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Abstract. This paper presents a new methodology for the reduction
of sensor noise from images acquired using digital cameras at high-
International Organization for Standardization (ISO) and long-
exposure settings. The problem lies in the fact that the algorithm
must deal with hardware-related noise that affects certain color
channels more than others and is thus nonuniform over all color
channels. A new adaptive center-weighted hybrid mean and median
filter is formulated and used within a novel optimal-size windowing
framework to reduce the effects of two types of sensor noise,
namely blue-channel noise and JPEG blocking artifacts, common in
high-ISO digital camera images. A third type of digital camera noise
that affects long-exposure images and causes a type of sensor
noise commonly known as ‘‘stuck-pixel’’ noise is dealt with by pre-
processing the image with a new stuck-pixel prefilter formulation.
Experimental results are presented with an analysis of the perfor-
mance of the various filters in comparison with other standard noise
reduction filters. © 2004 SPIE and IS&T. [DOI: 10.1117/1.1668279]

1 Introduction

With the advent of the inexpensive charge-coupled dev
~CCD! on a chip~Fig. 1!, the wide-spread move from tra
ditional 35 mm film photography to digital photography
becoming increasingly apparent especially with journal
and professional photographers. This has prompted dig
camera manufacturers to try to implement most of
legacy techniques common among traditional film came
such as high-International Organization for Standardiza
~ISO! film, long exposures, high-speed shutters, etc., i
digital cameras. One technique that is of utmost importa
to a large community of photographers is the digital cam
equivalent to the traditional high-speed silver-based fi
sensitivity, commonly known as the ISO sensitivity num
ber.

An ISO number that appears on regular camera fi
packages specifies the speed, or sensitivity, of this typ
silver-based film. The higher the number the ‘‘faster’’
more sensitive the film is to light. Typical ISO speeds f
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silver-based film include 100, 200, or 400. Each doubli
of the ISO number indicates a doubling in film speed
each of these films is twice as fast as the next fastest. Im
sensors used in digital cameras are also rated using eq
lent ISO numbers. Just as with film, an image sensor wit
lower ISO needs more light for a good exposure than o
with a higher ISO. In poorly lit conditions, a longer expo
sure of the image sensor is needed for more light to en
This, however, will lead to the acquired images bei
blurred, unless the scene being imaged is completely sti
is, therefore, better to set the image sensor to a higher
setting because this will enhance freezing of scene mo
and shooting in low light. Typically, digital image sens
ISOs range from 100~fairly slow! to 3200 or higher~very
fast!.

Some digital cameras have more than one ISO rating
low-light situations, the sensor’s ISO can be increased
amplifying the image sensor’s signal~increasing its gain!.
Some cameras even increase the gain automatically.
not only increases the sensor’s sensitivity, but, unfor
nately, also increases the noise or ‘‘grain,’’ thus, generat
images that are contaminated with random noise effect

2 Sensor Noise Types

Noise can be summarized as the visible effects of an e
tronic error~or interference! in the final image from a digi-
tal camera. Noise is a function of how well the image se
sor and digital signal processing systems inside the dig
camera are prone to and can cope with or remove th
errors ~or interference!. Noise significantly degrades th
image quality and increases the difficulty in discriminati
fine details in the image. It also complicates further ima
processing, such as image segmentation and edge dete
The type of high-ISO sensor noise produced by a typi
digital camera CCD imaging sensor can be modeled as
additive white Gaussian distribution with zero mean an
variance~noise power! proportionate to the amount of am
plification applied to the image sensor’s signal to boost
gain.1–3
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Visible noise in a digital image is often affected by tem
perature~high worse, low better! and ISO sensitivity~high
worse, low better!. Some cameras exhibit almost no noi
and some a lot and all the time. It has certainly been
challenge of digital camera developers to reduce noise
produce a ‘‘cleaner’’ image, and indeed some recent dig
cameras are improving this situation greatly, allowing
higher and higher ISOs to be used without too much no
In general, image artifacts produced by digital cameras
be divided into three types.

• Stuck-pixel noise: also known as impulse-type noise
created by many digital cameras and is caused by l
exposure time of the CCD elements in dim-lightin
conditions when a bright image is required without t
use of the flash light. During the exposure, some C
cells become saturated and are stuck at a bright co
which show up in the acquired image as bright im
pulse noise pixels@see Fig. 2~a!#. Removing this type
of noise is usually not a difficult task but comes at t
cost of blurring the other uncorrupted pixels.

• Blue-channel noise: is a common problem in digita
photographs, especially those created by high-I
professional news and sports digital cameras. A typ
digital camera sensor@CCD or complementary metal–
oxide–semiconductor~CMOS!# is more sensitive to
certain primary colors than others~often sensors are

Fig. 1 The CCD imaging sensor chip used in the ‘‘Kodak Profes-
sional DCS720x’’ digital camera. (courtesy http://
www.dpreview.com/).
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less sensitive to blue light! and so to compensate
these channels are amplified more than the others@see
Fig. 2~d!#. This noise has hampered the acceptance
digital cameras for quality reasons, and it has limit
their use for some techniques such as automask
based on chrominance~e.g., ‘‘blue screen’’ back-
grounds!.

• JPEG artifacts: also known as JPEG blocking art
facts, are due to the nature of the 8-by-8 block-s
used by the JPEG compression standard. High co
pression ratios result in images with blockyness in
blue and red channels. These blocks are especially
vious in the flat areas of an image. In high detail are
artifacts called ‘‘mosquito noise’’ become noticeabl
This term comes from the ripple effect that mosqu
toes make when their legs touch water.

The sensor noise filtering techniques that will be d
scribed shortly present a solution to these types of artifa
that are common in most color images acquired by dig
cameras.

