduced (Milo et al., 2002; Shen-Orr et al.,
2002; Itzkovitz et al., 2003; Milo et al., 2004). In this ap-
proach, all small subgraphs (subnetworks whose nodes
and edges belong to the large network) of a large net-
work are identified and the ones that appear in the network
significantly more frequently than in the randomized net-
work are called network motifs. Different types of real-
world networks have been shown to have different motifs
(Milo et al., 2002). The S. cerevisiae PPI network con-
structed on combined, mostly two-hybrid analysis data
(Uetz et al., 2000; Xenarios et al., 2000), has been shown
to have two network motifs (Milo et al., 2002), those cor-
responding to graphs 2 and 4 presented in Figure 1. Fur-
thermore, different real-world evolved and designed net-
works have been grouped into superfamilies according to
their local structural properties (Milo et al., 2004). In ad-
dition, the shortest path distribution and the frequencies of
3-15-node cycles in the high-confidence fruitfly PPI net-
work have been shown to differ from those of randomly
rewired networks which preserve the same degree distri-
bution as the original PPI network (Giot et al., 2003).

2.2 Graphlet Analysis of PPI Networks

Our approach to analyzing large networks belongs to the
bottom-up type. Similar to the approach of Milo et al.
(Milo et al., 2004), we identify all 3-5-node subgraphs
of PPI networks for S. cerevisiae and D. melanogaster.
We compare the frequencies of the appearance of these
subgraphs in PPI networks with the frequencies of their
appearance in four different types of random networks:
(a) Erdös-Rényi random networks with the same number

of nodes and edges as the corresponding PPI networks
(ER); (b) Erdös-Rényi random networks with the same
number of nodes, edges, and the same degree distribution
as corresponding PPI networks (ER-DD); (c) scale-free
random networks with the same number of nodes and the
number of edges within . � of those of the correspond-
ing PPI networks (SF); and (d) several types of geometric
random graphs with the number of nodes and the number
of edges within . � of those of the corresponding PPI net-
works (GEO) (see Supplementary Information). We used
three different geometric random graph models, defining
points uniformly at random in 2-dimensional Euclidean
space (GEO-2D), 3-dimensional Euclidean space (GEO-
3D), and 4-dimensional Euclidean space (GEO-4D); the
Euclidean distance measure between the points was used
to determine if two points are close enough to be linked
by an edge in the corresponding geometric random graph
(see Supplementary Information).

The number of different connected networks on J
nodes increases exponentially with J . For J � � 
 � , and�

, there are
] 
�� , and

] . different connected networks on J
nodes respectively. To avoid terminology confusing net-
work motifs with network subgraphs (motifs are special
types of subgraphs), we use the term graphlet to denote
a connected network with a small number of nodes. All
3-5-node graphlets are presented in Figure 1. (Note that
in their analysis of undirected networks, Milo et al. (Milo
et al., 2004) examined the presence of the 8 graphlets of
size 3 or 4.) We use the graphlet frequency, i.e., the num-
ber of occurrences of a graphlet in a network, as a new
network parameter and show that PPI networks are clos-
est to geometric random graphs with respect to this new
network parameter (details are given below). In addition,
despite the difference in degree distributions of PPI net-
works and geometric random graphs and the similarity
between degree distributions of PPI networks and scale-
free networks, we show that the diameter and clustering
coefficient parameters also indicate that PPI networks are
closer to the geometric random graph model than to the
ER, ER-DD and SF models. We hypothesize that the
discrepancy between the degree distributions of PPI and
GEO networks is caused by a high percentage of false
negatives in the PPI networks and that when PPI data sets
become denser and more complete, the degree distribu-
tions of PPI networks will be closer to Poisson distribu-
tions, characteristic of geometric random graphs.
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We analyzed graphlet frequencies of four PPI net-
works: the high-confidence yeast S. cerevisiae PPI net-
work involving 2455 interactions amongst 988 proteins
(von Mering et al., 2002); the yeast S. cerevisiae PPI
network involving 11000 interactions amongst 2401 pro-
teins (von Mering et al., 2002) (these are the top 11000
interactions in von Mering et al. classification (von
Mering et al., 2002)); the high-confidence fruitfly D.
melanogaster PPI network involving 4637 interactions
amongst 4602 proteins (Giot et al., 2003); and the en-
tire fruitfly D. melanogaster PPI network as published in
(Giot et al., 2003) involving 20007 interactions amongst
6985 proteins which includes low confidence interactions.
We computed graphlet frequencies in the PPI and the cor-
responding random networks of the previously described
four different types.