3 Background of Noise Reduction Techniques

The primary concern in digital photography is the visu
fidelity of the acquired images. What professional photo
raphers demand from a digital camera is fast and pre
image acquisition~high-sensitivity in low-light conditions
and exact-moment capture! coupled with the best visua
results. Previous noise reduction techniques available in
literature do not take into account the physics of the CC
photo-capture element used in a majority of video and d
tal still cameras today. The CCD image sensor tends to
highly sensitive to the green light frequencies and less s
sitive to the blue and red light waves. The CCD hardwa
controller is, thus, tuned to increase the signal gain of
blue CCD elements more than the green elements. In
mal and good lighting conditions there are no visible
fects due to this difference in signal gain, but in low lig
conditions, where the CCD signal gain is increased m
for the less sensitive color channels, this produces hi
frequency noise that contaminates the blue channel, an
a lesser extent, the red channel, more severely than
green channel. In general the chrominance channels of
acquired images will be more severely affected by t
Fig. 2 (a) Long exposure stuck pixel noise (courtesy http://www.dpreview.com/), (b) red channel, (c)
green channel, and (d) blue channel showing excessive noise.
Journal of Electronic Imaging / April 2004 / Vol. 13(2) / 265



Adaptive hybrid mean and median filtering . . .
Fig. 3 An image acquired in low light at an ISO-400 setting with a Minolta Dimage digital camera, then
separated into its component channels using the L* a* b* color space to show the severity of noise in
the chrominance a and b channels as compared to the luminance channel due to the limitations of the
CCD image sensor.
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noise than the luminance channel of the image as show
Fig. 3. The resulting effect is the visibility of random nois
artifacts in the acquired image that differs in severity fro
acceptable~at low-ISO settings,ISO 400) to completely
contaminating the picture~at very high ISO settings
.ISO 2000) such that it becomes visually unaccepta
More details on separating a color image into luminan
~brightness! and chrominance~color! channels will be pre-
sented in Sec. 4.

Statistical characteristics of images are of fundame
importance in many areas of image processing. Incorp
tion of a priori statistical knowledge of spatial correlatio
in an image, in essence, can lead to considerable impr
ment in many image processing algorithms. For noise
tering, the well-known Wiener filter for minimum mean
squared error~MMSE! estimation is derived from a
measure or an estimate of the power spectrum of the im
as well as the transfer function of the spatial degrada
phenomenon and the noise power spectrum.4 Unfortunately,
the Wiener filter is designed under the assumption of wi
sense stationary signal and noise. Although the stationa
assumption for additive, zero-mean, white Gaussian n
is valid for most cases, it is not reasonable for most reali
images, apart from the uninteresting case of uniformly g
image fields. What this means in the case of the Wie
filter is that we will experience uniform filtering throughou
the image, with no allowance for changes between ed
and flat regions, resulting in unacceptable blurring of hig
frequency detail across edges and inadequate filterin
noise in relatively flat areas.

Noise reduction filters have been designed in the p
with this stationarity assumption. These have the effec
removing noise at the expense of signal structure.
amples such as the fixed-window Wiener filter and
fixed-window mean and median filters have been the s
dard in noise smoothing for the past 2 decades.4–6 These
filters typically smooth out the noise, but destroy the hig
frequency structure of the image in the process. This
mainly due to the fact that these filters deal with the fixe
window region as having sample points that are station
~belonging to the same statistical ensemble!. For natural
scenes, any given part of the image generally differs su
ciently from the other parts so that the stationarity assum
266 / Journal of Electronic Imaging / April 2004 / Vol. 13(2)
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tion over the entire image or even inside a fixed-windo
region is not generally valid. Newer adaptive Wiener filte
ing techniques that take into account the nonstationa
nature of most realistic images have been used as an a
native to preserve signal structure as much as possib7

Many, however, do this at the expense of proper noise
duction, where the high-frequency areas will be insu
ciently filtered, which will result in a large amount of high
amplitude noise remaining around edges in the ima
Another shortcoming is the failure of these filters to remo
stuck-pixel ~impulse-type! noise that appears in the ac
quired images due to long CCD exposure times in d
light. A fixed-window median filter will remove this type o
impulse noise but will also alter important signal structu
due to the same assumption that the image samples in
fixed-window can be modeled by a stationary random fie
which is not valid for a fixed-window that cannot inhe
ently differentiate between edge and flat image regions8

Another shortcoming with many noise filtering tec
niques that deal with color digital images is the applicati
of the same filter evenly to the three color chann
~R,G,B!9,10 with the assumption that the sensor noise
equally distributed among the three color channels, wh
is an erroneous assumption as explained at the start of
section. To the author’s knowledge, the issue of high-I
noise reduction for digital cameras has not received m
attention in the literature. Although current work in the li
erature on adaptive noise reduction filters~such as Smolka
et al.,11 Eng and Ma12! may be used to reduce high-IS
digital camera noise, these filters have been develo
without the specific needs of professional digital came
and as such do not take into consideration the differ
types of noise degradations which are generated by th
digital cameras as mentioned previously. The result is eit
insufficient noise reduction in the chrominance channels
too much smoothing in the luminance channel of the
tered image. Also, many filters only deal with gray-lev
images6,8,13–17and, as such, are not very effective for th
type of images acquired by the digital cameras discusse
this work. We will compare one of the commonly use
adaptive spatial noise reduction filters, namely the adap
local statistic MMSE filter, with our work to show the ef
fectiveness of our technique in producing visually super
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filtered images that can directly be used for further analy
such as edge detection and image understanding.

Digital camera manufacturers are only now beginning
realize the importance of incorporating noise reduction
ters in the hardware image acquisition pipeline for th
digital cameras. To the author’s knowledge, the only kno
digital camera to actually attempt to incorporate a no
reduction algorithm is the Kodak Professional DCS72
digital camera.18 Kodak rates the camera as ‘‘calibrated’’ u
to ISO 4000 and capable of ISO 6400. This means t
shooting in extremely low light/high shutter speed con
tions is possible with this camera, but at the expense
increased noise in the acquired images. With noise red
tion activated the images are acquired with much less n
and are more visually pleasing. Images from this cam
are used as a comparison with the techniques describe
this paper.

In the next sections, a new adaptive technique is
scribed that is highly tuned to produce visually pleas
filtered color digital images that have been acquired us
digital sensor-based cameras. This new technique dif
from previous filtering methods in that it is geared towar
the type of color images obtained from digital cameras, a
thus takes into account the physical limitations of the CC
and the specific types of CCD sensor noise produced.

4 Color Spaces

Before going into the details of the new color filterin
methods, it is important to give a brief background of t
most popular color spaces used in separating color ima
into their component color channels before filtering ea
channel.

A color space is a model for representing color in ter
of intensity values. It defines a one-, two-, three-, or fo
dimensional space whose dimensions, or components,
resent intensity values. A color component is also refer
to as a color channel. For example, RGB space is a th
dimensional color space whose components are the
green, and blue intensities that make up a given co
Color spaces can be divided into two general categor
device dependent and device independent color space

• Device dependent color spaces: These include
family of RGB Spaces. The RGB space is a thre
dimensional color space whose components are
red, green, and blue intensities that make up a gi
color. Most CCD and CMOS based digital camera i
aging sensors use the RGB color space by reading
amounts of red, green, and blue light reflected fro
the scene that fall on the CCD elements and then c
vert those amounts into digital values. These valu
are device dependent and one CCD may produc
different RGB value from another depending on ho
it is manufactured. HSV space and HLS space
transformations of RGB space that can describe co
in terms more natural to an artist. The name HS
stands for hue, saturation, and value, and HLS sta
for hue, lightness, and saturation. The CMY col
space is sometimes used in CCD and CMOS im
sensors. The name CMY refers to cyan, magenta,
,
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yellow, which are the three primary colors in this col
space, and red, green, and blue are the three sec
aries.

• Device independent color spaces: Some color spa
can express color in a device-independent w
Whereas RGB colors vary with CCD and CMOS se
sor hardware characteristics, device-independent
ors are meant to be true representations of colors
perceived by the human eye. These color represe
tions, called device-independent color spaces, re
from work carried out in 1931 by the Commissio
Internationale d’Eclairage~CIE! and for that reason
are also called CIE-based color spaces. The CIE c
ated a set of color spaces that specify color in terms
human perception. It then developed algorithms to
rive three imaginary primary constituents of colo
namelyX, Y, andZ, that can be combined at differen
levels to produce all the color the human eye can p
ceive. The resulting color model, and other CIE co
models, form the basis for all color management s
tems. Although the RGB and CMY values differ from
device to device, human perception of color rema
consistent across devices. Colors can be specifie
the CIE-based color spaces in a way that is indep
dent of the characteristics of any particular imagi
device. The goal of this standard is for a given CI
based color specification to produce consistent res
on different devices, up to the limitations of eac
device.19

One problem with representing colors using theXYZ
color space is that it is perceptually nonlinear: it is n
possible to accurately evaluate the perceptual closenes
colors based on their relative positions inXYZ space. Col-
ors that are close together inXYZ space may seem ver
different to observers, and colors that seem very simila
observers may be widely separated inXYZspace.L* a* b*
space is a nonlinear transformation ofXYZ space to create
a perceptually linear color space designed to match p
ceived color difference with quantitative distance in co
space.20,21

As stated earlier, the CCD sensor of a typical digi
camera is less sensitive to the blue and red channels
this causes amplified noise artifacts in the chromatic ch
nels in low light or at high-ISO settings. Moreover, the
seems to be general agreement that spatial resolutio
markedly lower in chromatic channels than in the ach
matic one~see Fig. 3!, hence, high-frequency information
i.e., edges, come mainly from this achromatic channe22

Another important consideration is that, in order to avo
chromatic artifacts in the filtered image, a nonlinear ope
tor cannot be applied to each RGB component separate22

These two considerations and experimental results sug
that a color model which should separate luminance fr
chrominance is suitable. We, thus, choose to separate
acquired images using theL* a* b* color space because o
its merits stated earlier. TheL* a* b* color space separate
the RGB image into a luminance channelL, and two
chrominance channels (a,b). This allows us to use differ-
ent filter parameters specifically tuned for each channel
general the luminance channels suffer less noise artif
Journal of Electronic Imaging / April 2004 / Vol. 13(2) / 267
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Adaptive hybrid mean and median filtering . . .
than the (a,b) chrominance channels. We, therefore, ta
this into consideration when filtering each channel, by
lowing more smoothing in the (a,b) channels to correct fo
color artifacts, while passing more high frequency in t
filtered luminance channel. This will be further emphasiz
when presenting the experimental results in a later sect

5 Adaptive-Window Signal Equalization Hybrid
Filter

The quantity of light falling on an image sensor array~e.g.,
CCD array!, is a real valued functionq(x,y) of two real
variablesx and y. An image is typically a degraded mea
surement of this function, where degradations may be
vided into two categories, those that act on the dom
(x,y) and those that act on the rangeq. Sampling, aliasing,
and blurring act on the domain, while noise~including
quantization noise! and the nonlinear response function
the camera act on the range.23 We are concerned with th
latter type of camera sensor degradations.

Digital camera sensor noise reduction is the proces
removing unwanted noise from a digital image. It falls in
two main categories, reduction or removal of noise fro
high-ISO images including JPEG compression artifac
and reduction or removal of noise from long-exposure i
ages~with ‘‘stuck pixels’’!. In this section a detailed de
scription of the adaptive hybrid filter for sensor noise
moval is presented with experimental results showing
performance in comparison with other standard noise
duction filters.

5.1 Hybrid Mean and Adaptive Center Weighted
Median Filter

The median filter is a class oforder-statistic filterswhere
filter statistics are derived from ordering~ranking! the ele-
ments of a set rather than computing means, etc. The
dian filter is a nonlinear neighborhood operation, similar
convolution, except that the calculation is not a weigh
sum. Instead, the pixels in the neighborhood are ranke
the order of their gray levels, and the midvalue of the gro
is stored in the output pixel. In probability theory, the m
dian M , of a random variablex, is the value for which the
probability of the outcomex,M is 0.5.6 Median filtering is
normally a slower process than convolution, due to the
quirement for sorting all the pixels in each neighborho
by value. There are, however, algorithms that speed up
process.24,25 The median filter is popular because of
demonstrated ability to reduce random impulsive no
without blurring edges as much as a comparable linear l
pass filter. However, it often fails to perform as well
linear filters in providing sufficient smoothing of nonimpu
sive noise components such as additive Gaussian nois
order to achieve various distributed noise removal, as w
as detail preservation, it is often necessary to combine
ear and non-linear operations.26–29 In this section we intro-
duce a hybrid filter combining the best of both world
proper smoothing in flat regions and detail preservation
busy regions of the image.