Graphlet counts quantify the local structural properties
of a network. Currently, our knowledge of the connec-
tions in PPI networks is incomplete (i.e., we do not know
all the edges, and for many organisms, we do not even
know all the nodes). The edges we do know are dom-
inated by experiments focused around proteins that are
currently considered “important”. However, we hypoth-
esize that the local structural properties of the full PPI
network, once all connections are made, are similar to the
local structural properties of the currently known, highly
studied parts of the network. Thus, we would expect that
the relative frequency of graphlets among the currently
known connections is similar to the relative frequency
of graphlets in the full PPI network, which is as yet un-
known. Thus, we use the relative frequency of graphlets��� �8� ����� �	� � to characterize PPI networks and the net-
works we use to model them, where

��� �8� � is the number
of graphlets of type � ( � � � .�

	�	�	/
 ]
� � ) in a network � ,
and � �	� � ��� 1����� 5 � � �8� � is the total number of graphlets
of � . In this model, then, the “similarity” between two
graphs should be independent of the total number of nodes
or edges, and should depend only upon the differences be-
tween relative frequencies of graphlets. Thus, we define
the relative graphlet frequency distance �3�	��
�� � , or dis-
tance for brevity, between two graphs � and � as

� �8��
�� � � 1���
��� 5 � �

� �8� � ' � � ��� �/�H

where � � �8� � � ' Z�[�\�� ��� �	� ����� �8� �>� . We use the log-

arithm of the graphlet frequency because frequencies of
different graphlets can differ by several orders of magni-
tude and we do not want the distance measure to be en-
tirely dominated by the most frequent graphlets.

3 Results and Discussion

3.1 Graphlet Frequency Counts

Using this method, we computed the distances between
several real-world PPI networks and the corresponding
ER, ER-DD, SF, and GEO random networks. We found
that the GEO random networks fit the data an order of
magnitude better in the higher-confidence PPI networks,
and less so (but still better) in the more noisy PPI net-
works (see Supplementary Table 3 of the Supplementary
Information). The only exception is the larger fruitfly PPI
network, with about ��� � of its edges corresponding to
lower confidence interactions (Giot et al., 2003); this PPI
network is about

] 	�� times closer to the scale-free than to
the geometric network model with respect to this param-
eter (see Supplementary Information). We hypothesize
that this behavior of the graphlet frequency parameter is
the consequence of a large amount of noise present in this
fruitfly PPI network; our analysis of the diameters and
clustering coefficients of these networks further support
this hypothesis (see below).

An illustration showing graphlet frequencies in the
high-confidence yeast PPI network and the corresponding
random model networks is presented in Figure 2. As men-
tioned above, the current yeast high-confidence PPI net-
work is missing many edges, so we expect that the com-
plete PPI network would be much denser. Also, we be-
lieve that the maximum degree of this PPI network is not
likely to change significantly due to the extent of research
having been done on the highly connected regions of the
network. Thus, we constructed two sets of 3-dimensional
geometric random networks with the same number of
nodes, but about three and six times as many edges as the
PPI network, respectively. By making the GEO-3D net-
works corresponding to this PPI network about six times
as dense as the PPI network, we matched the maximum
degree of the PPI network to those of these geometric ran-
dom networks. The resulting geometric random network
models provide the closest fit with respect to the graphlet
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frequency parameter to the PPI network (see Fig. 2 F and
Supplementary Information).