One of the main disadvantages with the basic med
filter is that it is location-invariant in nature, and thus al
tends to alter the pixels not disturbed by noise. The ce
weighted median filter~CWMF! was developed to addres
268 / Journal of Electronic Imaging / April 2004 / Vol. 13(2)
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this limitation in the basic median filter.30,31This filter will
give the pixel at the center of the window more weigh
(.1) than the other pixels in the window before determ
ing the median. This has the effect of preferentially p
serving that pixel’s value so both fine detail and noise
more preserved. In the extreme, one could make it so
the center pixel has a weight equal to the entire weigh
the rest of the window, in which case the value of the cen
pixel is assured of being the output of the median ope
tion. This is the identity filter, where the output is equal
the input. In general, a CWMF can be varied over the ran
from the median filter to the identity filter by varying th
central weight. This corresponds to the range from stro
noise and detail removal~basic median filtering! to none
~identity filtering!. In the original CWMF implementation
the central weight is constant over the entire image.

In this paper, we make use of the CWMF concept a
implement it as an adaptive CWMF~ACWMF! by varying
the central weight based on signal and noise estimates
side an adaptive window framework, which will be d
scribed in detail in the next section.

In formulating our center weighted median-based fil
we use an image model with additive noise as follows:

y~k,l !5x~k,l !1n~k,l !, ~1!

wherekP@0,M21#, and l P@0,N21# for an M3N sized
image.n(k,l ) is a zero-mean additive white Gaussian no
random variable, of variancesn

2 , and uncorrelated to the
ideal imagex(k,l ), which is assumed to be of zero mea
and variancesx

2 , and y(k,l ) is the noise-corrupted inpu
image.

For the purpose of the following analysis, we assu
that bothx(k,l ) and n(k,l ) are ergodic random variables
The implication of this assumption is that although we
not havea priori knowledge of the signal and noise stati
tical variance and mean, we can still capture samples
x(k,l ) andn(k,l ) and determine their variance and mea
which are, in turn, representative of their respective
sembles. It should also be noted that although the no
variance,sn

2 , is not knowna priori, it is easily estimated
from a window in a flat area of the degraded ima
y(k,l ).32

We begin by setting an objective criterion of optimali
for deriving the central weight at each pixel location. W
use a similar criterion to that used in deriving the pow
spectrum equalization filter,33 by seeking a linear estimate
x̂(k,l ), such that the signal variance of the estimate is eq
to the variance of the ideal imagex(k,l ). Assuming this
estimate is of the form

x̂~k,l !5a•y~k,l !, ~2!

we can express our criterion as

sx
25E$x̂2%5E$~a•y!2%, ~3!

whereE$•% is the expectation operator. In general, the a
quired images have a nonzero mean, and we can acc
for this by subtracting the mean of each image from b
random variables of Eq.~2!. For zero mean noise, thea
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posteriori sample mean~local mean inside the adaptiv
window! of the degraded pixely(k,l ), denoted bymy , is
equal to thea priori sample mean of the ideal pixelx(k,l ).
After dropping the (k,l ) notation for readability, we have

x̂2my5a•~y2my!, ~4!

and we can write our criterion after accounting for t
mean as follows:

sx
25E$~ x̂2my!2%5E$@a•~y2my!#2%

5a2
•sy

25a2
•~sx

21sn
2!. ~5!

Therefore, the signal equalization estimatora becomes

a5A sx
2

sx
21sn

2. ~6!

If the number of pixels in the adaptive window, of siz
Lx3Ly , is (Lx•Ly), then the central weight for the pixe
under analysis at pixel position (k,l ) is given as

Cw5a•~Lx•Ly21!11. ~7!

This central weight can be used to give the value of
pixel at (k,l ) more weight than the other pixels in the ada
tive window before determining the median; i.e., we cou
it as if it were Cw pixels rather than just one pixel. Thu
a50 is the basic median filter, whilea51 is the identity
filter, and 0<a<1.

Substitutinga from Eq. ~6! in Eq. ~4!, we obtain an
equation for the signal equalization mean filter which c
estimate the ideal image as

x̂5my1A sx
2

sx
21sn

2•~y2my!. ~8!

We, thus, have two ways~filters! for estimating the idea
image. The nonlinear, order-statistic-type ACWMF with
central weight given by Eq.~7!, and the linear signal equa
ization mean filter of Eq.~8!. We propose to use a hybri
combination of linear and nonlinear operations within t
adaptive window framework described in the next secti
The new hybrid filter is given by

H~k,l !5H ACWMF~k,l ! if a.h

my~k,l ! otherwise
. ~9!

Here,h is an empirically determined threshold for choosi
between the ACWMF and the signal meanmy . We use the
valueh50.8 for best results. Thus, whena.h indicating
high signal activity in edge regions, the ACWMF is pr
ferred over the mean for proper noise removal with mi
mal blurring. Otherwise, in flat regions of the image,a is
small, and the local meanmy inside the adaptive window is
selected for smoothing.

Replacing the sample meanmy of Eq. ~8! with the hy-
brid mean-ACWMF filter~HM–ACWMF!, H, we obtain
the final equation for the ideal signal equalized estimate
.

s

x̂~k,l !5a•y~k,l !1~12a!•H~k,l !. ~10!

Since H depends on local~sample! statistics such as
sx

25sy
22sn

2 and my , proper values ofH will depend on
appropriate adaptive window dimensions that do not cro
over object boundaries in order for the stationarity assum
tion to hold inside the adaptive window region. The follow
ing section details a new optimal-size adaptive wind
framework that is utilized for the HM–ACWMF describe
in this section.

5.2 Optimal-Size Windowing

In developing an effective adaptive window to account
the nonstationarity of images, it is important for this ana
sis window to have the maximum size possible at ea
pixel position without crossing over image structure a
edges. The reason is that the more the number of spat
correlated signal samples are available in the analysis w
dow, the more accurate their statistical characteristics
be estimated.34 Previous adaptive windowing technique
are not optimal in this respect as they usually vary
window size in the right-most upper quadrant only; nam
the positivex axis and the positivey axis, and simply du-
plicate these values in the negative axis. Thus, the wind
grows in size symmetrically, increasing to the maximu
~user-preset! allowable size in the middle of a flat region o
the image and decreasing to the minimum size near
edges.7,17 Figure 4 shows two different situations for th
type of an adaptive window where the window is symm
ric and decreases to a minimum size for the edge pixelA,
thus causing inaccurate estimates of signal statistics.
window will increase to its maximum size for pixels~e.g.,
pixel B) further away from the edge region where mo
accurate statistical estimates can be obtained.

In designing the adaptive window for the signal equ
ization filter, the optimality of window size at every pixe
position has been taken into consideration. Instead of m
taining window symmetry, we are more concerned with t
window size near the edges of image structure~object
boundaries!. The new adaptive window is structured su

Fig. 4 An adaptive rectangular window shown for an edge pixel A
and an arbitrary pixel B situated away from the edge.
Journal of Electronic Imaging / April 2004 / Vol. 13(2) / 269
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Adaptive hybrid mean and median filtering . . .
that all four quadrants of the window are adaptive, and v
in size based on an estimate of the signal activity in
respective window quadrant.

Figure 5~a! shows the same example pixels (A andB) as
those in Fig. 4. The figure illustrates the big differen
between the two adaptive window examples. In our ca
the adaptive window grows to its maximum allowable s
even for the edge pixelA. The two methods are compa
rable, though, for the inner pixelB as shown in Fig. 5~a!.
We, thus, have an adaptive-size window that is optimal
both edge pixels as well as pixels that belong to flat regi
of the image.

Referring to Fig. 5~b!, the window is started with its fou
quadrants set to the maximum~user-defined! size at every
pixel position (k,l ). A measure of the uncorrupted sign
activity in this window at pixel (k,l ) is given by the local
signal variancesx

25sy
22sn

2 . This signal variance in the
current window is then compared with the noise varian
sn

2 , and if sx
2.z•sn

2 , it is assumed that the window ha
identified a region in the ideal image with significant stru
tural characteristics such as an edge. This is contrary to
desired characteristics of the adaptive window. The ad
tive window is to be formed such that it includes relative
uniform structures in the ideal image, so that the prim
source of variance in the window is the additive nois
Therefore, the window is reset to its minimum size,
thresholdT is set to the value of the estimated signal a
tivity, T5sx

2 , and the window size is increased iterative
one quadrant at a time. A new signal activity is estimated
the first quadrant (WR) and as long as it is less than th
thresholdT the axis WR is incremented toWR11. The
signal activity is then re-estimated in the new windo

Fig. 5 (a) The optimal-size adaptive window shown for an edge
pixel A and an inner pixel B situated away from the edge. (b) The
structure of the window is shown, where each of the four quadrants
WR , WL , WA , WB is separately adaptive based on the signal
strength inside the window at maximum size.
270 / Journal of Electronic Imaging / April 2004 / Vol. 13(2)
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e
-

(WR11,WL ,WA ,WB) and compared to the thresholdT to
either incrementWR again or stop at the current length
This continues iteratively until either the signal activity
the new window rises above the thresholdT, indicating
closeness to an edge, or the current window axisWR
reaches the maximum~user preset! value. This is repeated
for the other three axesWL ,WA ,WB in a similar manner.
On the other hand, ifsx

2,z•sn
2 , then it is assumed that th

window is in an edge-free~flat! region of the image and the
window will stay at the maximum dimension for the cu
rent pixel. This will result in maximum smoothing of nois
and JPEG artifacts. Herez is a ~user defined! weighting
constant that affects the amount of smoothing. Large val
of z will cause more noise to be filtered, but may also res
in smaller signal structure being blurred. This value is e
pirically selected by the user to give the best results, an
image dependent.

The described optimal-size adaptive window framewo
allows for bigger window sizes to be used safely witho
the danger of excessive blurring of edges as the size gr
optimally large even near edges but does not cross ove
edge, as Fig. 5~a! clearly illustrates. It should also be note
that the HM–ACWMF formulation of Eq.~10! is applied to
each channel of theL* a* b* space separately while vary
ing the filter parameters~upper-limit for the adaptive win-
dow size,z, and estimatedsn

2) depending on the type o
channel being filtered. For example the estimated no
variance of theL channel is usually less than that of thea
channel or theb channel. Therefore, a smaller adapti
window is sufficient and a smaller value forz will produce
the best results. These values are usually increased fo
chrominance (a,b) channels due to the increase in sens
noise in these channels.

In the remainder of this section, experimental results
presented with various types of digital images corrupted
high-ISO sensor noise, including the unavoidable JP
compression artifacts, at varying degrees of severity.

5.3 Experimental Results for the HM–ACWMF

In this section, experimental results are presented to s
the performance of our HM–ACWMF noise filter whe
applied to ISO-noise corrupted digital images, and to co
pare its performance with two other commonly used filte
the fixed window median filter and the adaptive local s
tistic MMSE filter given by16

MMSE5y~k,l !1
sn

2

sy
2 •@y~k,l !2my~k,l !#. ~11!

In evaluating the performance of individual filters it
important to take into consideration both the analytical p
formance of the filter as well as the visual quality of th
estimated images generated by the filter. The well kno
MSE metric calculates the amount of difference between
ideal image and its estimate, and has been widely used
measuring the performance of various filters.4 The use of
the MSE metric for measuring filter performance can
justified for single-channel filters that process gray-sc
images, but for multichannel~color! image processing, a
compound MSE metric would be more appropriate to m
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Fig. 6 (a) A simulated noise-free edge color image. (b) The same image corrupted by white Gaussian
noise with (L,a,b)-channel variances of sn

25(20,70,100) in the L* a* b* color space, respectively. (c)
Median filtered image with 535 mask size and MSELab5(1.8,8.3,12.9). (d) MMSE filtered image with
737 kernel mask and MSELab5(2.5,14.4,16.5). (e) HM–ACWMF filtered image with 11311 maxi-
mum adaptive window size, z50.1, and MSELab5(0.4,7.9,11.3).
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sure the difference between individual channels of a mu
channel image, where the MSE for an arbitraryx channel
can be given by

MSEx5
1

M•N (
i 50

M•N21

~xi2 x̂i !
2, ~12!