3.2 Robustness of Graphlet Frequency
Counts

When studying PPI networks, it should be noted that all of
the current publicly available PPI data sets contain a per-
centage of false positives and are also largely incomplete,
i.e, the number of false negatives is arguably much larger
than the number of false positives. Since the genomes of
many species have already been sequenced, it is expected
that the predicted number of proteins in PPI data sets will
not change significantly, but the number of known inter-
actions will grow dramatically.

Since PPI networks contain noise, we examined the ro-
bustness of the graphlet frequency parameter by adding
noise to the yeast high-confidence PPI network and com-
paring graphlet frequencies of the perturbed networks and
the PPI network. In particular, we perturbed this PPI net-
work by randomly adding, deleting, and rewiring 10, 20,
and 30 percent of its edges. We computed distances be-
tween the perturbed networks and the PPI network by us-
ing the distance function defined above. We found the
exceptional robustness of the graphlet frequency parame-
ter to random additions of edges encouraging, especially
since the currently available PPI networks are missing
many edges. In particular, additions of

�����
of edges re-

sulted in networks which were about 21 times closer to the
PPI network than the corresponding SF random networks.
We also found that graphlet frequencies were fairly ro-
bust to random edge deletions and rewirings (deletions
and rewirings of

�����
of edges resulted in networks which

were about � times closer to the PPI network than the cor-
responding SF random networks), which further increases
our confidence in PPI networks having geometric proper-
ties despite the presence of false positives in the data (see
Supplementary Information).

3.3 Global Network Properties of PPI and
Model Networks

Recently, there has been a lot of interest in the global
properties of PPI networks. PPI networks for the yeast S.
cerevisiae resulting from different high-throughput stud-

ies (Uetz et al., 2000; Xenarios et al., 2000; Ito et al.,
2001) have been shown to have scale-free degree distri-
butions (Jeong et al., 2001; Maslov & Sneppen, 2002).
They have hierarchical structures with `��,QR� scaling asQ V 5 (Barabási et al., 2004). The degree distributions of
this yeast PPI network, as well as the PPI network of the
bacterium Helicobacter pylori, have been shown to decay
according to a power law (Jeong et al., 2001; Rain et al.,
2001). However, the high confidence D. melanogaster
PPI network and a larger D. melanogaster PPI network
have been shown to decay close to, but faster than a power
law (Giot et al., 2003).

We compared the commonly studied statistical proper-
ties of large networks, namely the degree distribution, net-
work diameter, and clustering coefficients ` and `��	QR� , of
the PPI and various model networks. Despite the degree
distributions of the PPI networks being closest to the de-
gree distributions of the corresponding scale-free random
networks (Supplementary Figures 9 and 10), the remain-
ing three parameters of the two yeast PPI networks dif-
fer from the scale-free model with most of them being
closest to the corresponding geometric random networks
(Supplementary Tables 4 and 5, and Supplementary Fig-
ures 11 and 12). An illustration of the behavior of `��,QR�
in the yeast high confidence PPI network and the corre-
sponding model networks is presented in Figure 3. Also,
many of these properties of the two fruitfly PPI networks
were close to ER, ER-DD, and SF models possibly indi-
cating the presence of noise in these PPI networks (Sup-
plementary Tables 4 and 5, and Supplementary Figures
13 and 14). Nevertheless, the high-confidence fruitfly PPI
network exhibits some geometric network properties; for
example, the clustering coefficient of this PPI network is
only an order of magnitude smaller than the clustering
coefficients of the corresponding geometric random net-
works, but it is at least four orders of magnitude larger
than the clustering coefficients of the corresponding scale-
free networks (Supplementary Table 5). We expect that
ongoing improvements in the fruitfly PPI data set will
make the structural properties of its PPI network closer
to those of the geometric random graphs.
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4 Conclusions