for an M3N size image, withx representing the ideal im
age channel, andx̂ the estimated image channel. For RG
images, we can compute a separate MSE for the R, G,
B channels. The only shortcoming in a RGB MSE metric
that it is not ideal for tracking visual quality in an estimat
image, because, as explained in Sec. 4, the RGB c
space is device dependent and does not represent true
ors perceived by the human eye. In comparison,
L* a* b* color space is a device-independent color spa
that is a true representation of colors as perceived by
human eye. Using a MSELab5(MSEL ,MSEa ,MSEb) met-
ric based on theL* a* b* color space makes more sen
and should be capable of emphasizing the strength of
HM–ACWMF as compared to the other filters used in t
comparison. It is also important to note that the filters us
for comparison are standard filters reported in the literat
and they simply apply the same filter parameters evenl
the individual R,G,B channels in the RGB color spac
They thus assume that the amount of noise is evenly
tributed among the three RGB color channels which is
invalid assumption. As explained earlier, the chrominan
channels are more severely affected by sensor noise
the luminance channel. A filter that works in theL* a* b*
color space while properly tuning the filter parameters
deal with noise on a per-channel basis~HM–ACWMF! is
expected to generate image estimates of higher visual q
ity, which can be evaluated by comparing the chromina
MSEa and MSEb metrics of each filter.

We start by showing results of the performance of
adaptive window with the hybrid filter near edges using
synthetic image. Figure 6~a! shows an enlarged simulate
edge with two different colors. This image was corrupt
by a Gaussian random variable of zero mean and varia
d

r
ol-

,
e

e

-

n

l-

e

sn
25(20,70,100) in the (L,a,b) channels of theL* a* b*

color space respectively, as shown in Fig. 6~b!. The next
two Figs. 6~c! and 6~d! show the median and MMSE fil
tered images, respectively. It is clear that noise artifa
remain in the filtered images indicating unsatisfactory
sults. The HM–ACWMF filtered image is shown in Fig
6~e! with a L* a* b* mean square error MSELab

5(0.4,7.9,11.3) indicating a reduction in the noise lev
from ~20,70,100! as is apparent from the image. The impo
tant aspect in this image is the sharpness of the ed
which proves that the optimal-size adaptive windowi
framework developed in this paper performs as expecte

We now present some experimental results with real
ages acquired by CCD-based digital cameras at high-
settings. Figure 7~a! shows a portion of a larger image use
as a reference for measuring the performance of the n
filters and acquired at an ISO setting equivalent to ISO-
Figure 7~b! shows the same portion of the image acquir
at an ISO-400 setting and stored in the JPEG compres
format. It is clear that the image suffers from high-IS
sensor noise. The MSELab noise variance was estimated
sn

25(3.5,3.5,3.3). Figure 7~g! shows the gradient image o
~b! to emphasize the JPEG blocking artifacts. Figure 7~c!
shows the image filtered using the 333 median filter. It is
clear both visually and in terms of theL* a* b* mean
squared error@MSELab has increased to~33.8,4.2,8.7! from
~3.5,3.5,3.3!# that the filter has completely failed to ad
equately remove the sensor noise as is apparent in the
regions. Figure 7~d! shows the MMSE filtered image with
kernel mask size of 939. The luminance MSEL has been
reduced to 2.9 from 3.5, but the chrominance MSEab ,
which measures the visual quality, has increased
~3.9,3.6! indicating that the filter has failed to complete
remove the ISO noise and JPEG artifacts from flat regio
as is apparent from the many artifacts left behind@apparent
in the gradient image of Fig. 7~i!#, which greatly degrade its
visual appearance.

Figure 7~e! is the HM–ACWMF filtered image. Filter
parameters used werez50.1,h50.8. The noise variance
MSELab of ~1.6,3.5,3.0!, has been significantly reduced i
Journal of Electronic Imaging / April 2004 / Vol. 13(2) / 271
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Fig. 7 (a) An image showing part of a butterfly’s wing taken at ISO-50 as a reference (noise-free)
image. (b) The same image taken at ISO-400 showing two types of noise; ISO-noise and JPEG
blocking @sn

25(3.5,3.5,3.3)#. (c) Median filtered image with 333 mask @MSELab5(33.8,4.2,8.7)#. (d)
MMSE filtered image with 939 kernel mask @MSELab5(2.9,3.9,3.6)#. (e) HM–ACWMF filtered image
(maximum adaptive window size of 11311, z50.1), showing sharp edges and uniform smoothing in
flat regions @MSELab5(1.6,3.5,3.0)#. (f)–(j) High-pass filtered gradient equivalent of images in (a)–(e).
(g) shows the JPEG blocking artifacts clearly in the flat region. (j) shows complete removal of JPEG
artifact noise from the flat region, as well as ISO-noise from busy regions, which accounts for the
superior quality compared to the other filters.
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the luminance and chrominance-b channels, and remaine
the same for the chrominance-a channel indicating an im-
proved overall visual quality. The JPEG artifacts that
verely affected the degraded image have also been c
pletely removed from the flat regions. The optima
adaptive window was allowed to increase to a maxim
size of 11311, which accounts for the clean look in the fl
region. It is clear that this image was acquired in daylig
272 / Journal of Electronic Imaging / April 2004 / Vol. 13(2)
-

and, as such, there was no need for the imaging senso
overamplify the signal gain for the chromatic channels
this ISO setting~ISO-400!. All three channels@luminance,
and chrominance (a,b) of the L* a* b* space# were, thus,
filtered using the same filter settings due to the relativ
evenly distributed small amount of ISO noise in the thr
channels of the degraded image. Figure 7~j! shows the gra-
dient image of Fig. 7~e! with a very smooth flat region and