Despite recent significant advances in understanding large
real-world networks, this area of research is still in its in-
fancy (Barabási & Oltvai, 2004; Newman, 2003). Novel
techniques for analyzing, characterizing, and modeling
structures of these networks need to be developed. As
new data becomes available, we must ensure that the the-
oretical models continue to accurately represent the data.
The scale-free model has been assumed to provide such a
model for PPI networks (Jeong et al., 2001; Rain et al.,
2001; Maslov & Sneppen, 2002). The current scale-free
model of human PPI network has been used for planning
experiments in order to optimize time and cost required
for their completion (Lappe & Holm, 2004). In particular,
the model was used to form the basis of an algorithmic
strategy for guiding experiments which would detect up
to

�����
of the human interactome with less than a third of

the proteome used as bait in high-throughput pull-down
experiments (Lappe & Holm, 2004). However, if an in-
correct model is used to plan experiments then clearly the
experiments will be at best inefficient at gaining the de-
sired information. At worst, they could even be mislead-
ing by failing to direct experimenters to find actual PPIs
that exist but will remain hidden because the experiments
will be looking in the wrong place. Therefore, having an
improved model for PPI networks is crucial for effective
experimental planning.

We have shown compelling evidence that the struc-
ture of yeast PPI networks is closer to the geometric ran-
dom graph model than to the currently accepted scale-free
model. For yeast PPI networks, three out of four of the
commonly studied statistical properties of global network
structure, as well as the newly introduced graphlet fre-
quency parameter describing local structural properties of
large networks, were closer to geometric random graphs
than to scale-free or Erdös-Rényi random graphs. In addi-
tion, despite the noise present in their PPI detection tech-
niques and the lack of independent verification of its PPIs
by various labs, fruitfly PPI networks do show properties
of geometric random graphs. Other designed and opti-
mized communication networks, such as wireless mul-
tihop networks (Bettstetter, 2002), electrical power-grid
and protein structure networks (Milo et al., 2004), have
been modeled by geometric random graphs as well. Thus,
it is plausible that PPI networks, which possibly emerged,

similar to the World Wide Web, through stochastic growth
processes, but unlike the World Wide Web have gone
through millions of years of evolutionary optimization,
are better modeled by the geometric random graph model
than by the scale-free model (the scale-free model seems
to be appropriate for networks that have emerged through
stochastic growth processes and have not been optimized,
such as the World Wide Web). Also, similar to the lim-
ited coverage that wireless networks have, currently avail-
able PPI data cover only a portion of the interactome.
Once a more complete interactome data becomes avail-
able, we will be able to validate the correctness of the
current model and possibly design better models for PPI
networks.
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Figure 1: All 3-node, 4-node, and 5-node connected net-
works (graphlets), ordered within groups from the least to
the most dense with respect to the number of edges when
compared to the maximum possible number of edges in
the graphlet; they are numbered from 1 to 29.
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Figure 2: Comparison of graphlet frequencies in the high-confidence S. cerevisiae PPI network (von Mering et al.,
2002) (green line) with corresponding ER, ER-DD, SF, and GEO random networks. Zero frequencies were replaced by
0.1 for plotting on log-scale. A. PPI network versus five corresponding ER random networks. B. PPI network versus
five corresponding ER-DD random networks. C. PPI network versus five corresponding SF random networks. D.
PPI network versus five corresponding GEO-2D random networks. E. PPI network versus a corresponding GEO-2D,
GEO-3D, and GEO-4D random network. F. PPI network versus five GEO-3D random networks with the same number
of nodes and approximately three times as many edges as the PPI network.
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Figure 3: Comparison of average clustering coefficients ������� of degree � nodes in the high-confidence S. cerevisiae
PPI network (von Mering et al., 2002) (green dots) with corresponding ER, ER-DD, SF, and GEO random networks.
Since we use a log-scale, zero values were placed on the abscissa. A. PPI network versus five corresponding ER
random networks. B. PPI network versus five corresponding ER-DD random networks. C. PPI network versus five
corresponding SF random networks. D. PPI network versus five corresponding GEO-3D random networks. E. PPI
network versus five corresponding GEO-3D random networks with the same number of nodes and approximately three
times as many edges as the PPI network. F. PPI network versus five corresponding GEO-3D random networks with
the same number of nodes and approximately six times as many edges as the PPI network.
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