Rabie
Fig. 8 (a) Flower reference image at ISO-400 (courtesy http://www.dpreview.com/). (b) The severely
corrupted ISO-6400 image, with a measured MSELab noise variance of (21.4, 30.4, 71.3). (c) Median
filtered image with 333 mask @MSELab5(45.9,28.5,69.9)#. (d) MMSE filtered image with 737 kernel
mask @MSELab5(14.6,19.7,48.6)#. (e) Kodak’s proprietary ISO-noise filter built into the camera firm-
ware @MSELab5(9.8,20.0,57.3)#. (f) HM–ACWMF nonlinear filtered flower image using 535 maxi-
mum adaptive window size and z51 for the luminance channel @MSELab has dropped to (8.7, 14.6,
37.3)].
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completely cleared JPEG and ISO noise artifacts.
The butterfly image was a relatively difficult test for th

adaptive window HM–ACWMF because of the high
busy regions in the butterfly wings, yet, the ISO-400 no
level was on the low side. Next, we show a more comp
cated image acquired by the Kodak Professional DCS7
digital camera at its highest ISO setting of 6400. We co
pare our technique with Kodak’s own built-in noise filte
Journal of Electronic Imaging / April 2004 / Vol. 13(2) / 273
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274 / Journal of Ele
Fig. 9 (a) The noise corrupted a channel, showing severe noise that causes color artifacts as in Figs.
8(b), 8(c), 8(d), 8(e). (b) The noise corrupted b channel. (c) HM–ACWMF filtered a channel using
13313 maximum adaptive window size and z54 for proper flattening of the color artifacts. (d) HM–
ACWMF filtered b channel using the same filter parameters as for filtering the a channel.
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We take an ISO-400 copy of the image~also taken by the
DCS720x! as an ideal noise-free reference for performan
comparison. Figure 8~a! shows the ISO-400 reference im
age of a flower. Figure 8~b! shows the same image acquire
in a well-lit environment at ISO-6400 showing severe IS
noise that affects all color channels as apparent from
nonuniform color artifacts that appear in the noisy ima
and absent from the reference image in~a!. The estimated
sn

2 noise variance was~21.4,30.4,71.3!.
Figure 8~c! is the median filtered image with a mask

size 333. The MSELab between the median filtered imag
and the reference image was measured at~45.9,28.5,69.9!.
It is clear that the basic median filter is inadequate, b
visually as apparent from the severe blurring and the h
chrominance MSEab values, and analytically from the larg
increase in the MSEL value. The next image of Fig. 8~d! is
the MMSE filtered image using a kernel size of 737. The
MSELab measure was~14.6,19.7,48.6!, a slight improve-
ctronic Imaging / April 2004 / Vol. 13(2)
e

ment over the ISO-6400 noisy image, but still lacking t
visual fidelity that professional digital photography d
mands. Kodak’s own noise filtered image is shown in F
8~e!. The measured MSELab measure was~9.8,20.0,57.3!.
One observation here is that the luminance MSEL gives a
measure of the amount of noise reduction in the filte
image as apparent from the lower MSEL value for the
Kodak image as compared to both the MSEL values for the
median and the MMSE filtered images~9.8 for the Kodak
filter compared to 45.9 for the median filter and 14.6 for t
MMSE filter!. The slight increase in the chrominanc
MSEab values for the Kodak filter over the MMSE filte
indicate that the Kodak filtered chrominance channels w
not properly filtered as apparent from the color artifa
remaining in the flat regions of the filtered image.

To deal with these nonuniform color artifacts, which a
mainly due to the severe noise artifacts that affect
chrominance channels@Figs. 9~a! and 9~b!#, we use our
Fig. 10 (a) ISO-400 noise corrupted portion of the image in Fig. 3, with an estimated (L,a,b)-channel
noise variance of sn

25(41.9,131.7,160.5). (b) Median filtered image with 535 mask. Severe blurring
of edges degrades the appearance of the image. (c) MMSE filtered image with 939 kernel mask.
Color artifacts severely affect flat regions in the image. (d) HM–ACWMF filtered image. Color artifacts
in flat regions have been reduced to a large extent because of proper filtering in the chrominance
channels, while preserving edges. (e) Chrominance-a color channel with severe chromatic noise
affecting the channel image. (f) HM–ACWMF filtered chrominance-a color channel, showing sufficient
smoothing of color channel noise. (g) The values of the signal equalization estimator a(k,l).
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Rabie
HM–ACWMF with different filter parameters for the lumi
nance and chrominance channel in theL* a* b* space. We
used z51 with a maximum adaptive window size of
35 for the luminanceL channel, andz54 with a maxi-
mum adaptive window size of 13313 for the (a,b) chan-
nels with the idea of allowing more smoothing of the no
uniform color artifact noise in the chrominance (a,b)
channels, while preserving details in the luminanceL chan-
nel. This strategy worked well as the HM–ACWMF fi
tered image in Fig. 8~f! shows. The MSELab has dropped to
~8.7,14.6,37.3!, lower than all the other filters, which show
that it gives the closest estimate to the reference ima
both in terms of visual improvement, as well as noise
duction.

Last, but not least, we present results from filtering
noisy image of Fig. 3, which was acquired in a poorly
environment with the digital camera CCD sensitivity set
ISO-400. Figure 10~a! shows a portion of the ISO-40
noisy image, which is severely corrupted with high-IS
noise of estimated (L,a,b)-channel noise variancesn

2

5(41.9,131.7,160.5). Figure 10~b! shows a 535 median
filtered image with severe smoothing of edges. Figure 10~c!
shows a 939 MMSE filtered image with insufficient chro
matic noise removal as apparent by the color artifacts in
regions. Figure 10~d! shows our HM–ACWMF filtered im-
age with a luminance maximum window size of 13313,
andz50.1, and a chrominance maximum window size
25325 andz50.4. We used the same minimum windo
size of 535 for all channels. Figure 10~e! shows the noisy
chrominance-a channel with severe chromatic ISO nois
Figure 10~f! shows the HM–ACWMF filtered
chrominance-a channel showing significant chromat
noise removal. Figure 10~g! is an image of the values of th
signal equalization estimatora(k,l ). Bright areas of the
image correspond to large values ofa indicating large sig-
nal activity such as edges. Black areas are values ofa near
zero, indicating minimum signal activity. Thea variable is
an accurate edge detector as shown in the image.

6 Dealing with Long-Exposure Stuck-Pixel Noise

The earlier formulated HM–ACWMF together with th
optimal-size windowing framework was shown to be ve
effective at reducing, and in less severe cases, comple
removing, the last two types of high-ISO sensor no
stated in Sec. 2 earlier, namely blue-channel sensor n
~severely affecting the chrominance channels! and JPEG
blocking artifacts.

In this section, an extra prefiltering step is introduced
our sensor noise filtering pipeline to deal with the stuc
pixel-type noise generated due to exposing the digital c
era imaging sensor to the scene for an extended perio
time @usually in dim light conditions such as for night sho
as in Fig. 2~a!#.

Methods of identifying noise pixels by using uncertain
measures have been reported in the literature.35,36A method
for noise filtering using contrast entropy was reported
Beghdadi and Khellaf.37 We follow the idea of Beghdad
and Khellaf, but formulate the probability of a stuck-pix
using a local variance measure instead. This significa
reduces the blurring effects compared to the lower-or
,

t

ly

e

-
f

r

contrast measure used in Ref. 37. We define the probab
that pixel y(k,l ) centered in windowW(k,l ) is a stuck
pixel as

P~k,l !5
V~k,l !

( i , j PWV~ i , j !
, ~13!

where

V~k,l !5uy~k,l !2 ȳu2 ~14!

is a local gradient variance measure andȳ is the mean pixel
value inside theN3N window W(k,l ). The probability
that this pixely(k,l ) is a stuck pixel is, thus,V(k,l ) di-
vided by the sum of variances of all pixels inside the w
dow W(k,l ) as given in Eq.~13!. Assuming that all pixels
PW(k,l ) are equally likely to be stuck pixels, then th
probability of the window pixels being stuck-pixels can b
given by Pw51/N2, where the denominator denotes th
total number of pixels in the windowW(k,l ). This prob-
ability corresponds to a window where all the local gradie
variances are equally distributed.37 The criteria for a stuck
pixel, thus, reduces to testing for a probability that
greater thanPw .

In our filter implementation, a new long-exposure flag
added to the algorithm, which, when set by the user, w
indicate that the camera is in long-exposure mode and
the stuck-pixel prefilter~SPPF! is to be applied. Therefore
the probability of a stuck pixel is estimated for each inp
pixel y(k,l ) of the acquired image and, ifP(k,l ).Pw , the
stuck pixely(k,l ) is removed by assigning to it the media
value of pixels in a fixed 333 window centered around
y(k,l ) and having values different fromy(k,l ). On the
other hand, ifP(k,l ),Pw , indicating that the input pixel
y(k,l ) is not a stuck pixel, then the HM–ACWMF is ap
plied to this pixel for usual ISO-noise removal.

Figure 11~a! is the same simulated color edge image
Fig. 6~a!. Here we use it again to test the performance
the SPPF by adding simulated stuck-pixel noise in the fo
of superimposed impulse noise on top of the Gauss
noise, as shown in Fig. 11~b!. The total added MSELab
noise variance was calculated at~50.3,128.9,176.9!. The
median filtered image is shown in Fig. 11~c!, with a
MSELab5(3.1,14.9,16.5). Figure 11~d! gives the MMSE
estimated image, which shows a complete failure to rem
the simulated stuck pixels, which are regarded as edge
tures by the MMSE filter. The MMSE filter MSELab values
of ~16.5,17.1,19.3! are higher than the median filtered va
ues. Figure 11~e! shows the SPPF applied to the noisy im
age as a prefilter to remove the simulated stuck pixels, a
which the HM–ACWMF is applied to remove the simu
lated high-ISO noise. Simple visual inspection reve
sharp edges with efficient noise removal for an overall
perior visual quality compared to the median and t
MMSE estimates. Also, the MSELab values are the lowes
at ~0.6,11.2,10.3!.

Figure 12~a! is an enlarged portion of the long-exposu
image of Fig. 2~a! showing severe stuck-pixel noise due
long exposure at night. Figure 12~b! shows the image fil-
tered using a fixed 333 window median filter. Excessive
Journal of Electronic Imaging / April 2004 / Vol. 13(2) / 275
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276 / Journal of Ele
Fig. 11 (a) Ideal simulated color edge image. (b) Simulated long exposure stuck pixel noise plus
simulated ISO noise, MSELab5(50.3,128.9,176.9) between the ideal and this noisy image. (c) 535
median filter, MSELab5(3.1,14.9,16.5). (d) MMSE filtered image (535 kernel mask), MSELab

5(16.5,17.1,19.3). (e) SPPF followed by HM–ACWMF with a maximum adaptive window size of 11
311, and z50.1. MSELab5(0.6,11.2,10.3).
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smoothing of edges and loss of fine detail is apparent in
filtered image. Figure 12~c! shows the image filtered usin
our SPPF before applying the HM–ACWMF high-IS
noise filter. The SPPF window size used was 535 for test-
ing the probability of a stuck-pixel, and 333 for comput-
ing and assigning the median to the stuck pixel. The ad
tive window size used for the HM–ACWMF has an upp
limit of 7 37 and a lower limit of 131. It is clear that the
stuck-pixel effects have been reduced to a large ex
while preserving as much fine detail as possible compa
to the median filtered image as apparent from the sha
visual results, which is an important concern in digital ph
tography.
ctronic Imaging / April 2004 / Vol. 13(2)
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7 Conclusions

This paper has presented a hybrid noise removal filter s
cifically suited to the types of noise generated by digi
photography. The issue of high-ISO noise in digital ca
eras was discussed, and three types of digital camera n
were identified. The hybrid mean and adaptive cen
weighted median filter was derived and an optimal-s
windowing framework was implemented and used with t
noise removal filter to reduce the effects of blue-chan
noise and JPEG blocking artifacts common in high-IS
digital camera images. The third type of camera noi
which affects long-exposure images and causes stuck-p
Fig. 12 (a) Long exposure stuck pixel noise (courtesy http://www.dpreview.com/), (b) 333 median
filter, and (c) SPPF (maximum adaptive window size used 737).
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noise, was dealt with by preprocessing the image wit
new method based on estimating the probability of a st
pixel using local variance-based measures. This stuck-p
filter was shown to be highly effective as a prefilter f
removing stuck-pixel noise from long-exposure imag
One observation from the experimental results is the
that different sensors exhibit different noise levels at
same ISO setting. Finally, the methods developed in
paper were an attempt at addressing the growing conce
the digital photography community about the reduced
sual fidelity in images acquired by modern professio
digital cameras at high-ISO and long-exposure settings
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